Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T15:09:11.766Z Has data issue: false hasContentIssue false

11 - Dissection of the Genetic Pathway Leading to Multicellular Behaviour in Salmonella enterica Serotype Typhimurium and Other Enterobacteriaceae

Published online by Cambridge University Press:  23 November 2009

Ute Römling
Affiliation:
Microbiology and Tumorbiology Centre, Karolinska Institute, Stockholm, Sweden
Werner Bokranz
Affiliation:
Department of Cell Biology, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
Ulrich Gerstel
Affiliation:
Microbiology and Tumorbiology Centre, Karolinska Institute, Stockholm, Sweden
Heinrich Lünsdorf
Affiliation:
Department of Microbiology, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
Manfred Nimtz
Affiliation:
Department of Structural Biology, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany
Wolfgang Rabsch
Affiliation:
National Reference Centre for Salmonellae and Other Enteric Pathogens, Robert-Koch-Institut, Wernigerode, Germany
Helmuth Tschäpe
Affiliation:
National Reference Centre for Salmonellae and Other Enteric Pathogens, Robert-Koch-Institut, Wernigerode, Germany
Xhavit Zogaj
Affiliation:
Microbiology and Tumorbiology Centre, Karolinska Institute, Stockholm, Sweden
Michael Wilson
Affiliation:
University College London
Deirdre Devine
Affiliation:
Leeds Dental Institute, University of Leeds
Get access

Summary

INTRODUCTION

Many environmental as well as host-associated microorganisms not only live as single independent cells, but are able to interact with each other and to build multicellular communities, whose architecture is determined by a self-produced extracellular matrix. Also, in the family Enterobacteriaceae, different types of multicellular behaviour have been identified, for example, in Salmonella enterica serotype Typhimurium (S. typhimurium) and Escherichia coli (Harshey and Matsuyama, 1994; Romling et al., 1998a). The rdar (red, dry and rough colony morphology) morphotype (Figure 11.1, first identified in S. enterica serotype Typhimurium (Romling et al., 1998a), represents a characteristic multicellular behaviour of S. enterica serotypes (Salmonella spp.) and E. coli in the late stationary phase of growth (Zogaj et al., 2001). Life within a community, compared with planktonic growth, is significantly different for S. enterica serotype Typhimurium and E. coli with respect to, for instance, cell density, nutrient supply, and production of architectural components (extracellular matrix formation); cell–cell communication, gene expression, and regulation are altered on various levels (Pringent-Combaret et al., 2001; Zogaj et al., 2001). An additional regulatory network, under tight control by environmental conditions, is required to coordinate the transition from the multicellular to the free-living form (Gerstel and Romling, 2001). Novel regulatory pathways involving genes with signalling domains of unknown function are part of this network (Romling et al., 2000). The impact of multicellular behaviour on the life cycle of S. enterica and E. coli has not been unambiguously proven.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen-Vercoe, E., Sayers, A. R. and Woodward, M. J. (1999). Virulence of Salmonella enterica serotype Enteritidis aflagellate and afimbriate mutants in a day-old chick model. Epidemiology and Infection, 122, 395–402CrossRefGoogle Scholar
Allen-Vercoe, E. and Woodward, M. J. (1999). Colonisation of the chicken caecum by afimbriate and aflagellate derivatives of Salmonella enterica serotype Enteritidis. Veterinary Microbiology, 69, 265–275CrossRefGoogle ScholarPubMed
Ausmees, N., Jonsson, H., Hoglund, S., Ljunggren, H. and Lindberg, M. (1999). Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology, 145, 1253–1262CrossRefGoogle ScholarPubMed
