Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T06:17:56.856Z Has data issue: false hasContentIssue false

3 - Martian surface chemistry: APXS results from the Pathfinder landing site

from Part II - Elemental Composition: Orbital and in situ Surface Measurements

Published online by Cambridge University Press:  10 December 2009

C. N. Foley
Affiliation:
Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road, NW Washington, DC 20015-1305, USA
T. E. Economou
Affiliation:
Laboratory for Astrophysics & Space Res. University of Chicago, 933 East 56th Street, Chicago, IL 60637, USA
R. N. Clayton
Affiliation:
Enrico Fermi Institute, 5640 S. Ellis Avenue, RI 440 Chicago, IL 60637, USA
J. Brückner
Affiliation:
Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
G. Dreibus
Affiliation:
Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
R. Rieder
Affiliation:
Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
H. Wänke
Affiliation:
Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The Mars Pathfinder Alpha Proton X-ray Spectrometer (APXS) was utilized to determine the major and minor elemental abundances of rocks and soils at the 1997 landing site in Ares Vallis. The determined abundances suggest that: (1) the rocks are covered with various amounts of soil; (2) the Soil-Free Rock (SFR) chemistry is similar to that of an evolved SNC-like (SNC – Shergottite, Nakhlite, and Chassignite) igneous tholeiitic basalt-andesite to andesite that is minimally altered (possibly similar to Type 2 TES material); (3) the carbon content is below detection limits for all samples, implying < 5% as MgCO3 (Brückner et al., 1999); (4) the α-mode oxygen abundance indicates that mineral-bound water, above the value for igneous rocks, is present in some rocks and is therefore indicative of some nonigneous alteration and therefore possibly rock-rinds that obscure the petrology of the SFR; and (5) the Pathfinder soils are similar to the Viking fines and may be composed of mafic igneous material like the SNC meteorites and of volatiles deposited from volcanic emissions, as previously suggested by Clark (1993) for the Viking soils.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 33 - 57
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, V. R., Strom, R. G., Gulick, V. C., et al., Ancient oceans, ice sheets, and the hydrologic cycle on Mars, Nature 352, 589–94, 1991.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of martian surface compositions from MGS-TES, Science 287, 1626–30, 2000.CrossRefGoogle Scholar
Banin, A., The enigma of the martian soil, Science 309, 888–90, 2005.CrossRefGoogle ScholarPubMed
Banin, A., B. C. Clark, and H. Wänke, Surface chemistry and mineralogy. In Mars (ed. Keiffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tuscon: University of Arizona Press, pp. 594–625, 1992.Google Scholar
Banin, A., Han, F. X., Kan, I., and Cicelsky, A., Acidic volatiles and the Mars soil, J. Geophys. Res. 102, 13341–56, 1997.CrossRefGoogle Scholar
Bell, J. F. III, Morris, R. V., and Adams, J. B., Thermally altered palagonitic tephra: a spectral and process analogue to the soil and dust of Mars, J. Geophys. Res. 98, 3373–85, 1993.CrossRefGoogle Scholar
Bell, J. F.McSween, H. Y., Crisp, J. A., et al., Mineralogical and compositional properties of martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. 105(E1), 1721–55, 2000.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Spirit rover at Gusev crater, Science 305, 800–6, 2004a.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004b.CrossRefGoogle Scholar
Bittner, J. W. and Moffat, R. D., Elastic scattering of α particles by carbon, Phys. Rev. 96, 347–77, 1954.CrossRefGoogle Scholar
