Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2015
  • Online publication date: July 2015

Chapter 11 - L-dopa dyskinesias

Related content

Powered by UNSILO
1.Obeso, JA, Olanow, CW, Nutt, JG. Levodopa motor complications in Parkinson’s disease. Trends in neurosciences 2000;23:S27.
2.Olanow, CW. The scientific basis for the current treatment of Parkinson’s disease. Annual review of medicine 2004;55:4160.
3.Voon, V, Fernagut, PO, Wickens, J, et al. Chronic dopaminergic stimulation in Parkinson’s disease: from dyskinesias to impulse control disorders. Lancet neurology 2009;8:11401149.
4.Nutt, JG, Chung, KA, Holford, NH. Dyskinesia and the antiparkinsonian response always temporally coincide: a retrospective study. Neurology 2010;74:11911197.
5.Fahn, S, Jankovic, J, Hallett, M. Principles and practice of movement disorders, 2nd ed. Edinburgh; New York: Elsevier/Saunders, 2011.
6.Hauser, RA, Friedlander, J, Zesiewicz, TA, et al. A home diary to assess functional status in patients with Parkinson’s disease with motor fluctuations and dyskinesia. Clinical neuropharmacology 2000;23:7581.
7.Fabbrini, G, Brotchie, JM, Grandas, F, Nomoto, M, Goetz, CG. Levodopa-induced dyskinesias. Movement disorders: official journal of the Movement Disorder Society 2007; 22:13791389;quiz 1523.
8.Reimer, J, Grabowski, M, Lindvall, O, Hagell, P. Use and interpretation of on/off diaries in Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry 2004;75:396400.
9.Colosimo, C, Martinez-Martin, P, Fabbrini, G, et al. Task force report on scales to assess dyskinesia in Parkinson’s disease: critique and recommendations. Movement disorders: official journal of the Movement Disorder Society 2010;25:11311142.
10.Goetz, CG, Stebbins, GT, Chung, KA, et al. Which dyskinesia scale best detects treatment response? Movement disorders: official journal of the Movement Disorder Society 2013;28:341346.
11.Stacy, MA, Murphy, JM, Greeley, DR, et al. The sensitivity and specificity of the 9-item Wearing-off Questionnaire. Parkinsonism & related disorders 2008;14:205212.
12.Katzenschlager, R, Schrag, A, Evans, A, et al. Quantifying the impact of dyskinesias in PD: the PDYS-26: a patient-based outcome measure. Neurology 2007;69:555563.
13.Jankovic, J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Movement disorders: official journal of the Movement Disorder Society 2005;20 Suppl 11:S1116.
14.Schrag, A, Ben-Shlomo, Y, Brown, R, Marsden, CD, Quinn, N. Young-onset Parkinson’s disease revisited–clinical features, natural history, and mortality. Movement disorders: official journal of the Movement Disorder Society 1998;13:885894.
15.Blanchet, PJ, Allard, P, Gregoire, L, Tardif, F, Bedard, PJ. Risk factors for peak dose dyskinesia in 100 levodopa-treated parkinsonian patients. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques 1996;23:189193.
16.Kumar, N, Van Gerpen, JA, Bower, JH, Ahlskog, JE. Levodopa-dyskinesia incidence by age of Parkinson’s disease onset. Movement disorders: official journal of the Movement Disorder Society 2005;20:342344.
17.Ku, S, Glass, GA. Age of Parkinson’s disease onset as a predictor for the development of dyskinesia. Movement disorders: official journal of the Movement Disorder Society 2010;25:11771182.
18.Di Monte, DA, McCormack, A, Petzinger, G, Janson, AM, Quik, M, Langston, WJ. Relationship among nigrostriatal denervation, parkinsonism, and dyskinesias in the MPTP primate model. Movement disorders: official journal of the Movement Disorder Society 2000;15:459466.
19.Vidailhet, M, Bonnet, AM, Marconi, R, Gouider-Khouja, N, Agid, Y. Do parkinsonian symptoms and levodopa-induced dyskinesias start in the foot? Neurology 1994;44:16131616.
