Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T22:33:01.482Z Has data issue: false hasContentIssue false

12 - Mercury’s Hollows

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Images from the MESSENGER spacecraft show that irregular, flat-floored depressions with high-reflectance interiors and haloes are common on the surface of planet Mercury. These landforms, called hollows, are among Mercury's youngest non-impact features and may be forming today. Hollows are unique to Mercury, with no close equivalent on other planetary bodies. Clues to understanding hollows come from consideration of morphological features associated with ice-bearing surfaces on Mars and icy satellites, and of processes leading to loss of sulfur from asteroids. Evidence suggests that hollows form when sublimation or destruction of a volatile-bearing phase weakens the host rock, causing collapse and scarp retreat. The phase susceptible to loss may be a sulfide mineral or graphite. Loss of the volatile component could be driven by solar heating, exposure to solar ultraviolet radiation, exposure to the solar wind, sputtering by magnetospheric ions, and micrometeoroid bombardment. The depth to which hollows grow may be controlled by accumulation of a protective lag deposit. The volatile-bearing phase that is lost appears to be a pervasive component of the host rock, but in some cases the hollow-forming phase may have been concentrated by volcanic processes or differentiation of impact melts. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 324 - 345
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×