Boynton, W. V., Taylor, G. J., Hamara, D., et al., Compositional diversity of the martian crust: preliminary data from the Mars Odyssey gamma-ray spectrometer: In Lunar Planet. Sci. XXXIV, Houston, TX: Lunar and Planetary Institute, Abstract 2108 (CD-ROM), 2003.Google Scholar
Bridges, N. T. and Crisp, J. A., The Mars Pathfinder APXS sites: new insights from improved IMP calibration and image analysis, Lunar Planet. Sci. XXXI, Houston, TX: Lunar and Planetary Institute, Abstract #1740 (CD-ROM), 2000.Google Scholar
Bridges, N. T., Greeley, R., Haldemann, A. F. C., et al., Ventifacts at the Pathfinder landing site, J. Geophys. Res. 104(E4), 8595–615, 1999.CrossRefGoogle Scholar
Bridges, N. T., Crisp, J. A., and Bell, J. F. III, Characteristics of the Pathfinder APXS sites: implications for the composition of Martian rocks and soils, J. Geophys. Res. 106, 14621–65, 2001.CrossRefGoogle Scholar
Brückner, J., Dreibus, G., Lugmair, G. W., et al., Chemical composition of the martian surface as derived from Pathfinder, Viking, and martian meteorite data, Lunar and Planetary Science XXX, Houston, TX: Lunar and Planetary Institute, Abstract #1250 (CD-ROM), 1999.Google Scholar
Brückner, J., Dreibus, G., Rieder, R., and Wänke, H., Refined data of Alpha Proton X-ray analyses of soils and rocks at the Mars Pathfinder site: implications for surface chemistry, J. Geophys. Res. 108(E12), ROV 35-1 through 35-18, 2003.CrossRefGoogle Scholar
Burns, R. G., Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars, Geochim. Cosmochim. Acta 57, 4555–74, 1993.CrossRefGoogle Scholar
Burns, R. G. and Fisher, D. S., Iron-sulfur mineralogy of Mars: magmatic evolution and chemical weathering products, J. Geophys. Res. 95(B9), 14415–21, 1990.CrossRefGoogle Scholar
Campbell, I. B. and Claridge, G. G. C., Antarctica: Soils, Weathering Processes, and Environment, Developments in Soil Science 16, New York: Elsevier Science Publishing Co. Inc., 368pp., 1987.Google Scholar
Christensen, P. R. and Malin, M., A simple model of clastic sediments on Mars (abstract), Lunar Planet. Sci. XXIV, 285, 1993.Google Scholar
Christensen, P. R. and H. Moore, The martian surface layer. In Mars (ed. Kieffer, H. H.et al.), Tucson: University of Arizona Press, pp. 687–729, 1992.Google Scholar
Christensen, P. R., Bandfield, J. L., Clark, R. N., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water, J. Geophys. Res. 105(E4), 9623–42, 2000.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Mini-TES experiment in Gusev crater from the Spirit rover, Science 305, 837–42, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover, Science 306, 1733–9, 2004b.CrossRefGoogle Scholar
Clark, B. C., Geochemical components in martian soil, Geochim. Cosmochim. Acta 57, 4575–81, 1993.CrossRefGoogle Scholar
Clark, B. C., On the non-observability of carbonates on Mars, 5th Int. Conf. Mars, LPI Contribution No. 972, Houston, TX: Lunar and Planetary Institute, Abstract #6214 (CD-ROM), 1999.Google Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al., Chemical composition of martian fines, J. Geophys. Res. 87, 10059–67, 1982.CrossRefGoogle Scholar
Drake, M. J., Newsom, H. E., and Capobianco, C. J., V, Cr, Mn in the Earth, Moon, EPB, and SPB, and the origin of the Moon: experimental studies, Geochim. Cosmochim. Acta 53, 2101–11, 1989.CrossRefGoogle Scholar
Economou, T. E. and Turkevich, A. L., An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses, Nucl. Instrum. Meth. 134, 391, 1976.CrossRefGoogle Scholar
Economou, T. E.Turkevich, A. L., and Patterson, J. H., An alpha particle experiment for chemical analysis of the martian surface and atmosphere, J. Geophys. Res. 78, 781–91, 1973.CrossRefGoogle Scholar
Ferguson, A. J. and Walker, L. R., The scattering of alpha particles by carbon and oxygen, Phys. Rev. 58, 666–71, 1940.CrossRefGoogle Scholar
Foley, C. N., Mars Pathfinder APXS analyses and interpretations, Ph.D. dissertation, The University of Chicago, Chicago, IL, 2002.