20.Khan, NL, Graham, E, Critchley, P, et al. Parkin disease: a phenotypic study of a large case series. Brain: a journal of neurology 2003;126:12791292.
21.Scherfler, C, Khan, NL, Pavese, N, et al. Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain: a journal of neurology 2004;127:13321342.
22.Calon, F, Morissette, M, Rajput, AH, Hornykiewicz, O, Bedard, PJ, Di Paolo, T. Changes of GABA receptors and dopamine turnover in the postmortem brains of parkinsonians with levodopa-induced motor complications. Movement disorders: official journal of the Movement Disorder Society 2003;18:241253.
23.Togasaki, DM, Tan, L, Protell, P, Di Monte, DA, Quik, M, Langston, JW. Levodopa induces dyskinesias in normal squirrel monkeys. Annals of neurology 2001;50:254257.
24.de la Fuente-Fernandez, R, Schulzer, M, Mak, E, Calne, DB, Stoessl, AJ. Presynaptic mechanisms of motor fluctuations in Parkinson’s disease: a probabilistic model. Brain: a journal of neurology 2004;127:888899.
25.Linazasoro, G, Antonini, A, Maguire, RP, Leenders, KL. Pharmacological and PET studies in patients with Parkinson’s disease and a short duration-motor response: implications in the pathophysiology of motor complications. Journal of neural transmission 2004;111:497509.
26.Troiano, AR, de la Fuente-Fernandez, R, Sossi, V, et al. PET demonstrates reduced dopamine transporter expression in PD with dyskinesias. Neurology 2009;72:12111216.
27.Hong, JY, Oh, JS, Lee, I, et al. Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease. Neurology 2014;82:15971604.
28.Linazasoro, G, Van Blercom, N, Bergaretxe, A, Inaki, FM, Laborda, E, Ruiz Ortega, JA. Levodopa-induced dyskinesias in Parkinson disease are independent of the extent of striatal dopaminergic denervation: a pharmacological and SPECT study. Clinical neuropharmacology 2009;32:326329.
29.Schneider, JS, Gonczi, H, Decamp, E. Development of levodopa-induced dyskinesias in parkinsonian monkeys may depend upon rate of symptom onset and/or duration of symptoms. Brain research 2003;990:3844.
30.Ahlskog, JE, Muenter, MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement disorders: official journal of the Movement Disorder Society 2001;16:448458.
31.Fahn, S, Oakes, D, Shoulson, I, et al. Levodopa and the progression of Parkinson’s disease. The New England journal of medicine 2004;351:24982508.
32.Khan, NL, Valente, EM, Bentivoglio, AR, et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Annals of neurology 2002;52:849853.
33.Dekker, M, Bonifati, V, van Swieten, J, et al. Clinical features and neuroimaging of PARK7-linked parkinsonism. Movement disorders: official journal of the Movement Disorder Society 2003;18:751757.
34.Rascol, O, Brooks, DJ, Korczyn, AD, De Deyn, PP, Clarke, CE, Lang, AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. The New England journal of medicine 2000;342:14841491.
35.Hauser, RA, Rascol, O, Korczyn, AD, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Movement disorders: official journal of the Movement Disorder Society 2007;22:24092417.
36.Lopez, IC, Ruiz, PJ, Del Pozo, SV, Bernardos, VS. Motor complications in Parkinson’s disease: ten year follow-up study. Movement disorders: official journal of the Movement Disorder Society 2010;25:27352739.
37.Zappia, M, Annesi, G, Nicoletti, G, et al. Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Archives of neurology 2005;62:601605.
38.Wang, J, Liu, ZL, Chen, B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology 2001;56:17571759.
39.Lee, JY, Cho, J, Lee, EK, Park, SS, Jeon, BS. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2011;26:7379.
40.Foltynie, T, Cheeran, B, Williams-Gray, CH, et al. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry 2009;80:141144.
41.Obeso, JA, Grandas, F, Herrero, MT, Horowski, R. The role of pulsatile versus continuous dopamine receptor stimulation for functional recovery in Parkinson’s disease. The European journal of neuroscience 1994;6:889897.
