Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T03:32:21.294Z Has data issue: false hasContentIssue false

17 - Mercury’s Dynamic Magnetosphere

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

MESSENGER’s exploration of Mercury has led to many important discoveries and a global perspective on its magnetosphere, exosphere, and interior as a coupled system. Mercury’s proximity to the Sun, weak planetary magnetic field, electrically conducting core, and sodium-dominated exosphere give rise to a highly dynamic magnetosphere unlike that of any other planet. The strong interplanetary magnetic fields so close to the Sun result in a high rate of energy transfer from the solar wind into Mercury’s magnetosphere. Surprisingly, direct solar wind impact on the surface during coronal mass ejection impact has been found to be infrequent.  Electric currents induced in Mercury’s highly conducting interior buttress the weak planetary magnetic field against direct impact for all but the strongest solar events. Kinetic effects associated with the large orbits of planetary ions about the magnetic field and the small dimensions of the magnetosphere are observed to significantly affect some fluid instabilities such as Kelvin-Helmholtz waves along the magnetopause. As at Earth, magnetic reconnection, dipolarization fronts, and plasmoid ejection are closely associated with substorms in Mercury’s magnetosphere, and MESSENGER frequently observed energetic electrons with energies of tens of to several hundred thousand electron volts. However, no “Van Allen” radiation belts with durable trapping are present.
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 461 - 496
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akasofu, S.-I. (1964). The development of the auroral substorm. Planet. Space Sci., 12, 273282.CrossRefGoogle Scholar
Alexeev, I. I., Belenkaya, E. S., Bobrovnikov, S. Y., Slavin, J. A. and Sarantos, M. (2008). Paraboloid model of Mercury’s magnetosphere. J. Geophys. Res., 113, A12210, doi:10.1029/2008JA013368.Google Scholar
Alexeev, I. I., Belenkaya, E. S., Slavin, J. A., Korth, H., Anderson, B. J., Baker, D. N., Boardsen, S. A., Johnson, C. L., Purucker, M. E., Sarantos, M. and Solomon, S. C. (2010). Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 209, 2339, doi:10.1016/j.icarus.2010.01.024.CrossRefGoogle Scholar
Anderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H. and Slavin, J. A. (2007). The Magnetometer instrument on MESSENGER. Space Sci. Rev., 131, 417540, doi:10.1007/s11214-007–9246-7.CrossRefGoogle Scholar
Anderson, B. J., Acuña, M. H., Korth, H., Purucker, M. E., Johnson, C. L., Slavin, J. A., Solomon, S. C. and McNutt, R. L. Jr. (2008a). The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science, 321, 8285, doi:10.1126/science.1159081.Google Scholar
Anderson, B. J., Korth, H., Waters, C. L., Green, D. L. and Stauning, P. (2008b). Statistical Birkeland current distributions from magnetic field observations by the Iridium constellation. Ann. Geophys., 26, 671687, doi:10.5194/angeo-26–671-2008.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M. and Zurbuchen, T. H. (2011). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862, doi:10.1126/science.1211001.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T. and McNutt, R. L. Jr. (2012). Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res., 117, E00L12, doi:10.1029/2012JE004159.CrossRefGoogle Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Slavin, J. A., Winslow, R. M., Phillips, R. J., McNutt, R. L. Jr. and Solomon, S. C. (2014). Steady-state field-aligned currents at Mercury. Geophys. Res. Lett., 41, 74447452, doi:10.1002/2014GL061677.CrossRefGoogle Scholar
Andrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A. and Raines, J. M. (2007). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev., 131, 523556, doi:10.1007/s11214-007–9272-5.Google Scholar
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Lühr, H. and Paschmann, G. (1992). Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res., 97, 40274039, doi:10.1029/91JA02701.Google Scholar
Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., Phan, T., Sibeck, D. G., Glassmeier, K.-H., Auster, U., Donovan, E., Mann, I. R., Rae, I. J., Russell, C. T., Runov, A., Xhou, X. and Kepko, L. (2008). Tail reconnection triggering substorm onset. Science, 321, 931935, doi:10.1126/Science.1160495.Google Scholar
Arge, C. N., Luhmann, J. G., Odstrcil, D., Shriver, C. J. and Li, Y. (2004). Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar Terr. Phys., 66, 12951309.CrossRefGoogle Scholar
Armstrong, T. P., Krimigis, S. M. and Lanzerotti, L. J. (1975). A reinterpretation of the reported energetic particle fluxes in the vicinity of Mercury. J. Geophys. Res., 80, 40154017, doi:10.1029/JA080i028p04015.Google Scholar
Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M. G. and Hwang, K. J. (2011). Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nature Phys., 7, 360365, doi:10.1038/nphys1903.Google Scholar
Ashour-Abdalla, M., Lapenta, G., Walker, R. J., El-Alaoui, M. and Liang, H. (2015). Multiscale study of electron energization during unsteady reconnection events. J. Geophys. Res. Space Physics, 120, 47844799, doi:10.1002/2014JA020316.CrossRefGoogle Scholar
Baker, D. N. and Stone, E. C. (1977). Observations of energetic electrons (E ≳ 200 keV) in the Earth’s magnetotail: Plasma sheet and fireball observations. J. Geophys. Res., 82, 15321546, doi:10.1029/JA082i010p01532.Google Scholar
Baker, D. N., Simpson, J. A. and Eraker, J. H. (1986). A model of impulsive acceleration and transport of energetic particles in Mercury’s magnetosphere. J. Geophys. Res., 91, 87428748, doi:10.1029/JA091iA08p08742.Google Scholar
Baker, D. N., Borovsky, J. E., Burns, J. O., Gisler, G. R. and Zeilik, M. (1987). Possible calorimetric effects at Mercury due to solar wind-magnetosphere interactions. J. Geophys. Res., 92, 47074712, doi:10.1029/JA092iA05p04707.Google Scholar
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W. and McPherron, R. L. (1996). Neutral line model of substorms: Past results and present view. J. Geophys. Res., 101, 12,975–13,010, doi:10.1029/95JA03753.Google Scholar
Baker, D. N., Odstrcil, D., Anderson, B. J., Arge, C. N., Benna, M., Gloeckler, G., Raines, J. M., Schriver, D., Slavin, J. A., Solomon, S. C., Killen, R. M. and Zurbuchen, T. H. (2009). Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions. J. Geophys. Res., 114, A10101, doi:10.1029/2009JA014287.Google Scholar
Baker, D. N., Anderson, B. J., Arge, C. N., Benna, M., Gloeckler, G., Odstrcil, D., Korth, H., Mayer, L., Raines, J. M., Schriver, D., Slavin, J. A., Solomon, S. C., Trávníček, P. and Zurbuchen, T. H. (2011). The space environment of Mercury at the times of the second and third MESSENGER flyby. Planet. Space Sci., 59, 20662074, doi:10.1016/j.pss.2011.01.018.CrossRefGoogle Scholar