Austin, J. W., Sanders, G., Kay, W. W. and Collinson, S. K. (1998). Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiology Letters, 162, 295–301CrossRefGoogle ScholarPubMed
Bang, I. S., Kim, B. H., Foster, J. W. and Park, Y. K. (2000). OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar Typhimurium. Journal of Bacteriology, 182, 2245–2252CrossRefGoogle ScholarPubMed
Becker, G. and Hengge-Aronis, R. (2001). What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S). Molecular Microbiology, 39, 1153–1165CrossRefGoogle Scholar
Nasr, Ben A., Olsen, A., Sjobring, U., Muller-Esterl, W. and Bjorck, L. (1996). Assembly of human contact phase proteins and release of bradykinin at the surface of curli-expressing Escherichia coli. Molecular Microbiology, 20, 927–935CrossRefGoogle ScholarPubMed
Berkhoff, H. A. and Vinal, A. C. (1986). Congo red medium to distinguish between invasive and non-invasive Escherichia coli pathogenic for poultry. Avian Diseases, 30, 117–121CrossRefGoogle ScholarPubMed
Bian, Z., Brauner, A., Li, Y. and Normark, S. (2000). Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. Journal of Infectious Diseases, 181, 602–612CrossRefGoogle ScholarPubMed
Bian, Z. and Normark, S. (1997). Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO Journal, 16, 5827–5836CrossRefGoogle ScholarPubMed
Bian, Z., Yan, Z. Q., Hansson, G. K., Thoren, P. and Normark, S. (2001). Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice. Journal of Infectious Diseases, 183, 612–619CrossRefGoogle ScholarPubMed
Brown, P. K., Dozois, C. M., Nickerson, C. A., Zuppardo, A., Terlonge, J. and Curtiss, R. III. (2001). MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Molecular Microbiology, 41, 349–363CrossRefGoogle ScholarPubMed
Chapman, M. R., Robinson, L. S., Pinkner, J. S., Roth, R., Heuser, J., Hammar, M., Normark, S. and Hultgren, S. J. (2002). Role of Escherichia coli curli operons in directing amyloid fiber formation. Science, 295, 851–855CrossRefGoogle ScholarPubMed
Collinson, S. K., Doig, P. C., Doran, J. L., Clouthier, S., Trust, T. J. and Kay, W. W. (1993). Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. Journal of Bacteriology, 175, 12–18CrossRefGoogle ScholarPubMed
Collinson, S. K., Emody, L., Muller, K. H., Trust, T. J. and Kay, W. W. (1991). Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. Journal of Bacteriology, 173, 4773–4781CrossRefGoogle ScholarPubMed
Collinson, S. K., Emody, L., Trust, T. J. and Kay, W. W. (1992). Thin aggregative fimbriae from diarrheagenic Escherichia coli. Journal of Bacteriology, 174, 4490–4495CrossRefGoogle ScholarPubMed
Danese, P. N. and Silhavy, T. J. (1997). The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes and Development, 11, 1183–1193CrossRefGoogle Scholar
Danese, P. N., Snyder, W. B., Cosma, C. L., Davis, L. J. and Silhavy, T. J. (1995). The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes and Development, 9, 387–398CrossRefGoogle ScholarPubMed
Davies, D. G., Parsek, M. R., Pearson, J. P., Lglewski, B. H., Costerton, J. W. and Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298CrossRefGoogle ScholarPubMed
Wulf, P., Kwon, O. and Lin, E. C. (1999). The CpxRA signal transduction system of Escherichia coli: growth-related autoactivation and control of unanticipated target operons. Journal of Bacteriology, 181, 6772–6778Google ScholarPubMed
Dibb-Fuller, M. P., Allen-Vercoe, E., Thorns, C. J. and Woodward, M. J. (1999). Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology, 145, 1023–1031CrossRefGoogle ScholarPubMed
Doran, J. L., Collinson, S. K., Burian, J., Sarlos, G., Todd, E. C., Munro, C. K., Kay, C. M., Banser, P. A., Peterkin, P. I. and Kay, W. W. (1993). DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. Journal of Clinical Microbiology, 31, 2263–2273Google ScholarPubMed
Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I. and Lejeune, P. (1999). Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiology Letters, 178, 169–175CrossRefGoogle ScholarPubMed
Gaal, T., Ross, W., Estrem, S. T., Nguyen, L. H., Burgess, R. R. and Gourse, R. L. (2001). Promoter recognition and discrimination by EsigmaS RNA polymerase. Molecular Microbiology, 42, 939–954CrossRefGoogle ScholarPubMed
Garrett, E. S., Perlegas, D. and Wozniak, D. J. (1999). Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). Journal of Bacteriology, 181, 7401–7404Google Scholar
Gerstel, U. and Romling, U. (2001). Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environmental Microbiology, 3, 638–648CrossRefGoogle ScholarPubMed
Gophna, U., Barlev, M., Seijffers, R., Oelschlager, T. A., Hacker, J. and Ron, E. Z. (2001). Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infection and Immunity, 69, 2659–2665CrossRefGoogle ScholarPubMed
Hammar, M., Arnqvist, A., Bian, Z., Olsen, A. and Normark, S. (1995). Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Molecular Microbiology, 18, 661–670CrossRefGoogle ScholarPubMed
Hammar, M., Bian, Z. and Normark, S. (1996). Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proceedings of the National Academy of Sciences of the USA, 93, 6562–6566CrossRefGoogle ScholarPubMed
Harshey, R. M. and Matsuyama, T. (1994). Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proceedings of the National Academy of Sciences of the USA, 91, 8631–8635CrossRefGoogle ScholarPubMed
Hecht, G. B. and Newton, A. (1995). Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. Journal of Bacteriology, 177, 6223–6229CrossRefGoogle ScholarPubMed
Heldwein, E. E. and Brennan, R. G. (2001). Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature, 409, 378–382CrossRefGoogle ScholarPubMed
Herwald, H., Morgelin, M., Olsen, A., Rhen, M., Dahlback, B., Muller-Esterl, W. and Bjorck, L. (1998). Activation of the contact-phase system on bacterial surfaces – a clue to serious complications in infectious diseases. Nature Medicine, 4, 298–302CrossRefGoogle ScholarPubMed
Heyde, M., Laloi, P. and Portalier, R. (2000). Involvement of carbon source and acetyl phosphate in the external-pH-dependent expression of porin genes in Escherichia coli. Journal of Bacteriology, 182, 198–202CrossRefGoogle ScholarPubMed
Huang, K. J. and Igo, M. M. (1996). Identification of the bases in the ompF regulatory region, which interact with the transcription factor OmpR. Journal of Molecular Biology, 262, 615–628CrossRefGoogle ScholarPubMed
Hung, D. L., Raivio, T. L., Jones, C. H., Silhavy, T. J. and Hultgren, S. J. (2001). Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. Embo Journal, 20, 1508–1518CrossRefGoogle ScholarPubMed
Jameson, J. E. (1966). Differentiation of Salmonella strains by colonial morphology. Journal of Pathology and Bacteriology, 91, 141–148CrossRefGoogle ScholarPubMed
Johansson, C., Nilsson, T., Olsen, A. and Wick, M. J. (2001). The influence of curli, a MHC-I-binding bacterial surface structure, on macrophage-T cell interactions. FEMS Immunology and Medical Microbiology, 30, 21–29Google ScholarPubMed
Ragione, R. M., Cooley, W. A. and Woodward, M. J. (2000a). The role of fimbriae and flagella in the adherence of avian strains of Escherichia coli O78:K80 to tissue culture cells and tracheal and gut explants. Journal of Medical Microbiology, 49, 327–338CrossRefGoogle Scholar
Ragione, R. M., Sayers, A. R. and Woodward, M. J. (2000b). The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78:K80 in the day-old-chick model. Epidemiology and Infection, 124, 351–363CrossRefGoogle Scholar
Lee, A. K., Detweiler, C. S. and Falkow, S. (2000). OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. Journal of Bacteriology, 182, 771–781CrossRefGoogle ScholarPubMed