42.Calabresi, P, Di Filippo, M, Ghiglieri, V, Picconi, B. Molecular mechanisms underlying levodopa-induced dyskinesia. Movement disorders: official journal of the Movement Disorder Society 2008;23 Suppl 3:S570579.
43.Grace, AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991;41:124.
44.Venton, BJ, Zhang, H, Garris, PA, Phillips, PE, Sulzer, D, Wightman, RM. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. Journal of neurochemistry 2003;87:12841295.
45.Zigmond, MJ, Abercrombie, ED, Berger, TW, Grace, AA, Stricker, EM. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends in neurosciences 1990;13:290296.
46.Lewitt, PA, Mouradian, MM. Predicting the development of levodopa-induced dyskinesias: A presynaptic mechanism? Neurology 2014;82:15741575.
47.Bezard, E, Brotchie, JM, Gross, CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nature reviews Neuroscience 2001;2:577588.
48.Jenner, P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nature reviews Neuroscience 2008;9:665677.
49.Berthet, A, Bezard, E. Dopamine receptors and L-dopa-induced dyskinesia. Parkinsonism & related disorders 2009;15 Suppl 4:S812.
50.Missale, C, Nash, SR, Robinson, SW, Jaber, M, Caron, MG. Dopamine receptors: from structure to function. Physiological reviews 1998;78:189225.
51.Le Moine, C, Bloch, B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. The Journal of comparative neurology 1995;355:418426.
52.Landwehrmeyer, B, Mengod, G, Palacios, JM. Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. The European journal of neuroscience 1993;5:145153.
53.Bezard, E, Ferry, S, Mach, U, et al. Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nature medicine 2003;9:762767.
54.Gerfen, CR, Engber, TM, Mahan, LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990;250:14291432.
55.Alexander, GE, Crutcher, MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in neurosciences 1990;13:266271.
56.Le, W, Sayana, P, Jankovic, J. Animal models of Parkinson’s disease: a gateway to therapeutics? Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 2014;11:92110.
57.Di Chiara, G, Morelli, M, Barone, P, Pontieri, F. Priming as a model of behavioural sensitization. Developmental pharmacology and therapeutics 1992;18:223227.
58.Morelli, M, Fenu, S, Garau, L, Di Chiara, G. Time and dose dependence of the ‘priming’ of the expression of dopamine receptor supersensitivity. European journal of pharmacology 1989;162:329335.
59.Cenci, MA, Lee, CS, Bjorklund, A. L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. The European journal of neuroscience 1998;10:26942706.
60.Lundblad, M, Andersson, M, Winkler, C, Kirik, D, Wierup, N, Cenci, MA. Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. The European journal of neuroscience 2002;15:120132.
61.Picconi, B, Centonze, D, Rossi, S, Bernardi, G, Calabresi, P. Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain: a journal of neurology 2004;127:16611669.
62.Gasparini, F, Di Paolo, T, Gomez-Mancilla, B. Metabotropic glutamate receptors for Parkinson’s disease therapy. Parkinson’s disease 2013;2013:196028.
63.van Zundert, B, Yoshii, A, Constantine-Paton, M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends in neurosciences 2004;27:428437.
64.Hurley, MJ, Jackson, MJ, Smith, LA, Rose, S, Jenner, P. Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. The European journal of neuroscience 2005;21:32403250.
65.Bibbiani, F, Oh, JD, Kielaite, A, Collins, MA, Smith, C, Chase, TN. Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Experimental neurology 2005;196:422429.
66.Del Dotto, P, Pavese, N, Gambaccini, G, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Movement disorders: official journal of the Movement Disorder Society 2001;16:515520.
67.Gardoni, F, Picconi, B, Ghiglieri, V, et al. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. The Journal of neuroscience: the official journal of the Society for Neuroscience 2006;26:29142922.
68.Missale, C, Fiorentini, C, Busi, C, Collo, G, Spano, PF. The NMDA/D1 receptor complex as a new target in drug development. Current topics in medicinal chemistry 2006;6:801808.
69.Hallett, PJ, Spoelgen, R, Hyman, BT, Standaert, DG, Dunah, AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. The Journal of neuroscience: the official journal of the Society for Neuroscience 2006;26:46904700.