Foley, C. N., Economou, T. E., Clayton, R. N., and Dietrich, W., Calibration of the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. 108(E12), ROV 36-1 through 36-22, 2003a.Google Scholar
Foley, C. N., Economou, T. E., and Clayton, R. N., Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. 108(E12), ROV 37-1 through 37-21, 2003b.Google Scholar
Franzgrote, E. J., Patterson, J. H., Turkevich, A. L., Economou, T. E., and Sowinski, K. P., Chemical composition of the lunar surface in Sinus Medii, Science 167, 376–9, 1970.CrossRefGoogle ScholarPubMed
Frey, H., Shockey, K. M., Frey, E. L., Roark, J. H., and Sakimoto, S. E. H., A very large population of likely buried impact basins in the northern lowlands of Mars revealed by MOLA data, Lunar Planet. Sci. XXXII, Houston, TX: Lunar and Planetary Institute, Abstract #1680 (CD-ROM), 2001.Google Scholar
Geiger, H. and Marsden, E., On a diffuse reflection of the α-particles, Proc. R. Soc. A82, 495–500, 1909.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Golombek, M. P., Cook, R. A., Economou, T., et al., Overview of the Mars Pathfinder mission and assessment of landing site predictions, Science 278, 1743–8, 1997a.CrossRefGoogle Scholar
Golombek, M. P., Cook, R. A., Moore, H. J., and Parker, T., Selection of the Mars Pathfinder landing site, J. Geophys. Res. 102, 3967–88, 1997b.CrossRefGoogle Scholar
Gooding, J. L., Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites, Icarus 99, 28–41, 1992.CrossRefGoogle Scholar
Govindaraju, K., Compilation of working values and sample description for 383 geostandards, Geostand. Newsl. 18, 1–158, 1994.CrossRefGoogle Scholar
Greshake, A., Fritz, J., and Stöffler, D., Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: evidence for a two-stage cooling and a single-stage ejection history, Geochim. Cosmochim. Acta 68, 2359–77, 2004.CrossRefGoogle Scholar
Hale, V. P. S., McSween, H. Y. Jr., and McKay, G. A., Cumulus pyroxene in Shergotty: the discrepancy between experimental and observational studies, Lunar Planet. Sci. XVIII, Houston, TX: Lunar and Planetary Institute, Abstract #1363 (CD-ROM), 1997.Google Scholar
Hamilton, V. E., Wyatt, M. B., McSween, H. Y. Jr., and Christensen, P. R., Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: 2. Application to martian surface spectra from MGS TES, J. Geophys. Res. 106, 14733–46, 2001.CrossRefGoogle Scholar
Hargraves, R. B., Knudsen, J. M., Bertelsen, P., et al., Magnetic enhancement on the surface of Mars?, J. Geophys. Res. 105, 1819–27, 2000.CrossRefGoogle Scholar
Hovestadt, D., Andreychikov, B., Akhmetshin, B., et al., Measurement of the surface composition of the Mars moon Phobos: the ALPHA-X experiment on the Phobos mission, Adv. Space Res. 10(3–4), (3)53–(3)56, 1990.CrossRefGoogle Scholar
Irvine, T. N. and Baragar, W. R. A., A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci. 8, 525–48, 1971.CrossRefGoogle Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., et al., The abundances of major, minor, and trace elements in the earth's mantle as derived from primitive ultramafic nodules, Proc. Lunar Planet. Sci. Conf. X, 2031–50, 1979.Google Scholar
Johnson, M. C., Rutherford, M. J., and Hess, P. C., Chassigny petrogenesis: melt compositions, intensive parameters, and water contents of martian (?) magmas, Geochim. Cosmochim. Acta 55, 349–66, 1991.CrossRefGoogle Scholar
Juster, T. C., Grove, T. L., and Perfit, M. R., Experimental constraints on the generation of FeTi basalts, andesites, and rhyodacites at the Galapagos spreading center, 85o W and 95o W, J. Geophys. Res. 94(B7), 9251–74, 1989.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Laul, J. C., and Schmitt, R. A., Chemical composition of Apollo 15, 16, and 17 samples, Proc. Lunar Sci. Conf. X, Geochim. Cosmochim. Acta 2 (Suppl. 4), 1349–67, 1973.Google Scholar
Bas, M. J., Maitre, R. W., Streckeissen, A., and Zanettin, B., A chemical classification of volcanic rocks based on the total alkali-silica diagram, J. Petrol. 27, 745–50, 1986.CrossRefGoogle Scholar
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al., The magnetic properties experiments on Mars Pathfinder, J. Geophys. Res. 104, 8761–79, 1999.CrossRefGoogle Scholar