Liljestrom, P., Laamanen, I., and Palva, E. T. (1988). Structure and expression of the ompB operon, the regulatory locus for the outer membrane porin regulon in Salmonella typhimurium LT-2. Journal of Molecular Biology, 201, 663–673CrossRefGoogle ScholarPubMed
Lingelsheim, V. (1913). Frage der Variation der Typhusbacillen und verwandter Gruppen. Centralblat Bakteriology (Orig), 68, 577–582Google Scholar
Loferer, H., Hammar, M. and Normark, S. (1997). Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Molecular Microbiology, 26, 11–23CrossRefGoogle ScholarPubMed
Maurer, J. J., Brown, T. P., Steffens, W. L. and Thayer, S. G. (1998). The occurrence of ambient temperature-regulated adhesins, curli and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian Diseases, 42, 106–118CrossRefGoogle ScholarPubMed
Olsen, A., Arnqvist, A., Hammar, M., Sukupolvi, S. and Normark, S. (1993). The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Molecular Microbiology, 7, 523–536CrossRefGoogle ScholarPubMed
Olsen, A., Jonsson, A. and Normark, S. (1989). Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature, 338, 652–655CrossRefGoogle ScholarPubMed
Olsen, A., Wick, M. J., Morgelin, M. and Bjorck, L. (1998). Curli, fibrous surface proteins of Escherichia coli, interact with major histocompatibility complex class I molecules. Infection and Immunity, 66, 944–949Google ScholarPubMed
Patri, E., Szabo, E., Pal, T. and Emody, L. (2000). Thin aggregative fimbriae on urinary Escherichia coli isolates. Advances in Experimental and Medical Biology, 485, 219–224CrossRefGoogle ScholarPubMed
Pedersen, A. G., Jensen, L. J., Brunak, S., Staerfeldt, H. H. and Ussery, D. W. (2000). A DNA structural atlas for Escherichia coli. Journal of Molecular Biology, 299, 907–930CrossRefGoogle ScholarPubMed
Pei, J. and Grishin, N. V. (2001). GGDEF domain is homologous to adenylyl cyclase. Proteins, 42, 210–2163.0.CO;2-8>CrossRefGoogle ScholarPubMed
Pratt, L. A., Hsing, W., Gibson, K. E. and Silhavy, T. J. (1996). From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Molecular Microbiology, 20, 911–917CrossRefGoogle ScholarPubMed
Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P. and Dorel, C. (2001). Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. Journal of Bacteriology, 183, 7213–7223CrossRefGoogle ScholarPubMed
Prigent-Combaret, C., Prensier, G., Thi, T. T., Vidal, O., Lejeune, P. and Dorel, C. (2000). Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environmental Microbiology, 2, 450–464CrossRefGoogle ScholarPubMed
Prigent-Combaret, C., Vida, O., Dorel, C. and Lejeune, P. (1999). Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. Journal of Bacteriology, 181, 5993–6002Google ScholarPubMed
Rabsch, W., Andrews, H. L., Kingsley, R. A., Prager, R., Tschape, H., Adams, L. G. and Baumler, A. J. (2002). Salmonella enterica serotype Typhimurium and its host-adapted variants. Infection and Immunity, 70, 2249–2255CrossRefGoogle ScholarPubMed
Raivio, T. L. and Silhavy, T. J. (1997). Transduction of envelope stress in Escherichia coli by the Cpx two-component system. Journal of Bacteriology, 179, 7724–7733CrossRefGoogle ScholarPubMed
Rajashekara, G., Munir, S., Alexeyev, M. F., Halvorson, D. A., Wells, C. L. and Nagaraja, K. V. (2000). Pathogenic role of SEF14, SEF17, and SEF21 fimbriae in Salmonella enterica serovar enteritidis infection of chickens. Applied and Environmental Microbiology, 66, 1759–1763CrossRefGoogle ScholarPubMed
Romling, U. (2002). Molecular biology of cellulose production in bacteria. Research in Microbiology, 153, 205–212CrossRefGoogle ScholarPubMed
Romling, U., Bian, Z., Hammar, M., Sierralta, W. D. and Normark, S. (1998a). Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. Journal of Bacteriology, 180, 722–731Google Scholar