Baker, D. N., Poh, G. K., Odstrcil, D., Arge, C. N., Benna, M., Johnson, C. L., Korth, H., Gershman, D. J., Ho, G. C., McClintock, W. E., Cassidy, T. A., Merkel, A., Raines, J. M., Schriver, D., Slavin, J. A., Solomon, S. C., Trávníček, P. M., Winslow, R. M. and Zurbuchen, T. H. (2013). Solar wind forcing at Mercury: WSA-ENLIL model results. J. Geophys. Res. Space Physics, 118, 4557, doi:10.1029/2012JA018064.Google Scholar
Baker, D. N., Dewey, R. M., Lawrence, D. J., Goldsten, J. O., Peplowski, P. N., Korth, H., Slavin, J. A., Krimigis, S. M., Anderson, B. J., Ho, G. C., McNutt, R. L. Jr., Raines, J. M., Schriver, D. and Solomon, S. C. (2016). Intense energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with high-resolution observations from MESSENGER. J. Geophys. Res. Space Physics, 121, 21712184, doi:10.1002/2015JA021778.Google Scholar
Baumjohann, W., Paschmann, G. and Lühr, H. (1990). Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res., 95, 38013809.Google Scholar
Baumjohann, W., Paschmann, G., Nagai, T. and Lühr, H. (1991). Superposed epoch analysis of the substorm plasma sheet. J. Geophys. Res., 96, 11,605–11,608, doi:10.1029/91JA00775.1991.CrossRefGoogle Scholar
Baumjohann, W., Hesse, M., Kokubun, S., Mukai, T., Nagai, T. and Petrukovich, A. A. (1999). Substorm dipolarization and recovery. J. Geophys. Res., 104, 24,995–25,000, doi:10.1029/1999JA900282.Google Scholar
Baumjohann, W., Matsuoka, A., Glassmeier, K. H., Russell, C. T., Nagai, T., Hoshino, M., Nakagawa, T., Balogh, A., Slavin, J. A., Nakamura, R. and Magnes, W. (2006). The magnetosphere of Mercury and its solar wind environment: Open issues and scientific questions. Adv. Space Res., 38, 604609, doi:10.1016/j.asr.2005.05.117.CrossRefGoogle Scholar
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R. and Ziethe, R. (2010). BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci., 58, 220.CrossRefGoogle Scholar
Benna, M., Anderson, B. J., Baker, D. N., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., Purucker, M. E., McNutt, R. L. Jr., Raines, J. M., McClintock, W. E., Sarantos, M., Slavin, J. A., Solomon, S. C. and Zurbuchen, T. H. (2010). Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus, 209, 310, doi:10.1016/j.icarus.2009.11.036.CrossRefGoogle Scholar
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M. and Zelenyi, L. M. (2012). Particle acceleration in the magnetotail and aurora. Space Sci. Rev., 173, 49102, doi:10.1007/s11214-012–9874-4.Google Scholar
Boardsen, S. A., Anderson, B. J., Acuña, M. H., Slavin, J. A., Korth, H. and Solomon, S. C. (2009a). Narrow-band ultra-low-frequency wave observations by MESSENGER during its January 2008 flyby through Mercury’s magnetosphere. Geophys. Res. Lett., 36, L01104, doi:10.1029/2008GL036034.CrossRefGoogle Scholar
Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H. and Solomon, S. C. (2009b). Comparison of ultra-low-frequency waves at Mercury under northward and southward IMF. Geophys. Res. Lett., 36, L18106, doi:10.1029/2009GL039525.Google Scholar
Boardsen, S. A., Sundberg, T., Slavin, J. A., Anderson, B. J., Korth, H., Solomon, S. C. and Blomberg, L. G. (2010). Observations of Kelvin–Helmholtz waves along the dusk-side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby. Geophys. Res. Lett., 37, L12101, doi:10.1029/2010GL043606.CrossRefGoogle Scholar
Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Schriver, D. and Solomon, S. C. (2012). Survey of coherent 1 Hz waves in Mercury’s inner magnetosphere from MESSENGER observations, J. Geophys. Res., 117, A00M05, doi:10.1029/2012JA017822.CrossRefGoogle Scholar
Boardsen, S. A., Kim, E.-H., Raines, J. M, Slavin, J. A., Gershman, D. J., Anderson, B. J., Korth, H., Sundberg, T., Schriver, D. and Trávníček, P. (2015). Interpreting ~1 Hz magnetic compressional waves in Mercury’s inner magnetosphere in terms of propagating ion-Bernstein waves. J. Geophys. Res. Space Physics, 120, 42134428, doi:10.1002/2014JA020910.Google Scholar
Borovsky, J. E., Nemzek, R. J. and Belian, R. D. (1993). The occurrence rate of magnetospheric-substorm onsets: Random and periodic substorms. J. Geophys. Res., 98, 38073813, doi:10.1029/92JA02556.CrossRefGoogle Scholar
Christon, S., Daly, S., Eraker, J., Perkins, M., Simpson, J. and Tuzzolino, A. (1979). Electron calibration of instrumentation for low energy, high intensity particle measurements at Mercury. J. Geophys. Res., 84, 42774288, doi:10.1029/JA084iA08p04277.Google Scholar
Christon, S. P., Feynman, J. and Slavin, J. A. (1987). Substorm injection fronts: Similar magnetospheric phenomena at Earth and Mercury. In Magnetotail Physics, ed. Lui, A. T. Y.. Baltimore, MD: Johns Hopkins University Press, pp. 393402.Google Scholar
Cooling, B. M. A., Owen, C. J. and Schwartz, S. J. (2001). Role of the magnetosheath flow in determining the motion of open flux tubes. J. Geophys. Res., 106, 18,763–18,776, doi:10.1029/2000JA000455.Google Scholar
Coroniti, F. V. and Kennel, C. F. (1973). Can the ionosphere regulate magnetospheric convection? J. Geophys. Res., 78, 28372851, doi:10.1029/JA078i016p02837.Google Scholar
Cowley, S. W. H. and Owen, C. J. (1989). A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet. Space Sci., 39, 14651475.Google Scholar
Delcourt, D. C. (2013). On the supply of heavy planetary material to the magnetotail of Mercury. Ann. Geophys., 31, 16731679, doi:10.5194/angeo-31–1673-2013, 2013.CrossRefGoogle Scholar
Delcourt, D. C., Moore, T. E., Orsini, S., Millilo, A. and Sauvaud, J.-A. (2002). Centrifugal acceleration of ions near Mercury. Geophys. Res. Lett., 29, 1591, doi:10.1029/2001GL013829.Google Scholar
Delcourt, D. C., Grinald, S., Leblanc, F., Berthelier, J.-J., Millilo, A., Mura, A., Orsini, S. and Moore, T. E. (2003). A quantitative model of the planetary Na+ contribution to Mercury’s magnetosphere. Ann. Geophys., 21, 17231736, doi:10.5194/angeo-21-1723-2003.Google Scholar
Delcourt, D. C., Seki, K., Terada, N. and Miyoshi, Y. (2005). Electron dynamics during substorm dipolarization in Mercury’s magnetosphere. Ann. Geophys., 23, 33893398, doi:10.5194/angeo-23–3389-2005.Google Scholar
Delcourt, D. C., Moore, T. E. and Fok, M.-C. H. (2010). Ion dynamics during compression of Mercury’s magnetosphere. Ann. Geophys., 28, 14671474, doi:10.5194/angeo-28–1467-2010.Google Scholar
Delcourt, D. C., Seki, K., Terada, N. and Moore, T. E. (2012). Centrifugally stimulated exospheric ion escape at Mercury. Geophys. Res. Lett., 39, L22105, doi:10.1029/2012GL054085.Google Scholar
Dewey, R. M., Baker, D. N., Anderson, B. J., Benna, M., Johnson, C. L., Korth, H., Gershman, D. J., Ho, G. C., McClintock, W. E., Odstrcil, D., Philpott, L. C., Raines, J. M., Schriver, D., Slavin, J. A., Solomon, S. C. Winslow, R. M. and Zurbuchen, T. H. (2015). WSA-ENLIL model with the Cone extension. J. Geophys. Res. Space Physics, 120, 56675685, doi:10.1002/2015JA021194.Google Scholar
DiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. Space Physics, 118, 9971008, doi:10.1002/jgra.50123.Google Scholar
DiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. J., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L. Jr. and Solomon, S. C. (2015a). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planet. Space Sci., 115, 7789, doi:10.1016/j.pss.2014.12.016.Google Scholar
DiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, J. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., McNutt, R. L. Jr. and Solomon, S. C. (2015b). First observations of Mercury’s plasma mantle by MESSENGER. Geophys. Res. Lett., 42, 96669675, doi:10.1002/2015GL065805.Google Scholar
Domingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., Benna, M., Slavin, J. A., Schriver, D., Trávníček, P. M., Orlando, T. M., Sprague, A. L., Blewett, D. T., Gillis-Davis, J. J., Feldman, W. C., Lawrence, D. J., Ho, G. C., Ebel, D. S., Nittler, L. R., Vilas, F., Pieters, C. M., Solomon, S. C., Johnson, C. L., Winslow, R. M., Helbert, J., Peplowski, P. N., Weider, S. Z., Mouawad, N., Izenberg, N. R. and McClintock, W. E. (2014). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev., 181, 121214, doi:10.1007/s11214-014–0039-5.Google Scholar
Drake, J. F., Swisdak, M., Che, H. and Shay, M. A. (2006). Electron acceleration from contracting magnetic islands during reconnection. Nature, 443, 553556, doi:10.1038/nature05116.Google Scholar
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett., 6, 47.CrossRefGoogle Scholar
Eastwood, J. P., Phan, T. D., Øieroset, M., Shay, M. A., Malakit, K., Swisdak, M., Drake, J. F. and Masters, A. (2013). Influence of asymmetries and guide fields on the magnetic diffusion region in collisionless space plasmas. Plasma Phys. Control. Fusion, 55, 124001, doi:10.1088/0741–3335/55/12/124001.Google Scholar
Eraker, J. H. and Simpson, J. A. (1986). Acceleration of charged particles in Mercury’s magnetosphere. J. Geophys. Res., 91, 99739993, doi:10.1029/JA091iA09p09973.CrossRefGoogle Scholar
Fairfield, D. H. and Behannon, K. W. (1976). Bow shock and magnetosheath waves at Mercury. J. Geophys. Res., 81, 38973906, doi:10.1029/JA081i022p03897.Google Scholar
Farrugia, C. J., Erkaev, N. V., Biernat, H. K. and Burlaga, L. F. (1995). Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud. J. Geophys. Res., 10, 19,245–19,257, doi:10.1029/95JA0108.Google Scholar
Fear, R. C., Milan, S. E., Fazakerley, A. N., Owen, C. J., Asikainen, T., Taylor, M. G. G. T., Lucek, E. A., Rème, H., Dandouras, I. and Daly, P. W. (2007). Motion of flux transfer events: A test of the Cooling model. Ann. Geophys., 25, 16691690, doi:10.5194/angeo-25–1669-2007.Google Scholar
Fujimoto, M., Baumjohann, W., Kabin, K., Nakamura, R., Slavin, J. A., Terada, N. and Zelenyi, L. (2007). Hermean magnetosphere–solar wind interaction. Space Sci. Rev., 132, 529550, doi:10.1007/s11214-007–9245-8.Google Scholar
Fuselier, S. A. and Lewis, W. S. (2011). Properties of near-Earth magnetic reconnection from in-situ observations. Space Sci. Rev., 160, 95121, doi:10.1007/s11214-011–9820-x.Google Scholar
Gershman, D. J., Zurbuchen, T. H., Fisk, L. A., Gilbert, J. A., Raines, J. M., Anderson, B. J., Smith, C. W., Korth, H. and Solomon, S. C. (2012). Solar wind alpha particles and heavy ions in the inner heliosphere. J. Geophys. Res., 117, A00M02, doi:10.1029/2012JA017829.Google Scholar
Gershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H. Anderson, B. J., Korth, H., Baker, D. N. and Solomon, S. C. (2013). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. J. Geophys. Res. Space Physics, 118, 71817199, doi:10.1002/2013JA019244.CrossRefGoogle Scholar
Gershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N. and Solomon, S. C. (2014). Ion kinetic properties in Mercury’s pre-midnight plasma sheet. Geophys. Res. Lett., 41, 57405747, doi:10.1002/2014GL060468.Google Scholar
Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Sundberg, T., Boardsen, S. A., Anderson, B. J., Korth, H. and Solomon, S. C. (2015a). MESSENGER observations of multiscale Kelvin–Helmholtz vortices at Mercury. J. Geophys. Res. Space Physics, 120, 43544368, doi:10.1002/2014JA020903.CrossRefGoogle Scholar
Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Anderson, B. J., Korth, H., Ho, G. C., Boardsen, S. A., Cassidy, T. A., Walsh, B. M. and Solomon, S. C. (2015b). MESSENGER observations of solar energetic electrons within Mercury’s magnetosphere. J. Geophys. Res. Space Physics, 120, 85598571, doi:10.1002/2015JA021610.Google Scholar
Gershman, D. J., Dorelli, J. C., DiBraccio, G. A., Raines, J. M., Slavin, J. A., Poh, G. and Zurbuchen, T. H. (2016). Ion-scale structure in Mercury’s magnetopause reconnection diffusion region. Geophys. Res. Lett., 43, 59355942, doi:10.1002/2016GL069163.Google Scholar
Gingell, P. W., Sundberg, T. and Burgess, D. (2015). The impact of a hot sodium ion population on the growth of the Kelvin–Helmholtz instability in Mercury’s magnetotail. J. Geophys. Res. Space Physics, 120, 54325442, doi:10.1002/2015JA021433.Google Scholar
Glassmeier, K.-H. (2000). Currents in Mercury’s magnetosphere. In Magnetospheric Current Systems, ed. Ohtani, S., Fujii, R., Hesse, M. and Lysak, R. L., Geophysical Monograph 118. Washington, DC: American Geophysical Union, pp. 371380.Google Scholar
Glassmeier, K.-H. and Espley, J. (2006). ULF waves in planetary magnetospheres. In Magnetospheric ULF Waves: Synthesis and New Directions, ed. Takahashi, K., Chi, P. J., Denton, R. E. and Lysak, R. L., Geophysical Monograph 169. Washington, DC: American Geophysical Union, pp. 341359, doi:10.1029/169GM22.Google Scholar
Glassmeier, K.-H., Grosser, J., Auster, U., Constantinescu, D., Narita, Y. and Stellmach, S. (2007). Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev., 132, 511527, doi:10.1007/s11214-007–9244-9.Google Scholar
Goldsten, J. O., Rhodes, E. A., Boynton, W. V., Feldman, W. C., Lawrence, D. J., Trombka, J. I., Smith, D. M., Evans, L. G., White, J., Madden, N. W., Berg, P. C., Murphy, G. A., Gurnee, R. S., Strohbehn, K., Williams, B. D., Schaefer, E. D., Monaco, C. A., Cork, C. P., Eckels, J. D., Miller, W. O., Burks, M. T., Hagler, L. B., DeTeresa, S. J. and Witte, M. C. (2007). The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci. Rev., 131, 339391, doi:10.1007/s11214-007–9262-7.Google Scholar
Hasegawa, H., Wang, J., Dunlop, M. W., Pu, Z. Y., Zhang, Q.-H., Lavraud, B., Taylor, M. G. G. T., Constantinescu, O. D., Berchem, J., Angelopoulos, V., McFadden, J. P., Frey, H. U., Panov, E. V., Volwerk, M. and Bogdanova, Y. V. (2010). Evidence for a flux transfer event generated by multiple X‐line reconnection at the magnetopause. Geophys. Res. Lett., 37, L16101, doi:10.1029/2010GL044219.Google Scholar
Hesse, M. and Kivelson, M. G. (1998). The formation and structure of flux ropes in the magnetotail. In New Perspectives on the Earth’s Magnetotail, ed. Nishida, A., Baker, D. N. and Cowley, S. W. H.. Geophysical Monograph 105 Washington, DC: American Geophysical Union, pp. 139–151, doi:10.1029/GM105p0139.Google Scholar