70.Schwarzschild, MA, Agnati, L, Fuxe, K, Chen, JF, Morelli, M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends in neurosciences 2006;29:647654.
71.Xiao, D, Bastia, E, Xu, YH, et al. Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemiparkinsonian mice. The Journal of neuroscience: the official journal of the Society for Neuroscience 2006;26:1354813555.
72.Calon, F, Dridi, M, Hornykiewicz, O, Bedard, PJ, Rajput, AH, Di Paolo, T. Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain: a journal of neurology 2004;127:10751084.
73.Carta, AR, Pinna, A, Cauli, O, Morelli, M. Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittent L-dopa and A2A receptor blockade plus L-dopa in dopamine-denervated rats. Synapse 2002;44:166174.
74.Linazasoro, G. New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends in pharmacological sciences 2005;26:391397.
75.Robertson, HA, Peterson, MR, Murphy, K, Robertson, GS. D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain research 1989;503:346349.
76.Dragunow, M, Robertson, GS, Faull, RL, Robertson, HA, Jansen, K. D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience 1990;37:287294.
77.Graybiel, AM, Moratalla, R, Robertson, HA. Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proceedings of the National Academy of Sciences of the United States of America 1990;87:69126916.
78.Calon, F, Hadj Tahar, A, Blanchet, PJ, et al. Dopamine-receptor stimulation: biobehavioral and biochemical consequences. Trends in neurosciences 2000;23:S92100.
79.Dunnett, S. L-DOPA, dyskinesia and striatal plasticity. Nature neuroscience 2003;6:437438.
80.Picconi, B, Centonze, D, Hakansson, K, et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature neuroscience 2003;6:501506.
81.Greengard, P, Allen, PB, Nairn, AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 1999;23:435447.
82.Walaas, SI, Hemmings, HC, Greengard, P, Nairn, AC. Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Frontiers in neuroanatomy 2011;5:50.
83.Morelli, M, Cozzolino, A, Pinna, A, Fenu, S, Carta, A, Di Chiara, G. L-dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors. Brain research 1993;623:334336.
84.Steiner, H, Gerfen, CR. Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. The Journal of comparative neurology 1995;353:200212.
85.Gerfen, CR, Keefe, KA, Gauda, EB. D1 and D2 dopamine receptor function in the striatum: coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. The Journal of neuroscience: the official journal of the Society for Neuroscience 1995;15:81678176.
86.Robertson, GS, Vincent, SR, Fibiger, HC. Striatonigral projection neurons contain D1 dopamine receptor-activated c-fos. Brain research 1990;523:288290.
87.Keefe, KA, Gerfen, CR. D1 dopamine receptor-mediated induction of zif268 and c-fos in the dopamine-depleted striatum: differential regulation and independence from NMDA receptors. The Journal of comparative neurology 1996;367:165176.
88.Konradi, C, Leveque, JC, Hyman, SE. Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. The Journal of neuroscience: the official journal of the Society for Neuroscience 1996;16:42314239.
89.Berke, JD, Paletzki, RF, Aronson, GJ, Hyman, SE, Gerfen, CR. A complex program of striatal gene expression induced by dopaminergic stimulation. The Journal of neuroscience: the official journal of the Society for Neuroscience 1998;18:53015310.
90.Juncos, JL, Engber, TM, Raisman, R, et al. Continuous and intermittent levodopa differentially affect basal ganglia function. Annals of neurology 1989;25:473478.
91.Konradi, C, Heckers, S. Haloperidol-induced Fos expression in striatum is dependent upon transcription factor cyclic AMP response element binding protein. Neuroscience 1995;65:10511061.
92.Huang, KX, Walters, JR. Dopaminergic regulation of AP-1 transcription factor DNA binding activity in rat striatum. Neuroscience 1996;75:757775.
93.Aubert, I, Guigoni, C, Hakansson, K, et al. Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Annals of neurology 2005;57:1726.
94.Guigoni, C, Doudnikoff, E, Li, Q, Bloch, B, Bezard, E. Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiology of disease 2007;26:452463.
95.Berthet, A, Porras, G, Doudnikoff, E, et al. Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. The Journal of neuroscience: the official journal of the Society for Neuroscience 2009;29:48294835.