Romling, U. and Rohde, M. (1999). Flagella modulate the multicellular behavior of Salmonella typhimurium on the community level. FEMS Microbiology Letters, 180, 91–102CrossRefGoogle ScholarPubMed
Romling, U., Rohde, M., Olsen, A., Normark, S. and Reinkoster, J. (2000). AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium, regulates at least two independent pathways. Molecular Microbiology, 36, 10–23CrossRefGoogle ScholarPubMed
Romling, U., Sierralta, W. D., Eriksson, K. and Normark, S. (1998b). Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Molecular Microbiology, 28, 249–264CrossRefGoogle Scholar
Sakellaris, H., Hannink, N. K., Rajakumar, K., Bulach, D., Hunt, M., Sasakawa, C. and Adler, B. (2000). Curli loci of Shigella spp. Infection and Immunity, 68, 3780–3783CrossRefGoogle ScholarPubMed
Sjobring, U., Pohl, G. and Olsen, A. (1994). Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Molecular Microbiology, 14, 443–452CrossRefGoogle Scholar
Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C. and Lasa, I. (2002). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Molecular Microbiology, 43, 793–808CrossRefGoogle ScholarPubMed
Styles, D. K. and Flammer, K. (1991). Congo red binding of Escherichia coli isolated from the cloacae of psittacine birds. Avian Diseases, 35, 46–48CrossRefGoogle ScholarPubMed
Sukupolvi, S., Edelstein, A., Rhen, M., Normark, S. J. and Pfeifer, J. D. (1997a). Development of a murine model of chronic Salmonella infection. Infection and Immunity, 65, 838–842Google Scholar
Sukupolvi, S., Lorenz, R. G., Gordon, J. I., Bian, Z., Pfeifer, J. D., Normark, S. J. and Rhen, M. (1997b). Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells. Infection and Immunity, 65, 5320–5325Google Scholar
Townsend, S. M., Kramer, N. E., Edwards, R., Baker, S., Hamlin, N., Simmonds, M., Stevens, K., Maloy, S., Parkhill, J., Dougan, G. and Baumler, A. J. (2001). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infection and Immunity, 69, 2894–2901CrossRefGoogle ScholarPubMed
Uhlich, G. A., Keen, J. E. and Elder, R. O. (2001). Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Applied and Environmental Microbiology, 67, 2367–2370CrossRefGoogle ScholarPubMed
Uhlich, G. A., Keen, J. E. and Elder, R. O. (2002). Variations in the csgD promoter of Escherichia coli O157:H7 associated with increased virulence in mice and increased invasion of HEp-2 cells. Infection and Immunity, 70, 395–399CrossRefGoogle ScholarPubMed
Updegraff, D. M. (1969). Semimicro determination of cellulose in biological materials. Analytical Biochemistry, 32, 420–424CrossRefGoogle ScholarPubMed
Velden, A. W., Baumler, A. J., Tsolis, R. M. and Heffron, F. (1998). Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. infection and immunity, 66, 2803–2808Google ScholarPubMed
Vidal, O., Longin, R., Prigent-Combaret, C., Dorel, C., Hooreman, M. and Lejeune, P. (1998). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. Journal of Bacteriology, 180, 2442–2449Google ScholarPubMed
Volz, K. (1993). Structural conservation in the CheY superfamily. Biochemistry, 32, 11741–11753CrossRefGoogle ScholarPubMed
White, A. P., Collinson, S. K., Banser, P. A., Gibson, D. L., Paetzel, M., Strynadka, N. C. and Kay, W. W. (2001). Structure and characterization of AgfB from Salmonella enteritidis thin aggregative fimbriae. Journal of Molecular Biology, 311, 735–749CrossRefGoogle ScholarPubMed
Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D. H., Meade, J. H., Emerick, A. W.. (1990). Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proceedings of the National Academy of Sciences of the USA, 87, 8130–8134CrossRefGoogle ScholarPubMed
Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. and Romling, U. (2001). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular Microbiology, 39, 1452–1463CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×