Heyner, D., Nabert, C., Liebert, E. and Glassmeier, K.-H. (2016). Concerning reconnection-induction balance at the magnetopause of Mercury. J. Geophys. Res. Space Physics, 121, 29352961, doi:10.1002/2015JA021484.Google Scholar
Hill, T. W., Dessler, A. J. and Wolf, R. A. (1976). Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophys. Res. Lett., 3, 429432.CrossRefGoogle Scholar
Ho, G. C., Krimigis, S. M., Gold, R. E., Baker, D. N., Slavin, J. A., Anderson, B. J., Korth, H., Starr, R. D., Lawrence, D. J., McNutt, R. L. Jr. and Solomon, S. C. (2011). MESSENGER observations of transient bursts of energetic electrons in Mercury’s magnetosphere. Science, 333, 18651868, doi:10.1126/science.1211141.Google Scholar
Ho, G. C., Krimigis, S. M., Gold, R. E., Baker, D. N., Anderson, B. J., Korth, H., Slavin, J. A., McNutt, R. L. Jr., Winslow, R. M. and Solomon, S. C. (2012). Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res., 117, A00M04, doi:10.1029/2012JA017983.CrossRefGoogle Scholar
Ho, G. C., Starr, R. D., Krimigis, S. M., Vandegriff, J. D., Baker, D. N., Gold, R. E., Anderson, B. J., Korth, H., Schriver, D., McNutt, R. L. Jr. and Solomon, S. C. (2016). MESSENGER observations of suprathermal electrons in Mercury’s magnetosphere. Geophys. Res. Lett., 43, 550555, doi:10.1002/2015GL066850.Google Scholar
Hones, E. W. Jr. (1977). Substorm processes in the magnetotail: Comments on ‘On hot tenuous plasmas, fireballs, and boundary layers in the Earth’s magnetotail’ by L. A. Frank, K. L. Ackerson and R. P. Lepping, J. Geophys. Res., 82, 56335640, doi:10.1029/JA082i035p05633.Google Scholar
Hones, E. W. Jr., Baker, D. N., Bame, S. J., Feldman, W. C., Gosling, J. T., McComas, D. J., Zwickl, R. D., Slavin, J. A., Smith, E. J. and Tsurutani, B. T. (1984). Structure of the magnetotail at 220 RE and its response to geomagnetic activity. Geophys. Res. Lett., 11, 57, doi:10.1029/GL011i001p00005.Google Scholar
Hood, L. and Schubert, G. (1979). Inhibition of solar wind impingement on Mercury by planetary induction currents. J. Geophys. Res., 84, 26412647, doi:10.1029/JA084iA06p02641.Google Scholar
Hoshino, M. (2005). Electron surfing acceleration in magnetic reconnection. J. Geophys. Res., 110, A10215, doi:10.1029/2005JA011229.Google Scholar
Huang, C.-S., DeJong, A. D. and Cai, X. (2009). Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events. J. Geophys. Res., 114, A07202, doi:10.1029/2009JA014232.Google Scholar
Ieda, A., Machida, S., Mukai, T., Saito, Y., Yamamoto, T., Nishida, A., Terasawa, T. and Kokubun, S. (1998). Statistical analysis of the plasmoid evolution with Geotail observations. J. Geophys. Res., 103, 44534465, doi:10.1029/97JA03240.CrossRefGoogle Scholar
Iijima, T. and Potemra, T. A. (1976). The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res., 81, 21652174.Google Scholar
Imber, S. M., Slavin, J. A., Auster, U. and Angelopoulos, V. (2011). A THEMIS survey of flux ropes and traveling compression regions: Location of the near-Earth reconnection site during solar minimum. J. Geophys. Res., 116, A02201, doi:10.1029/2010JA016026.Google Scholar
Imber, S. M., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., McNutt, R. L. Jr. and Solomon, S. C. (2014). MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle? J. Geophys. Res. Space Physics, 119, 56135623, doi:10.1002/2014JA019884.CrossRefGoogle Scholar
Ip, W.-H. (1987). Dynamics of electrons and heavy ions in Mercury’s magnetosphere. Icarus, 71, 441447, doi:10.1016/0019–1035(87)90039-X.Google Scholar
Janhunen, P. and Kallio, E. (2004). Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry. Ann. Geophys., 22, 18291830, doi:10.5194/angeo-22–1829-2004.Google Scholar
Jia, X., Kivelson, M. G., Khurana, K. K., Linker, J. A. and Walker, R. J. (2010). Dynamics of Ganymede’s magnetopause: Intermittent reconnection under steady external conditions. J. Geophys. Res., 115, A12202, doi:10.1029/2010JA015771.Google Scholar
Jia, X., Daldorrf, L. K. S., Gombosi, T. I., van der Holst, B., Slavin, J. A. and Toth, G. (2015). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. J. Geophys. Res. Space Physics, 120, 47634775, doi:10.1002/2015JA021143.CrossRefGoogle Scholar
Johnson, C. L., Purucker, M. E., Korth, H., Anderson, B. J., Winslow, R. M., Al Asad, M. M. H., Slavin, J. A., Alexeev, I. I., Phillips, R. J., Zuber, M. T. and Solomon, S. C. (2012). MESSENGER observations of Mercury’s magnetic field structure. J. Geophys. Res., 117, E00L14, doi:10.1029/2012JE004217.Google Scholar
Johnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck, S. A. II, Heyner, D., Phillips, R. J., Winslow, R. M. and Solomon, S. C. (2016). MESSENGER observations of induced magnetic fields in Mercury’s core. Geophys. Res. Lett., 43, 24362444, doi:10.1002/2015GL067370.Google Scholar
Kabin, K., Gombosi, T. I., DeZeeuw, D. L. and Powell, K. G. (2000). Interaction of Mercury with the solar wind. Icarus, 84, 397406, doi:10.1006/icar.1999.6252.Google Scholar
Kan, J. R., Zhu, L. and Akasofu, S.-I. (1988). A theory of substorms: Onset and subsidence. J. Geophys. Res., 93, 56245640, doi:10.1029/JA093iA06p05624.Google Scholar
Kepko, L., Glassmeier, K.-H., Slavin, J. A. and Sundberg, T. (2015). Substorm current wedge at Earth and Mercury. In Magnetotails in the Solar System, ed. Keiling, A., Jackman, C. M. and Delamere, P. A.. Hoboken, NJ: John Wiley & Sons, pp. 361372, doi:10.1002/9781118842324.ch21.Google Scholar
Kidder, A., Winglee, R. M. and Harnett, E. M. (2008). Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation. J. Geophys. Res., 113, A09223, doi:10.1029/2008JA013038.Google Scholar
Klimas, A. (2015). New expression for collisionless magnetic reconnection rate. Phys. Plasmas, 22, 04290, doi:10.1063/1.4917068.Google Scholar
Korth, H., Anderson, B. J., Zurbuchen, T. H., Slavin, J. A., Perri, S., Boardsen, S. A., Baker, D. N., Solomon, S. C. and McNutt, R. L. Jr. (2011a). The interplanetary magnetic field environment at Mercury’s orbit. Planet. Space Sci., 59, 20752085, doi:10.1016/j.pss.2010.10.014.Google Scholar
Korth, H., Anderson, B. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Johnson, C. L., Purucker, M. E., Winslow, R. M., Solomon, S. C. and McNutt, R. L. Jr. (2011b). Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations. Geophys. Res. Lett., 38, L22201, doi:10.1029/2011GL049451.CrossRefGoogle Scholar
Korth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Solomon, S. C. and McNutt, R. L. Jr. (2014). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations. J. Geophys. Res. Space Physics, 119, 29172932, doi:10.1002/2013JA019567.Google Scholar
Krauss-Varban, D. and Omidi, N. (1991). Structure of medium Mach number quasi-parallel shocks: Upstream and downstream waves. J. Geophys. Res., 96, 17,71517,731, doi:10.1029/91JA01545.CrossRefGoogle Scholar
Kuo, H., Le, G. and Russell, C. T. (1995). Statistical studies of flux transfer events. J. Geophys. Res., 100, 35133519, doi:10.1029/94JA02498.Google Scholar
Kuznetsova, M. M., Hesse, M., Rastaetter, L., Taktakishvili, A., Toth, G., De Zeeuw, D. L., Ridley, A. and Gombosi, T. I. (2007). Multiscale modeling of magnetospheric reconnection. J. Geophys. Res., 112, A10210, doi:10.1029/2007JA012316.Google Scholar