96.Bezard, E, Gross, CE, Qin, L, Gurevich, VV, Benovic, JL, Gurevich, EV. L-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiology of disease 2005;18:323335.
97.Ahmed, MR, Bychkov, E, Gurevich, VV, Benovic, JL, Gurevich, EV. Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. Journal of neurochemistry 2008;104:16221636.
98.Hallett, PJ, Dunah, AW, Ravenscroft, P, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 2005;48:503516.
99.Silverdale, MA, Kobylecki, C, Hallett, PJ, et al. Synaptic recruitment of AMPA glutamate receptor subunits in levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate. Synapse 2010;64:177180.
100.Gross, CE, Ravenscroft, P, Dovero, S, Jaber, M, Bioulac, B, Bezard, E. Pattern of levodopa-induced striatal changes is different in normal and MPTP-lesioned mice. Journal of neurochemistry 2003;84:12461255.
101.Bordet, R, Ridray, S, Carboni, S, Diaz, J, Sokoloff, P, Schwartz, JC. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proceedings of the National Academy of Sciences of the United States of America 1997;94:33633367.
102.Fiorentini, C, Busi, C, Gorruso, E, Gotti, C, Spano, P, Missale, C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Molecular pharmacology 2008;74:5969.
103.Marcellino, D, Ferre, S, Casado, V, et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. The Journal of biological chemistry 2008;283:2601626025.
104.Brambilla, R. Targeting Ras/ERK signaling in the striatum: will it help? Molecular psychiatry 2003;8:366368.
105.Valjent, E, Pascoli, V, Svenningsson, P, et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proceedings of the National Academy of Sciences of the United States of America 2005;102:491496.
106.Westin, JE, Vercammen, L, Strome, EM, Konradi, C, Cenci, MA. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biological psychiatry 2007;62:800810.
107.Morelli, M, Di Chiara, G. Agonist-induced homologous and heterologous sensitization to D-1- and D-2-dependent contraversive turning. European journal of pharmacology 1987;141:101107.
108.Calabresi, P, Gubellini, P, Centonze, D, et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. The Journal of neuroscience: the official journal of the Society for Neuroscience 2000;20:84438451.
109.Calabresi, P, Picconi, B, Parnetti, L, Di Filippo, M. A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet neurology 2006;5:974983.
110.Calabresi, P, Picconi, B, Tozzi, A, Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in neurosciences 2007;30:211219.
111.Centonze, D, Grande, C, Saulle, E, et al. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. The Journal of neuroscience: the official journal of the Society for Neuroscience 2003;23:85068512.
112.Morgante, F, Espay, AJ, Gunraj, C, Lang, AE, Chen, R. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain: a journal of neurology 2006;129:10591069.
113.Grondin, R, Doan, VD, Gregoire, L, Bedard, PJ. D1 receptor blockade improves L-dopa-induced dyskinesia but worsens parkinsonism in MPTP monkeys. Neurology 1999;52:771776.
114.Meissner, W, Ravenscroft, P, Reese, R, et al. Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiology of disease 2006;22:586598.
115.Carta, M, Lindgren, HS, Lundblad, M, Stancampiano, R, Fadda, F, Cenci, MA. Role of striatal L-DOPA in the production of dyskinesia in 6-hydroxydopamine lesioned rats. Journal of neurochemistry 2006;96:17181727.
116.de la Fuente-Fernandez, R, Sossi, V, Huang, Z, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain: a journal of neurology 2004;127:27472754.
117.Cenci, MA, Lundblad, M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. Journal of neurochemistry 2006;99:381392.
118.Poewe, W, Mahlknecht, P, Jankovic, J. Emerging therapies for Parkinson’s disease. Current opinion in neurology 2012;25:448459.
119.Napolitano, M, Picconi, B, Centonze, D, Bernardi, G, Calabresi, P, Gulino, A. L-DOPA treatment of parkinsonian rats changes the expression of Src, Lyn and PKC kinases. Neuroscience letters 2006;398:211214.
120.Smith, Y, Raju, D, Nanda, B, Pare, JF, Galvan, A, Wichmann, T. The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain research bulletin 2009;78:6068.
