Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Print publication year: 2008
  • Online publication date: December 2009

1 - Exploration of the Martian surface: 1992–2007

from Part I - Introduction and historical perspective

Summary

ABSTRACT

Following the demise of the 1992 Mars Observer mission, NASA and the planetary science community completely redefined the Mars exploration program. “Follow the Water” became the overarching scientific theme. The history and distribution of water is fundamental to an understanding of climate history, formation of the atmosphere, geologic evolution, and Mars' modern state. The strategy was to search for past or present, surface or subsurface, environments where liquid water, the fundamental prerequisite for life, existed or exists today. During the 1996–2007 time frame, seven richly successful orbital and landed missions have explored the Martian surface, including NASA's Mars Global Surveyor (MGS), Mars Pathfinder Lander and Sojourner Rover, Mars Odyssey Orbiter, Mars Exploration Rovers (Spirit and Opportunity), Mars Reconnaissance Orbiter, and ESA's Mars Express (MEx) orbiter. “Follow the Water” has borne fruit. Although the Martian surface is largely composed of unaltered basaltic rocks and sand, the Rovers discovered water-lain sediments, some minerals only formed in water, and aqueous alteration of chemically fragile igneous minerals. The geological records of early water-rich environment have shown hints of profuse and neutral-to-alkaline water that later evolved to sulfurous acidic conditions as aqueous activity waned. We now have a global inventory of near-surface water occurring as hydrated minerals and possibly ice and liquid in equatorial and mid latitudes and as masses of water ice making up an unknown but potentially large fraction of the polar regolith. Martian meteorites have provided new insights into the early formation of Mars' core and mantle.