Lavraud, B. and Borovsky, J. E. (2008). Altered solar wind–magnetosphere interaction at low Mach numbers: Coronal mass ejections. J. Geophys. Res., 113, A00B08, doi:10.1029/2008JA013192.Google Scholar
Lawrence, D. J., Anderson, B. J., Baker, D. N., Feldman, W. C., Ho, G. C., Korth, H., McNutt, R. L. Jr., Peplowski, P. N., Solomon, S. C., Starr, R. D., Vandegriff, J. D. and Winslow, R. M. (2015). Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER Gamma-Ray and Neutron Spectrometer. J. Geophys. Res. Space Physics, 120, 28512876, doi:10.1002/2014JA020792.Google Scholar
Le, G., Chi, P. J., Blanco-Cano, X., Boardsen, S. A., Slavin, J. A., Anderson, B. J. and Korth, H. (2013). Upstream ultra-low frequency waves in Mercury’s foreshock region: MESSENGER magnetic field measurements. J. Geophys. Res. Space Physics, 118, 28092823, doi:10.1002/jgra.50342.Google Scholar
Lee, L. C. and Fu, Z. F. (1985). A theory of magnetic flux transfer at the Earth’s magnetopause. Geophys. Res. Lett., 12, 105108.Google Scholar
Lepping, R. P., Fairfield, D. H., Jones, J., Frank, L. A., Paterson, W. R., Kokubun, S. and Yamamoto, T. (1995). Cross-tail magnetic flux ropes as observed by the Geotail spacecraft. Geophys. Res. Lett., 22, 11931196, doi:10.1029/94GL01114.Google Scholar
Lepping, R. P., Slavin, J. A., Hesse, M., Jones, J. A. and Szabo, A. (1996). Analysis of magnetotail flux ropes with strong core fields: ISEE 3 observations. J. Geomag. Geoelectr., 48, 589601, doi:10.5636/jgg.48.589.Google Scholar
Liljeblad, E., Sundberg, T., Karlsson, T. and Kullen, A. (2015a). Statistical investigation of Kelvin–Helmholtz waves at the magnetopause of Mercury. J. Geophys. Res. Space Physics, 119, 96709683, doi:10.1002/2014JA020614.Google Scholar
Liljeblad, E., Karlsson, T., Raines, J. M., Slavin, J. A., Kullen, A., Sundberg, T. and Zurbuchen, T. H. (2015b). MESSENGER observations of the dayside low-latitude boundary layer in Mercury’s magnetosphere. J. Geophys. Res. Space Physics, 120, 83878400, doi:10.1002/2015JA021662.Google Scholar
Lindsay, S. T., James, M. K., Bunce, E. J., Imber, S. M., Korth, H., Martindale, A. and Yeoman, T. K. (2016). MESSENGER X-ray observations of magnetosphere–surface interaction on the nightside of Mercury. Planet. Space Sci., 125, 7279, 10.1016/j.pss.2016.03.005i.Google Scholar
Liu, J., Angelopoulos, V., Sibeck, D., Phan, T., Pu, Z. Y., McFadden, J., Glassmeier, K. H. and Auster, H. U. (2008). THEMIS observations of the dayside traveling compression region and flows surrounding flux transfer events. Geophys. Res. Lett., 35, L17S07, doi:10.1029/2008GL033673.Google Scholar
Lyatsky, W. Khazanov, G. V. and Slavin, J. A. (2010). Alfven wave reflection model of field-aligned currents at Mercury. Icarus, 209, 4045.Google Scholar
Marsch, E., Mühlhäuser, K.-H., Rosenbauer, H., Schwenn, R. and Neubauer, F. M. (1982). Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res., 87, 3551, doi:10.1029/JA087iA01p00035.Google Scholar
Massetti, S., Orsini, S., Milillo, A., Mura, A., deAngelis, E., Lammer, H. and Wurz, P. (2003). Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus, 166, 229237, doi:10.1016/j.icarus.2003.08.005.Google Scholar
Masters, A., Eastwood, J. P., Swisdak, M., Thomsen, M. F., Russell, C. T., Sergis, N. F., Crary, J., Dougherty, M. K., Coates, A. J., Crary, J. and Krimigis, S. M. (2012). The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett., 39, L08103, doi:10.1029/2012GL051372.CrossRefGoogle Scholar
McPherron, R. L. (1991). Physical processes producing magnetospheric substorms and magnetic storms. In Geomagnetism, ed. Jacobs, J.. San Diego, CA: Academic Press, pp. 593739.Google Scholar
McPherron, R. L., Parks, G. K., Colburn, D. S. and Montgomery, M. D. (1973). Satellite studies of magnetospheric substorms on August 15, 1968: 2. Solar wind and outer magnetosphere. J. Geophys. Res., 78, 30543061, doi:10.1029/JA078i016p03054.Google Scholar
Middleton, H., Slavin, J. A., Raines, J. M., Jia, X., Anderson, B., Mays, M. L. and Zurbuchen, T. H. (2014). Mercury’s disappearing dayside magnetosphere events (MESSENGER): Evidence for severe dayside erosion and/or compression. Presented at 2014 Fall Meeting, American Geophysical Union, abstract P21C-3919. San Francisco, CA, 15–19 December.Google Scholar
Milan, S. E., Cowley, S. W. H., Lester, M., Wright, D. M., Slavin, J. A., Fillingim, M., Carlson, C. W. and Singer, H. J. (2004). Response of the magnetotail to changes in the open flux content of the magnetosphere. J. Geophys. Res., 109, A04220, doi:10.1029/2003JA010350.Google Scholar
Moldwin, M. B. and Hughes, W. J. (1992). On the formation and evolution of plasmoids: A survey of ISEE 3 Geotail data. J. Geophys. Res., 97, 19,259–19,282, doi:10.1029/92JA01598.Google Scholar
Mozer, F. S. and Retinò, A. (2007). Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements. J. Geophys. Res., 112, A10206, doi:10.1029/2007JA012406.Google Scholar
Muller, J., Simon, S., Wang, Y.-C., Motschmann, U., Heyner, D., Schüle, J., Ip, W.-H., Keindienst, G. and Pringle, G. J. (2012). Origin of Mercury’s double magnetopause: 3D hybrid simulation with A.I.K.E.F. Icarus, 218, 666687, doi:10.1016/j.icarus.2011.12.028.Google Scholar
Nagai, T., Fujimoto, M., Saito, Y., Machida, S., Terasawa, T., Nakamura, R., Yamamoto, T. T., Mukai, T., Nishida, A. and Kokubun, S. (1998). Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations. J. Geophys. Res., 103, 44194440, doi:10.1029/97JA02190.Google Scholar
Nagano, H. (1979). Effect of finite ion Larmor radius on the Kelvin–Helmholtz instability of the magnetopause. Planet. Space Sci., 27, 881884, doi:10.1016/0032–0633(79)90013–8.Google Scholar
Nakamura, T., Hasegawa, H. and Shinohara, I. (2010). Kinetic effects on the Kelvin–Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: Particle simulations. Phys. Plasmas, 17, 042119, doi:10.1063/1.3385445.Google Scholar
Ness, N. F. (1979). The magnetic field of Mercury. Phys. Earth Planet. Inter., 20, 209217.CrossRefGoogle Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C. and Schatten, K. H. (1974). Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science, 185, 151185.Google Scholar
Odstrcil, D., Riley, P. and Zhao, X. P. (2004). Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res., 109, A02116, doi:10.1029/2003JA010135.Google Scholar
Ohtani, S., Shay, M. A. and Mukai, T. (2004). Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulations. J. Geophys. Res., 109, A03210, doi:10.1029/2003JA010002.Google Scholar
Øieroset, M., Lin, R. P., Phan, T. D., Larson, D. E. and Bale, S. D. (2002). Evidence for electron acceleration up to ~300 keV in the magnetic reconnection diffusion region of Earth’s magnetotail. Phys. Rev. Lett., 89, 195001, doi:10.1103/PhysRevLett.89.195001.Google Scholar
Paral, J. and Rankin, R. (2013). Dawn–dusk asymmetry in the Kelvin–Helmholtz instability at Mercury. Nature Commun., 4, 1645, doi:10.1038/ncomms2676.Google Scholar