121.Blandini, F. An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Functional neurology 2010;25:6571.
122.Bargiotas, P, Konitsiotis, S. Levodopa-induced dyskinesias in Parkinson’s disease: emerging treatments. Neuropsychiatric disease and treatment 2013;9:16051617.
123.Luginger, E, Wenning, GK, Bosch, S, Poewe, W. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2000;15:873878.
124.Verhagen Metman, L, Del Dotto, P, van den Munckhof, P, Fang, J, Mouradian, MM, Chase, TN. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 1998;50:13231326.
125.da Silva-Junior, FP, Braga-Neto, P, Sueli Monte, F, de Bruin, VM. Amantadine reduces the duration of levodopa-induced dyskinesia: a randomized, double-blind, placebo-controlled study. Parkinsonism & related disorders 2005;11:449452.
126.Thomas, A, Iacono, D, Luciano, AL, Armellino, K, Di Iorio, A, Onofrj, M. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry 2004;75:141143.
127.Metman, LV, Del Dotto, P, LePoole, K, Konitsiotis, S, Fang, J, Chase, TN. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Archives of neurology 1999;56:13831386.
128.Wolf, E, Seppi, K, Katzenschlager, R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2010;25:13571363.
129.Jahangirvand, AR, A. Early use of amantadine to prevent or delay onset of levodopa-induced dyskinesia in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2013;28:207.
130.F CJ, Ory-Magne, Azulay, JP, Bonnet, AM, Brefel-Courbon, C, Damier, P, Dellapina, E, Destée, A, Durif, F, Galitzky, M, Lebouvier, T, Meissner, W, Thalamas, C, Tison, F, Salis, A, Sommet, A, Viallet, F, Vidailhet, M, Rascol, O; NS-Park CIC Network. Withdrawing amantadine in dyskinetic patients with Parkinson disease: The AMANDYSK trial. Neurology 2014;82:300307.
131.Pahwa, RT, Hauser, C., Sethi, R., Isaacson, K., Truong, D., Struck, D., Stempien, L., Went, M., G. Randomized trial of extended release amantadine in Parkinson’s disease patients with levodopa-induced dyskinesia (EASED study). Movement disorders: official journal of the Movement Disorder Society 2013;28:158.
132.Parkinson Study, G. Evaluation of dyskinesias in a pilot, randomized, placebo-controlled trial of remacemide in advanced Parkinson disease. Archives of neurology 2001;58:16601668.
133.Bara-Jimenez, W, Dimitrova, TD, Sherzai, A, Aksu, M, Chase, TN. Glutamate release inhibition ineffective in levodopa-induced motor complications. Movement disorders: official journal of the Movement Disorder Society 2006;21:13801383.
134.Verhagen Metman, L, Del Dotto, P, Natte, R, van den Munckhof, P, Chase, TN. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology 1998;51:203206.
135.Pharmaceuticals, A. Safety and Efficacy of AVP-923 in the Treatment of Levodopa-induced Dyskinesia in Parkinson’s Disease Patients (LID in PD) [online]. Available at: http://clinicaltrials.gov/show/NCT01767129. Accessed April 30, 2014.
136.Merello, M, Nouzeilles, MI, Cammarota, A, Leiguarda, R. Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clinical neuropharmacology 1999;22:273276.
137.Moreau, C, Delval, A, Tiffreau, V, et al. Memantine for axial signs in Parkinson’s disease: a randomised, double-blind, placebo-controlled pilot study. Journal of neurology, neurosurgery, and psychiatry 2013;84:552555.
138.Vidal, EI, Fukushima, FB, Valle, AP, Villas Boas, PJ. Unexpected improvement in levodopa-induced dyskinesia and on-off phenomena after introduction of memantine for treatment of Parkinson’s disease dementia. Journal of the American Geriatrics Society 2013;61:170172.
139.Nash, JE, Ravenscroft, P, McGuire, S, Crossman, AR, Menniti, FS, Brotchie, JM. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Experimental neurology 2004;188:471479.
140.Nutt, JG, Gunzler, SA, Kirchhoff, T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Movement disorders: official journal of the Movement Disorder Society 2008;23:18601866.