REFERENCES
Beaty, D. W., M. A. Meyer, and the Mars Advance Planning Group, 2006 Update to “Robotic Mars Exploration Strategy 2007–2016,” Unpublished white paper, posted November 2006 by the Mars Exploration Program Analysis Group (MEPAG), http://mepag.jpl.nasa.gov/reports/index.html, 24pp., 2006.
Bertka, C. M. and Fei, Y., Implications of Mars Pathfinder data for the accretion history of the terrestrial planets, Science 281, 1838–40, 1998.
Carr, M. H., Water on Mars, Oxford University Press, 1996.
Carr, M. H., The Surface of Mars, Cambridge University Press, 2007.
Chapman, M. (ed.), The Geology of Mars: Evidence from Earth-based Analogs, Cambridge University Press, 472pp., 2007.
COMPLEX, On NASA Mars Sample-Return Mission Options, Washington, D.C.: National Academy of Sciences, 1996.
COMPLEX, Assessment of Mars Science and Mission Priorities, Washington, D.C.: National Academy Press, 2003.
Encrenaz, T., The atmosphere of Mars as constrained by remote sensing, Space Sci. Rev. 96, 411–24, 2001.
Folkner, W. M., Yoder, C. F., Yuan, D. N., Standish, E. M., and Preston, R. A., Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder, Science 278, 1749–52, 1997.
Frey, H. V., A timescale for major events in early Mars crustal evolution. Lunar Planet. Sci. Conf. XXXV, Abstr. 1382, 2004.
Greeley, R., Kuzmin, R. O., and Haberle, R. M., Aeolian processes and the effects on understanding the chronology of Mars, Space Sci. Rev. 96, 393–404, 2001.
Hartmann, W. K., Martian cratering 8: isochron refinement and the chronology of Mars, Icarus 174, 294–320, 2005.
Hartmann, W. K. and G. Neukum, Cratering chronology and evolution of Mars. In Composition and Origin of Cometary Materials (ed. Altwegg, K., Ehrenfreund, P., Geiss, J., and Huebner, W. F.), Netherlands: Kluwer Academic, pp. 165–94, 2001.
Head, J. W., Greeley, R., Golombek, M. P., et al., Geological processes and evolution, Space Sci. Rev. 96, 263–92, 2001.
Head, J. W., Neukum, G., Jaumann, R., et al., Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars, Nature 434, 346–51, 2005.
Kargel, J. S., Baker, V. R., Beget, J. E., et al., Evidence of ancient continental glaciation in the Martian northern plains, J. Geophys. Res. 100, 5351–68, 1995.
Kieffer, H. H., Christensen, P. R., and Titus, T. N., CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap, Nature 442, 793–6, 2006.
Kieffer, H., Jakosky, B., Snyder, C., and Matthews, M. (eds.), Mars, Tucson: University of Arizona Press, 1498pp., 1992.
Klein, H. P., N. H. Horowitz, and K. Biemann, The search for extant life on Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 1221–33, 1992.
Laskar, J., Corrieia, A. C. M., Gastineau, M., et al., Long term evolution and chaotic diffusion of the insolation quantities of Mars, Icarus 170, 343–54, 2004.
Levin, G. V., Interpretation of new results from Mars with respect to life. In Instruments, Methods, and Missions for Astrobiology VIII (ed. R. B. Hoover, G. V. Levin, and A. Y. Rozanov), Proc. SPIE5555, pp. 126–38, 2004.
Lucchitta, B. K., Mars and Earth: comparison of cold-climate features, Icarus 45, 264–302, 1981.
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. N., Present-day impact cratering rate and contemporary gully activity on Mars, Science 314, 1573–7, 2006.
McCleese, D. J. and the Mars Advance Planning Group, Mars Exploration Strategy 2007–2016, NASA, Jet Propulsion Laboratory, Pasadena, California, http://mepag.jpl.nasa.gov/reports/index.html, 2006.
McCleese, D. J. and the Mars Expeditions Strategy Group, The Search for Life on Mars, NASA, Jet Propulsion Laboratory, Pasadena, California, http://mepag.jpl.nasa.gov/reports/index.html, 2001 [written in 1996].
MEPAG, the Mars Exploration Program Analysis Group, Mars Scientific Goals, Objectives, Investigations, and Priorities (ed. J. Grant), http://mepag.jpl.nasa.gov/reports/index.html, 31pp., 2006.
Mishkin, A., Sojourner: An Insider's View of the Mars Pathfinder Mission, Berkley, CA, 352pp., 2003.
Muirhead, B. K. and Simon, W. L., High Velocity Leadership, New York: Harper Business, 1999.
National Research Council Space Studies Board, New Frontiers in the Solar System, An Integrated Exploration Strategy, Washington, D.C.: National Academy of Sciences, 2003.
Neumann, G. A., Zuber, M. T., Wieczorek, M. A., et al., Crustal structure of Mars from gravity and topography, J. Geophys. Res. 109, E8:E08002, pp. 1–18, 2004.
Nimmo, F. and Tanaka, K. L., Early crustal evolution of Mars, Ann. Rev. Earth Planet Sci. 33, doi:10.1146/annurev.earth.1133.092203.122637, 2005.
Phillips, R. J., Zuber, M. T., Solomon, S. C., et al., Ancient geodynamics and global-scale hydrology on Mars, Science 291, 2587–91, 2001.
Pieters, C. M. and Englert, P. A. J. (eds.), Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge University Press, 594pp., 1993.
Scott, D. H. and Carr, M. H., Geologic map of Mars. USGS Misc. Inv. Ser. Map, I-1083, 1978.
Scott, D. H., Tanaka, K. L., Greeley, R., and Guest, J. E., Geologic maps of the western and eastern equatorial and polar regions of Mars. USGS Misc. Inv. Ser. Map, I1802-A, B, C, 1986–7.
Soderblom, L. A., Becker, T. L., Kieffer, S. W., et al., Triton's geyser-like plumes: discovery and basic characterization, Science 250, 410–15, 1990.
Solomon, S. C., Aharonson, O., Aurnou, J. M., et al., New perspectives on ancient Mars, Science 307, 1214–20, 2005.
Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., and Kring, D. A., The origin of planetary impactors in the inner solar system, Science 309, 1847–50, 2005.
Tanaka, K. L., The stratigraphy of Mars, J. Geophys. Res. 91, E139–58, 1986.
Tanaka, K. L., Skinner, J. A., and Hare, T. M., Geologic map of the northern plains of Mars, USGS Sci. Inv. Map, 2888, 2005.
Tanaka, K. L., Skinner, J. A., Hare, T. M., Joyal, T., and Wenker, A., Resurfacing history of the northern plains of Mars based on geologic mapping of Mars global surveyor data, J. Geophys. Res. 108, E4:8043, 24-1–24-32, 2003.
Touma, J. and Wisdom, J., The chaotic obliquity of Mars, Science 259, 1294–7, 1993.
Wilhelms, D. E. and Squyres, S. W., The Martian hemispheric dichotomy may be due to a giant impact, Nature 309, 138–40, 1984.
Zuber, M. T., Solomon, S. C., Phillips, R. J., et al., Internal structure and early thermal evolution of Mars from Mars global surveyor topography and gravity, Science 287, 1788–93, 2000.