Paschmann, G., Papamastorakis, I., Baumjohann, W., Carlson, B. U., Lühr, H., Sckope, N. W. and Sonnerup, O. (1986). The magnetopause for large magnetic shear: AMPTE/IRM observations. J. Geophys. Res., 91, 11,099–11,115, doi:10.1029/JA091iA10p11099.Google Scholar
Pfleger, M., Lichtenegger, H. I. M., Wurtz, P., Lammer, H., Kallio, E., Alho, M., Mura, A., McKenna-Lawlor, S. and Martin-Fernandez, J. A. (2015). 3D-modeling of Mercury’s solar wind sputtered surface-exosphere environment. Planet. Space Sci., 115, 90101, doi:10.1016/j.pss.2015.04.016.Google Scholar
Poh, G. K., Slavin, J. A., Jia, X., DiBraccio, G. A., Raines, J. M., Imber, S. M., Gershman, D. J., Sun, W., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L. Jr. and Solomon, S. C. (2016). MESSENGER observations of cusp plasma filaments at Mercury. J. Geophys. Res. Space Physics, 120, 82608285, doi:10.1002/2016JA022552.Google Scholar
Raeder, J. (2006). Flux transfer events: 1. Generation mechanism for strong southward IMF. Ann. Geophys., 24, 381392, doi:10.5194/angeo-24–381-2006.Google Scholar
Raeder, J., Zhu, P., Ge, Y. and Siscoe, G. (2010). Open Geospace General Circulation Model simulation of a substorm: Axial tail instability and ballooning mode preceding substorm onset. J. Geophys. Res., 115, A00I16, doi:10.1029/2010JA015876.Google Scholar
Raines, J. M., Slavin, J. A., Zurbuchen, T. H. Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M. and McNutt, R. L. Jr. (2011). MESSENGER observations of the plasma environment near Mercury. Planet. Space Sci., 59, 2004–2015, doi:10.1016/j/pss.2011.02.004.Google Scholar
Raines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. J. Geophys. Res. Space Physics, 118, 16041619, doi:10.1029/2012JA018073.Google Scholar
Raines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J. and Solomon, S. C. (2014). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. J. Geophys. Res. Space Physics, 119, 65876602, doi:10.1002/2014JA020120.Google Scholar
Raines, J. M., DiBraccio, G. A., Cassidy, T. A., Delcourt, D. C., Fujimoto, M., Jia, X., Mangano, V., Milillo, A., Sarantos, M., Slavin, J. A. and Wurz, P. (2015). Plasma sources in planetary magnetospheres: Mercury. Space Sci. Rev., 192, 91144, doi:10.1007/s11214-015–0193-4.Google Scholar
Richardson, I. G., Owen, C. J. and Slavin, J. A. (1996). Energetic electron bursts in the deep geomagnetic tail observed by ISEE-3: Association with substorms and magnetotail structures. J. Geomagnet. Geoelectr., 5–6 (48), 657673.Google Scholar
Rijnbeek, R. P., Cowley, S. W. H., Southwood, D. J. and Russell, C. T. (1984). A survey of dayside flux transfer events observed by ISEE-1 and ISEE-2 magnetometers. J. Geophys. Res., 89, 786800, doi:10.1029/JA89iA02p00786.CrossRefGoogle Scholar
Russell, C. T. (1989). ULF waves in the Mercury magnetosphere. Geophys. Res. Lett., 16, 12531256, doi:10.1029/GL016i011p01253.Google Scholar
Russell, C. T. and Elphic, R. C. (1978). Initial ISEE magnetometer results: Magnetopause observations. Space Sci. Res., 22, 681715, doi:10.1007/BF00212619.Google Scholar
Russell, C. T. and Walker, R. J. (1985). Flux transfer events at Mercury. J. Geophys. Res., 90, 1106711074, doi:10.1029/JA090iA11p11067.Google Scholar
Russell, C. T., Baker, D. N. and Slavin, J. A. (1988). The magnetosphere of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 514561.Google Scholar
Sanny, J., Beck, C. and Sibeck, D. G. (1998). A statistical study of the magnetic signatures of FTEs near the dayside magnetopause. J. Geophys. Res., 103, 46834692, doi:10.1029/97JA03246.Google Scholar
Sarantos, M. and Slavin, J. A. (2009). On the possible formation of Alfvén wings at Mercury during encounters with coronal mass ejections. Geophys. Res. Lett., 36, L04107, doi:10.1029/2008GL036747.Google Scholar
Sarantos, M., Killen, R. M. and Kim, D. (2007). Predicting the long-term solar wind ion-sputtering source at Mercury. Planet. Space Sci., 55, 15841595, doi:10.1016/j.pss.2006.10.011.CrossRefGoogle Scholar
Sarantos, M., Slavin, J. A., Benna, M., Boardsen, S. A., Killen, R. M., Schriver, D. and Trávníček, P. (2009). Sodium ion pickup observed above the magnetopause during MESSENGER’s first Mercury flyby: Constraints on neutral exospheric models. Geophys. Res. Lett., 36, L04106, doi:10.1029/2008GL036207.Google Scholar
Sarris, E. T., Krimigis, S. M. and Armstrong, T. P. (1976). Observations of magnetospheric bursts of high-energy protons and electrons at ~35 RE with Imp 7. J. Geophys. Res., 81, 23412355, doi:10.1029/JA081i013p02341.Google Scholar
Schindler, K. (1974). A theory of the substorm mechanism. J. Geophys. Res., 79, 28032810, doi:10.1029/JA079i019p02803.Google Scholar
Schriver, D., Trávníček, P., Ashour-Abdalla, M., Richard, R. L., Hellinger, P., Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McClintock, W. E., McLain, J. L. Orlando, T. M., Sarantos, M., Sprague, A. L. and Starr, R. D. (2011a). Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron-stimulated desorption. Planet. Space Sci., 59, 20262036, doi:10.1016/j.pss.2011.03.008.Google Scholar
Schriver, D., Trávníček, P. M., Anderson, B. J., Ashour-Abdalla, M., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Hellinger, P., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Richard, R. L., Slavin, J. A., Solomon, S. C., Starr, R. D. and Zurbuchen, T. H. (2011b). Quasi-trapped ion and electron populations at Mercury. Geophys. Res. Lett., 38, L23103, doi:10.1029/2011GL049629.Google Scholar
Scurry, L., Russell, C. T. and Gosling, J. T. (1994). Geomagnetic activity and the beta dependence of the dayside reconnection rate. J. Geophys. Res., 99, 14,811–14,814, doi:10.1029/94JA00794.Google Scholar
Seki, K., Nagy, A., Jackman, C. M., Crary, F., Fontaine, D., Zarka, P., Wurz, P., Milillo, A., Slavin, J. A., Delcourt, D. C., Wiltberger, M., Ilie, R., Jia, X., Ledvina, S. A., Liemohn, M. W. and Schunk, R. W. (2015). A review of general physical and chemical processes related to plasma sources and losses for solar system magnetospheres. Space Sci. Rev., 192, 2789, doi:10.1007/s11214-015–0170-y.Google Scholar
Simpson, J. A., Eraker, J. H., Lamport, J. E. and Walpole, P. H. (1974). Electrons and protons accelerated in Mercury’s magnetosphere. Science, 185, 160166.Google Scholar
Siscoe, G. and Christopher, L. (1975). Variations in the solar wind stand-off distance at Mercury. Geophys. Res. Lett., 2, 158160, doi:10.1029/GL002i004p00158.Google Scholar
Siscoe, G. L., Ness, N. F. and Yeates, C. M. (1975). Substorms on Mercury? J. Geophys. Res., 80, 43594363, doi:10.1029/JA080i031p04359.Google Scholar
Sitnov, M. I., Swisdak, M. and Divin, A. V. (2009). Dipolarization fronts as a signature of transient reconnection in the magnetotail. J. Geophys. Res., 114, A04202, doi:10.1029/2008JA013980.CrossRefGoogle Scholar
Slavin, J. A. (2004). Mercury’s magnetosphere. Adv. Space Res., 33, 15871872, doi:10.1016/j.asr.2003.02.019.Google Scholar