141.Ltd. NP. A Double-blind, Placebo Controlled, Crossover, Ascending Single Dose Safety Tolerability, Pharmacokinetic and Pharmacodynamic Study of Neu-120 in Patients With Advanced Phase Idiopathic Parkinson’s Disease With Levodopa Induced Dyskinesia [online]. Available at: http://www.clinicaltrials.gov/ct2/show/NCT00607451?term=NCT00607451%26rank=1. Accessed April 30, 2014.
142.Picconi, B, Calabresi, P. Targeting metabotropic glutamate receptors as a new strategy against levodopa-induced dyskinesia in Parkinson’s disease? Movement disorders: official journal of the Movement Disorder Society 2014;29:715719.
143.Dekundy, A, Pietraszek, M, Schaefer, D, Cenci, MA, Danysz, W. Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain research bulletin 2006;69:318326.
144.Johnston, TH, Fox, SH, McIldowie, MJ, Piggott, MJ, Brotchie, JM. Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. The Journal of pharmacology and experimental therapeutics 2010;333:865873.
145.Levandis, G, Bazzini, E, Armentero, MT, Nappi, G, Blandini, F. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiology of disease 2008;29:161168.
146.Gregoire, L, Morin, N, Ouattara, B, et al. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in L-Dopa-treated parkinsonian monkeys. Parkinsonism & related disorders 2011;17:270276.
147.Stocchi, F, Rascol, O, Destee, A, et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Movement disorders: official journal of the Movement Disorder Society 2013;28:18381846.
148.Pharmaceuticals, N. An Open-label Treatment Study to Evaluate the Safety, Tolerability and Efficacy of AFQ056 in Parkinson’s Patients With L-dopa Induced Dyskinesias [online]. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01173731?term=NCT01173731%26rank=1. Accessed April 30, 2014.
149.Tison, FD, Corvol, J, Eggert, K, Trenkwalder, C, Lew, M, Isaacson, S, Keywood, C, Rascol, O. Safety, tolerability and anti-dyskinetic efficacy of dipraglurant, a novel mGluR5 negative allosteric modulator (NAM) in Parkinson’s disease (PD) patients with levodopa-induced dyskinesia (LID). Neurology 2013;80:004.
150.Konitsiotis, S, Blanchet, PJ, Verhagen, L, Lamers, E, Chase, TN. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 2000;54:15891595.
151.Eggert, K, Squillacote, D, Barone, P, et al. Safety and efficacy of perampanel in advanced Parkinson’s disease: a randomized, placebo-controlled study. Movement disorders: official journal of the Movement Disorder Society 2010;25:896905.
152.Lees, A, Fahn, S, Eggert, KM, et al. Perampanel, an AMPA antagonist, found to have no benefit in reducing “off” time in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2012;27:284288.
153.Rascol, O, Barone, P, Behari, M, et al. Perampanel in Parkinson disease fluctuations: a double-blind randomized trial with placebo and entacapone. Clinical neuropharmacology 2012;35:1520.
154.Savola, JM, Hill, M, Engstrom, M, et al. Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2003;18:872883.
155.Lewitt, PA, Hauser, RA, Lu, M, et al. Randomized clinical trial of fipamezole for dyskinesia in Parkinson disease (FJORD study). Neurology 2012;79:163169.
156.Grondin, R, Hadj Tahar, A, Doan, VD, Ladure, P, Bedard, PJ. Noradrenoceptor antagonism with idazoxan improves L-dopa-induced dyskinesias in MPTP monkeys. Naunyn-Schmiedeberg’s archives of pharmacology 2000;361:181186.
157.Rascol, O, Arnulf, I, Peyro-Saint Paul, H, et al. Idazoxan, an alpha-2 antagonist, and L-DOPA-induced dyskinesias in patients with Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2001;16:708713.
158.Manson, AJ, Iakovidou, E, Lees, AJ. Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2000;15:336337.
159.Buck, K, Voehringer, P, Ferger, B. The alpha(2) adrenoceptor antagonist idazoxan alleviates L-DOPA-induced dyskinesia by reduction of striatal dopamine levels: an in vivo microdialysis study in 6-hydroxydopamine-lesioned rats. Journal of neurochemistry 2010;112:444452.