McSween, H. Y. Jr., Murchie, S. L., Crisp, J. A., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104(E4), 8679–715, 1999.CrossRefGoogle Scholar
McSween, H. Y. Jr., Grove, T. L., and Wyatt, M. B., Constraints on the composition and petrogenesis of the martian crust, J. Geophys. Res. 108(E12), 5135, doi:10.1029/2003JE002175, 2003.CrossRefGoogle Scholar
McSween, H. Y. Jr., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
Minitti, M. E., and Rutherford, M. J., Genesis of the Mars Pathfinder “sulfur-free” rock from SNC parental liquids, Geochim. Cosmochim. Acta 64(14), 2535–47, 2000.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, and Lauer, H. V. Jr., Hematite, pyroxene, and phyllosilicates on Mars: implications from oxidized impact melt rocks from Manicouagan crater, Quebec, Canada, J. Geophys. Res. 100, 5319–28, 1995.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. 105, 1757–817, 2000.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer Spectrometer on the Spirit Rover, Science 305, 833–6, 2004.CrossRefGoogle ScholarPubMed
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, 2006.CrossRefGoogle Scholar
Nekvasil, H., Dondolini, A., Horn, J., et al., The origin and evolution of silica-saturated alkalic suites: an experimental study, J. Petrol. 45, 693–721, 2004.CrossRefGoogle Scholar
Nelson, D. M. and Greeley, R., Geology of Xanthe Terra outflow channels and the Mars Pathfinder landing site, J. Geophys. Res. 104, 8653–69, 1999.CrossRefGoogle Scholar
Owen, T., The composition and early history of the atmosphere of Mars. In Mars. (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson, AZ: University of Arizona Press, pp. 818–34, 1992.Google Scholar
Owen, T., Biemann, K., Rushneck, D. R., et al., The composition of the atmosphere at the surface of Mars, J. Geophys. Res. 82, 4635–9, 1997.CrossRefGoogle Scholar
Parrington, J. R., Knox, H. D., Breneman, S. L., Baum,, E. M. and Feiner, F., Nuclides and Isotopes, San Jose, CA: General Electric, 1996.Google Scholar
Patterson, J. H., Turkevich, A. L., and Franzgrote, E., Chemical analyses of surfaces using alpha particles, J. Geophys. Res. 70(6), 1311–27, 1965.CrossRefGoogle Scholar
Patterson, J. H., Turkevich, A. L., Franzgrote, E. J., Economou, T. E., and Sowinski, K. P., Chemical composition of a lunar surface in a terra region near the crater Tycho, Science 8, 825–8, 1970.CrossRefGoogle Scholar
Pettijohn, F. J., Sedimentary Rocks, 3rd edn. New York: Harper & Row, 628pp., 1975.Google Scholar
Philpotts, A. R., Principles of Igneous and Metamorphic Petrology, New Jersey: Prentice Hall; Simon & Schuster, 498pp., 1990.Google Scholar
Rieder, R., Wänke, H., Economou, T., and Turkevich, A., Determination of the chemical composition of martian soil and rocks: the alpha proton X-ray spectrometer, J. Geophys. Res. 102(E2), 4027–44, 1997a.CrossRefGoogle Scholar
Rieder, R., Economou, T., Wänke, H., et al., The chemical composition of the martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode, Science 278, 1771–4, 1997b.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Robinson, D. A. and Williams, R. B. G., Rock Weathering and Landform Evolution, Chichester, England: John Wiley & Sons, 519pp., 1994.Google Scholar
Rover Team, Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner, Science 278, 1765–8, 1997.CrossRef
Rutherford, E., The scattering of α and β particles by matter and the structure of the atom, Philos. Mag., Series 6, 21, 669–88, 1911.CrossRefGoogle Scholar
Rutherford, E., Chadwick, J., and Ellis, C. D., Radiations from Radioactive Substances, London, England: Cambridge University Press, 1930.Google Scholar
Smith, P. H., Bell, J. F., Bridges, N. T., et al., Results from the Mars Pathfinder camera, Science 278, 1758–65, 1997.CrossRefGoogle ScholarPubMed
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science 306, 1709–14, 2004.CrossRefGoogle ScholarPubMed
Tanaka, K. L., Debris-flow origin for the Simud/Tiu deposit on Mars, J. Geophys. Res. 104, 8637–52, 1999.CrossRefGoogle Scholar
Tanaka, K. L., D. H. Scott, and R. Greeley, Global stratigraphy. In Mars (ed. Kieffer, H. H.et al.), Tucson, AZ: University of Arizona Press, pp. 345–82, 1992.Google Scholar
Tipler, P. A., Modern Physics, New York: Worth Publishers, 1987.Google Scholar