Slavin, J. A. and Holzer, R. E. (1979). The effect of erosion on the solar wind stand-off distance at Mercury. J. Geophys. Res., 84, 20762082, doi:10.1029/JA084iA05p02076.Google Scholar
Slavin, J. A. and Holzer, R. E. (1981). Solar wind flow about the terrestrial planets, 1. Modeling bow shock position and shape. J. Geophys. Res., 86, 11,401–11,418, doi:10.1029/JA086iA13p11401.Google Scholar
Slavin, J. A., Smith, E. J., Tsurutani, B. T., Sibeck, D. G., Singer, H. J., Baker, D. N., Gosling, J. T., Hones, E. W. and Scarf, F. L. (1984). Substorm associated traveling compression regions in the distant tail: ISEE-3 Geotail observations. Geophys. Res. Lett., 11, 657660, doi:10.1029/GL011i007p00657.Google Scholar
Slavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D. and Akasofu, S.-I. (1985). An ISEE-3 study of average and substorm conditions in the distant magnetotail. J. Geophys. Res., 90, 10,875–10,895, doi:10.1029/JA090iA11p10875.Google Scholar
Slavin, J. A., Lepping, R. P. and Baker, D. N. (1990). IMP-8 observations of traveling compression regions: New evidence for near-Earth plasmoids and neutral lines. Geophys. Res. Lett., 17, 913916, doi:10.1029/GL017i007p00913.Google Scholar
Slavin, J. A., Smith, M. F., Mazur, E. L., Baker, D. N., Iyemori, T., Singer, H. J. and Greenstadt, E. W. (1992). ISEE 3 plasmoid and TCR observations during an extended interval of substorm activity. Geophys. Res. Lett., 19, 825828, doi:10.1029/92GL00394.Google Scholar
Slavin, J. A., Smith, M. F., Mazur, E. L., Baker, D. N., Hones, E. W. Jr., Iyemori, T. and Greenstadt, E. W. (1993). ISEE 3 observations of traveling compression regions in the Earth’s magnetotail. J. Geophys. Res., 98, 15,425–15,446, doi:10.1029/93JA01467.Google Scholar
Slavin, J. A., Fairfield, D. H., Lepping, R. P., Hesse, M., Ieda, A., Tanskanen, E., Østgaard, N., Mukai, T., Nagai, T., Singer, H. J. and Sutcliffe, P. R. (2002). Simultaneous observations of earthward flow bursts and plasmoid ejection during magnetospheric substorms. J. Geophys. Res., 107, SMP 13-1–SMP 13-23, doi:10.1029/2000JA003501.Google Scholar
Slavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M., Owen, C. J., Moldwin, M. B., Nagai, T., Ieda, A. and Mukai, T. (2003). Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res., 108, 1015, doi:10.1029/2002JA009557.Google Scholar
Slavin, J. A., Tanskanen, E., Hesse, M., Owen, C. J., Dunlop, M. W., Imber, S., Lucek, E. A., Balogh, A. and Glassmeier, K.-H. (2005). Cluster observations of traveling compression regions in the near-tail. J. Geophys. Res., 110, A06207, doi:10.1029/2004JA010878.Google Scholar
Slavin, J. A., Krimigis, S. M., Acuña, M. H., Anderson, B. J., Baker, D. N., Koehn, P. L., Korth, H., Krimigis, S. M., Livi, S., Mauk, B. H., Solomon, S. C. and Zurbuchen, T. H. (2007). MESSENGER at Mercury: Exploring the magnetosphere. Space Sci. Rev., 131, 133160, doi:10.1007/s11214-007–9154-x.Google Scholar
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Nittler, L. R., Raines, J. M., Schriver, D., Solomon, S. C., Starr, R. D., Trávníček, P. and Zurbuchen, T. H. (2008). Mercury’s magnetosphere after MESSENGER’s first flyby. Science, 321, 8589, doi:10.1126/science.1159040.CrossRefGoogle ScholarPubMed
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P. and Zurbuchen, T. H. (2009a). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324, 606610, doi:10.1126/science.1172011.CrossRefGoogle ScholarPubMed
Slavin, J. A., Anderson, B. J., Zurbuchen, T. H., Baker, D. N., Krimigis, S. M., Acuña, M. H., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C. and Trávníček, P. (2009b). MESSENGER observations of Mercury’s magnetosphere during northward IMF. Geophys. Res. Lett., 36, L02101, doi:10.1029/2008GL036158.Google Scholar
Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Nittler, L. R., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Starr, R. D., Trávníček, P. M. and Zurbuchen, T. H. (2010a). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329, 665668, doi:10.1126/science.1188067.Google Scholar
Slavin, J. A., Lepping, R. P., Wu, C.-C., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Killen, R. M., Korth, H., Krimigis, S. M., McClintock, W. E., McNutt, R. L. Jr., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P. and Zurbuchen, T. H. (2010b). MESSENGER observations of large flux transfer events at Mercury. Geophys. Res. Lett., 37, L02105, doi:10.1029/2009GL041485.Google Scholar
Slavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P. and Zurbuchen, T. H. (2012a). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res., 117, A01215, doi:10.1029/2011JA016900.CrossRefGoogle Scholar
Slavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., Nieves-Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Johnson, C. L., Winslow, R. M. Killen, R. M., McNutt, R. L. Jr. and Solomon, S. C. (2012b). MESSENGER observations of a flux-transfer-event shower at Mercury. J. Geophys. Res., 117, A00M06, doi:10.1029/2012JA017926.Google Scholar
Slavin, J. A., DiBraccio, G. A., Gershman, D. J., Ho, G., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K.-H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L. Jr. and Solomon, S. C. (2014). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Physics, 119, 80878116, doi:10.1002/2014JA020319.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A. II, Lemoine, F. G., Mazarico, E., Neumann, G. A., Peale, S. J., Margot, J.-L., Johnson, C. L., Torrence, M. H., Perry, M. E., Rowlands, D. D., Goossens, S., Head, J. W. and Taylor, A. H. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Gold, R. E. and Domingue, D. L. (2007). MESSENGER mission overview. Space Sci. Rev., 131, 339, doi:10.1007/s11214-007–9247-6.Google Scholar
Sonnerup, B. U. Ö. (1974). Magnetopause reconnection rate. J. Geophys. Res., 79, 15461549, doi:10.1029/JA079i010p01546.Google Scholar
Sonnerup, B. U. Ö, Papmastorakis, I., Paschmann, G. and Lühr, H., (1990). The magnetopause for large magnetic shear: Analysis of convection electric fields from AMPTE/IRM. J. Geophys. Res., 95, 10,541–10,557, doi:10.1029/JA095iA07p10541.Google Scholar
Spreiter, J. R., Summers, A. L. and Alksne, A. Y. (1966). Hydromagnetic flow around the magnetosphere. Planet. Space Sci., 14, 223253, doi:10.1016/0032–0633(66)90124–3.Google Scholar
Starr, R. D., Schriver, D., Nittler, L. R., Weider, S. Z., Byrne, P. K., Ho, G. C., Rhodes, E. A., Schlemm, C. E. II, Solomon, S. C. and Trávníček, P. M. (2012). MESSENGER detection of electron-induced X-ray fluorescence from Mercury’s surface. J. Geophys. Res., 117, E00L02, doi:10.1029/2012JE004118.Google Scholar
Suess, S. T. and Goldstein, B. E. (1979). Compression of the Hermaean magnetosphere by the solar wind. J. Geophys. Res., 84, 33063312, doi:10.1029/JA084iA07p03306.Google Scholar
Sun, W.-J., Slavin, J. A., Fu, S., Raines, J. M., Zong, Q.-G., Imber, S. M., Shi, Q., Yao, Z., Poh, G. K., Gershman, D. J., Pu, Z., Sundberg, T., Anderson, B. J., Korth, H. and Baker, D. N. (2015a). MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail. Geophys. Res. Lett., 42, 36923699, doi:10.1002/2015GL064052.Google Scholar