160.Hodgson, RA, Bedard, PJ, Varty, GB, et al. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Experimental neurology 2010;225:384390.
161.Hauser, RA, Cantillon, M, Pourcher, E, et al. Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet neurology 2011;10:221229.
162.Factor, SA, Wolski, K, Togasaki, DM, et al. Long-term safety and efficacy of preladenant in subjects with fluctuating Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 2013;28:817820.
163.Jones, IW, Bolam, JP, Wonnacott, S. Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. The Journal of comparative neurology 2001;439:235247.
164.Durif, F, Debilly, B, Galitzky, M, et al. Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology 2004;62:381388.
165.Pierelli, F, Adipietro, A, Soldati, G, Fattapposta, F, Pozzessere, G, Scoppetta, C. Low dosage clozapine effects on L-dopa induced dyskinesias in parkinsonian patients. Acta neurologica Scandinavica 1998;97:295299.
166.Bennett, JP Jr., Landow, ER, Dietrich, S, Schuh, LA. Suppression of dyskinesias in advanced Parkinson’s disease: moderate daily clozapine doses provide long-term dyskinesia reduction. Movement disorders: official journal of the Movement Disorder Society 1994;9:409414.
167.Meco, G, Stirpe, P, Edito, F, et al. Aripiprazole in L-dopa-induced dyskinesias: a one-year open-label pilot study. Journal of neural transmission 2009;116:881884.
168.Rascol, O, Bronzova, J, Hauser, RA, et al. Pardoprunox as adjunct therapy to levodopa in patients with Parkinson’s disease experiencing motor fluctuations: results of a double-blind, randomized, placebo-controlled, trial. Parkinsonism & related disorders 2012;18:370376.
169.Hauser, RA, Bronzova, J, Sampaio, C, et al. Safety and tolerability of pardoprunox, a new partial dopamine agonist, in a randomized, controlled study of patients with advanced Parkinson’s disease. European neurology 2009;62:4048.
170.Waters, CH, Sethi, KD, Hauser, RA, Molho, E, Bertoni, JM, Zydis Selegiline Study G. Zydis selegiline reduces off time in Parkinson’s disease patients with motor fluctuations: a 3-month, randomized, placebo-controlled study. Movement disorders: official journal of the Movement Disorder Society 2004;19:426432.
171.Rascol, O, Brooks, DJ, Melamed, E, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet 2005;365:947954.
172.Stocchi, F, Borgohain, R, Onofrj, M, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Movement disorders: official journal of the Movement Disorder Society 2012;27:106112.
173.Carroll, CB, Bain, PG, Teare, L, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology 2004;63:12451250.
174.Sugiyama, K, Yokoyama, T, Namba, H. [Neurosurgical treatment for dopamine-induced dyskinesias in Parkinson’s disease patients]. Nihon rinsho Japanese journal of clinical medicine 2000;58:21152119.
175.Munhoz, RP, Cerasa, A, Okun, MS. Surgical treatment of dyskinesia in Parkinson’s disease. Frontiers in neurology 2014;5:65.
176.Deep-Brain Stimulation for Parkinson’s Disease Study G. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. The New England journal of medicine 2001;345:956963.
177.Rodriguez-Oroz, MC, Obeso, JA, Lang, AE, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain: a journal of neurology 2005;128:22402249.
178.Volkmann, J, Allert, N, Voges, J, Sturm, V, Schnitzler, A, Freund, HJ. Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Annals of neurology 2004;55:871875.
179.Krack, P, Batir, A, Van Blercom, N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. The New England journal of medicine 2003;349:19251934.
180.Schupbach, WM, Chastan, N, Welter, ML, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. Journal of neurology, neurosurgery, and psychiatry 2005;76:16401644.
181.Kleiner-Fisman, G, Herzog, J, Fisman, DN, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Movement disorders: official journal of the Movement Disorder Society 2006;21 Suppl 14:S290304.
182.Odekerken, VJ, van Laar, T, Staal, MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet neurology 2013;12:3744.