Tosca, N. J., McLennan, S. M., Lindsley, D. H., and Schoonen, M. A. A., Acid-sulfate weathering of synthetic martian basalt: the acid fog model revisited, J. Geophys. Res. 109, E05003, doi:10.1029/2003JE002218, 2004.CrossRefGoogle Scholar
Toulmin, P. III, Baird, A. K., Clark, B. C., et al., Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82, 4625–34, 1977.CrossRefGoogle Scholar
Turkevich, A. L., Chemical analysis of surfaces by use of large-angle scattering of heavy charged particles, Science 134, 672–4, 1961.CrossRefGoogle ScholarPubMed
Turkevich, A. L., Franzgrote, E. F., and Patterson, J. H., Chemical composition of lunar surface in Mare Tranquillitatis, Science 165, 277–9, 1969.CrossRefGoogle ScholarPubMed
Wänke, H. and Dreibus, G., Chemical composition and accretion history of terrestrial planets, Philos. Trans. R. Soc. Lond. A325, 545–57, 1988.CrossRefGoogle Scholar
Wänke, H. and Dreibus, G., Chemistry and accretion history of Mars, Philos. Trans. R. Soc. Lond., Ser. A349, 285–93, 1994.CrossRefGoogle Scholar
Wänke, H., Dreibus, G., Jagoutz, E., et al., ALHA 77005 and the chemistry of the Shergotty parent body (Mars) (abstract)Lunar Planet. Sci. XVII, 919–20, 1986.Google Scholar
Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I., Chemical composition of rocks and soils at the Pathfinder site, Space Sci. Rev. 96, 317–30, 2001.CrossRefGoogle Scholar
Ward, A. W., Gaddis, L. R., Kirk, R. L., et al., General geology and geomorphology of the Mars Pathfinder landing site. J. Geophys. Res. 104(E4), 8555–71, 1999.CrossRefGoogle Scholar
Williamson, J. H., Least-squares fitting of a straight line, Can. J. Phys. 46, 1845–7, 1968.CrossRefGoogle Scholar
Wyatt, M. B. and McSween, H. Y. Jr., Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature 417, 263–6, 2002.CrossRefGoogle ScholarPubMed
Ziegler, J. F., The electronic and nuclear stopping of energetic ions, Appl. Phys. Lett. 31, 544–6, 1977.CrossRefGoogle Scholar
Zuber, M. T., Solomon, S. C., Phillips, R. J., et al., Internal structure and early evolution of Mars from Mars Global Surveyor topography and gravity, Science 287, 1788–93, 2000.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Martian surface chemistry: APXS results from the Pathfinder landing site
    • By C. N. Foley, Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road, NW Washington, DC 20015-1305, USA, T. E. Economou, Laboratory for Astrophysics & Space Res. University of Chicago, 933 East 56th Street, Chicago, IL 60637, USA, R. N. Clayton, Enrico Fermi Institute, 5640 S. Ellis Avenue, RI 440 Chicago, IL 60637, USA, J. Brückner, Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, G. Dreibus, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, R. Rieder, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, H. Wänke, Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Martian surface chemistry: APXS results from the Pathfinder landing site
    • By C. N. Foley, Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road, NW Washington, DC 20015-1305, USA, T. E. Economou, Laboratory for Astrophysics & Space Res. University of Chicago, 933 East 56th Street, Chicago, IL 60637, USA, R. N. Clayton, Enrico Fermi Institute, 5640 S. Ellis Avenue, RI 440 Chicago, IL 60637, USA, J. Brückner, Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, G. Dreibus, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, R. Rieder, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, H. Wänke, Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Martian surface chemistry: APXS results from the Pathfinder landing site
    • By C. N. Foley, Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road, NW Washington, DC 20015-1305, USA, T. E. Economou, Laboratory for Astrophysics & Space Res. University of Chicago, 933 East 56th Street, Chicago, IL 60637, USA, R. N. Clayton, Enrico Fermi Institute, 5640 S. Ellis Avenue, RI 440 Chicago, IL 60637, USA, J. Brückner, Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, G. Dreibus, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, R. Rieder, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, H. Wänke, Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.004
Available formats
×