Sun, W.-J., Slavin, J. A., Fu, S., Raines, J. M., Sundberg, T., Zong, Q.-G., Jia, X., Shi, Q., Shen, X., Poh, G., Pu, Z. and Zurbuchen, T. H. (2015b). MESSENGER observations of Alfvénic and compressional waves during Mercury’s substorms. Geophys. Res. Lett., 42, 61896198, doi:10.1002/2015GL065452.Google Scholar
Sundberg, T. and Slavin, J. A. (2015). Mercury’s magnetotail. In Magnetotails in the Solar System, ed. Keiling, A., Jackman, C. M. and Delamere, P. A.. Hoboken, NJ: John Wiley & Sons, pp. 2342, doi:10.1002/9781118842324.ch2.Google Scholar
Sundberg, T., Boardsen, S. A., Slavin, J. A., Blomberg, L. G. and Korth, H. (2010). The Kelvin–Helmholtz instability at Mercury: An assessment. Planet. Space Sci., 58, 14341441, doi:10.1016/j.pss.2010.06.008.Google Scholar
Sundberg, T., Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M. and Solomon, S. C. (2012a). MESSENGER orbital observations of large-amplitude Kelvin–Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res., 117, A04216, doi:10.1029/2011JA017268.Google Scholar
Sundberg, T., Slavin, J. M., Boardsen, S. A., Anderson, B. J., Korth, H., Ho, G. C., Schriver, D., Uritsky, V. M., Zurbuchen, T. H., Raines, J. M., Baker, D. N., Krimigis, S. M., McNutt, R. L. Jr. and Solomon, S. C. (2012b). MESSENGER observations of dipolarization events in Mercury’s magnetotail. J. Geophys. Res., 117, A00M03, doi:10.1029/2012JA017756.Google Scholar
Sundberg, T., Boardsen, S. A., Slavin, J. A., Uritsky, V. M., Anderson, B. J., Korth, H., Gershman, D. J., Raines, J. M., Zurbuchen, T. H. and Solomon, S. C. (2013). Cyclic reformation of a quasi-parallel bow shock at Mercury: MESSENGER observations. J. Geophys. Res. Space Physics, 118, 64576464, doi:10.1002/jgra.50602.Google Scholar
Sundberg, T., Boardsen, S. A., Burgess, D. and Slavin, J. A. (2015). Coherent wave activity in Mercury’s magnetosheath. J. Geophys. Res. Space Physics, 120, 73427356, doi:10.1002/2015JA021499.Google Scholar
Taguchi, S., Slavin, J. A., Kiyohara, M., Nose, M., Reeves, G. and Lepping, R. P. (1998). Temporal relationship between mid-tail TCRs and substorm onset: Evidence for NENL formation in the late growth phase. J. Geophys. Res., 103, 26,607–26,612, doi:10.1029/98JA02617.Google Scholar
Tanskanen, E. I. (2009). A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. J. Geophys. Res., 114, A05204, doi:10.1029/2008JA013682.Google Scholar
Toth, G. and Odstrcil, D. (1996). Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys., 128, 82100.Google Scholar
Trávníček, P. M., Hellinger, P., Schriver, D., Herčík, D., Slavin, J. A. and Anderson, B. J. (2009). Kinetic instabilities in Mercury’s magnetosphere: Three-dimensional simulation results. Geophys. Res. Lett., 36, L07104, doi:10.1029/2008GL036630.Google Scholar
Trávníček, P. M., Schriver, D., Hellinger, P., Herčík, D., Anderson, B. J., Sarantos, M. and Slavin, J. A. (2010). Mercury’s magnetosphere–solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulations. Icarus, 209, 1122, doi:10.1016/j.icarus.2010.01.008.Google Scholar
Trenchi, L., Marcucci, M. F., Rème, H., Carr, C. M. and Cao, J. B. (2011). TC-1 observations of a flux rope: Generation by multiple X line reconnection. J. Geophys. Res., 116, A05202, doi:10.1029/2010JA015986.Google Scholar
Uritsky, V. M., Slavin, J. A., Khazanov, G. V., Donovan, E. F., Boardsen, S. A., Anderson, B. J. and Korth, H. (2011). Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury. J. Geophys. Res., 116, A09236, doi:10.1029/2011JA016744.Google Scholar
Uritsky, V. M., Slavin, J. A., Boardsen, S. A., Sundberg, T., Raines, J. M., Gershman, D. J., Collinson, G., Sibeck, D., Khazanov, G. V., Anderson, B. J. and Korth, H. (2014). Active current sheets and candidate hot flow anomalies upstream of Mercury’s bow shock. J. Geophys. Res. Space Physics, 119, 853876, doi:10.1002/2013JA019052.Google Scholar
Varela, J., Pantellini, F. and Moncuquet, M. (2015). The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury’s surface. Planet. Space Sci., 119, 264269, doi:10.1016/l.pss.2015.10.004.Google Scholar
Vasyliunas, V. M. (2004). Comparative magnetospheres: Lessons from Earth. Adv. Space Res., 33, 21132120, doi:10.1016/j.asr.2003.04.051.Google Scholar
Walsh, B. M., Ryou, A. S., Sibeck, D. G. and Alexeev, I. I. (2013). Energetic particle dynamics in Mercury’s magnetosphere. J. Geophys. Res. Space Physics, 118, 1992–1999, doi:10.1002/jgra.50266.Google Scholar
Wang, Y. C., Motschmann, U., Müller, J. and Ip, W. H. (2010). A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008. Icarus, 209, 4652.Google Scholar
Winglee, R. M., Harnett, E. M. and Kidder, A. (2009). Relative timing of substorm processes as derived from multifluid/multiscale simulations: Internally driven substorms. J. Geophys. Res., 114, A09213, doi:10.1029/2008JA013750.Google Scholar
Winslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E. and Solomon, S. C. (2012). Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer. Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472.Google Scholar
Winslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N. and Solomon, S. C. (2013). Mercury’s magnetopause and bow shock from MESSENGER observations. J. Geophys. Res. Space Physics, 118, 22132227, doi:10.1002/jgra.50237.Google Scholar
Zhong, J., Wan, W. X., Slavin, J. A., Wei, Y., Lin, R. L., Chai, L. H., Raines, J. M., Rong, Z. J. and Han, X. H. (2015a). Mercury’s three-dimensional asymmetric magnetopause. J. Geophys. Res. Space Physics, 120, 76587671, doi:10.1002/2015JA021425.Google Scholar
Zhong, J., Wan, W. X., Wei, Y., Slavin, J. A., Raines, J. M., Rong, Z. J., Chai, L. H. and Han, X. H. (2015b). Compressibility of Mercury’s dayside magnetosphere. Geophys. Res. Lett., 42, 10,13510,139, doi:10.1002/2015GL067063.Google Scholar
Zong, Q.-G., Fritz, T. A., Spence, H., Zhang, H., Huang, Z. Y., Pu, Z. Y., Glassmeier, K.-H., Korth, A., Daly, P. W., Balogh, A. and Reme, H. (2005). Plasmoid in the high latitude boundary/cusp region observed by Cluster. Geophys. Res. Lett., 32, L01101, doi:10.1029/2004GL020960.Google Scholar
Zurbuchen, T. H., Raines, J. M., Gloeckler, G., Krimigis, S. M., Slavin, J. A., Koehn, P. L., Killen, R. M., Sprague, A. L., McNutt, R. L. Jr. and Solomon, S. C. (2008). MESSENGER observations of the compositions of Mercury’s ionized exosphere and plasma environment. Science, 321, 9092, doi:10.1126/science.1159314.Google Scholar
Zurbuchen, T. H., Raines, J. M., Slavin, J. A., Gershman, D. J., Gilbert, J. A., Gloeckler, G., Anderson, B. J., Banker, D. N., Korth, H., Krimigis, S. M., Sarantos, M., Schriver, D., McNutt, R. L. Jr. and Solomon, S. C. (2011). MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333, 1862, doi:10.1126/science.1211302.Google Scholar
Zwan, B. J. and Wolf, R. A. (1976). Depletion of solar wind plasma near a planetary boundary. J. Geophys. Res., 81, 16361648, doi:10.1029/JA081i010p01636.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×