Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T21:33:21.278Z Has data issue: false hasContentIssue false

24 - Brain parenchyma imaging

Published online by Cambridge University Press:  05 May 2016

László Csiba
Affiliation:
Department of Neurology, Debreceni Egyetem, Hungary
Claudio Baracchini
Affiliation:
Department of Neuroscience, Università degli Studi di Padova, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Walter, U, Behnke, S, Eyding, J, et al. Transcranial brain parenchyma sonography in movement disorders: state of the art. Ultrasound Med Biol. 2007;33:1525.CrossRefGoogle ScholarPubMed
Berg, D, Godau, J, Walter, U. Transcranial sonography in movement disorders. Lancet Neurol. 2008;7:10441055.Google Scholar
Walter, U, Kirsch, M, Wittstock, M, et al. Transcranial sonographic localization of deep brain stimulation electrodes is safe, reliable and predicts clinical outcome. Ultrasound Med Biol. 2011;37:13821391.CrossRefGoogle ScholarPubMed
Harrer, JU, Eyding, J, Ritter, M, et al. The potential of neurosonography in neurological emergency and intensive care medicine: monitoring of increased intracranial pressure, brain death diagnostics, and cerebral autoregulation– part 2. Ultraschall Med. 2012;33:320331.Google Scholar
Walter, U, Školoudík, D. Transcranial sonography (TCS) of brain parenchyma in movement disorders: quality standards, diagnostic applications and novel technologies. Ultraschall Med. 2014;35:322331.Google Scholar
Go, CL, Frenzel, A, Rosales, RL, et al. Assessment of substantia nigra echogenicity in German and Filipino populations using a portable ultrasound system. J Ultrasound Med. 2012;31:191196.CrossRefGoogle ScholarPubMed
Walter, U, Kanowski, M, Kaufmann, J, et al. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: a phantom study. Neuroimage. 2008; 40:551558.Google Scholar
Kern, R, Perren, F, Kreisel, S, et al. Multiplanar transcranial ultrasound imaging: standards, landmarks and correlation with magnetic resonance imaging. Ultrasound Med Biol. 2005;31:311315.Google Scholar
Walter, U. How to measure substantia nigra hyperechogenicity in Parkinson disease: detailed guide with video. J Ultrasound Med. 2013;32:18371843.Google Scholar
van de Loo, S, Walter, U, Behnke, S, et al. Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010;81:10871092.Google Scholar
Berg, D, Becker, G, Zeiler, B, et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology. 1999;53:10261031.CrossRefGoogle ScholarPubMed
Mehnert, S, Reuter, I, Schepp, K, et al. Transcranial sonography for diagnosis of Parkinson’s disease. BMC Neurol. 2010;10:9.CrossRefGoogle ScholarPubMed
Hagenah, J, König, IR, Sperner, J, et al. Life-long increase of substantia nigra hyperechogenicity in transcranial sonography. Neuroimage. 2010;51:2832.CrossRefGoogle ScholarPubMed
Behnke, S, Double, KL, Duma, S, et al. Substantia nigra echomorphology in the healthy very old: correlation with motor slowing. Neuroimage. 2007;34:10541059.CrossRefGoogle ScholarPubMed
Budisic, M, Trkanjec, Z, Bosnjak, J, et al. Distinguishing Parkinson’s disease and essential tremor with transcranial sonography. Acta Neurol Scand. 2009;119:1721.CrossRefGoogle ScholarPubMed
Mijajlović, M, Petrović, I, Stojković, T, et al. Transcranial parenchymal sonography in the diagnosis of Parkinson’s disease. Vojnosanit Pregl. 2008;65:601605.CrossRefGoogle ScholarPubMed
Ressner, P, Skoloudík, D, Hlustík, P, Kanovský, P. Hyperechogenicity of the substantia nigra in Parkinson’s disease. J Neuroimaging. 2007;17:164167.CrossRefGoogle ScholarPubMed
Mijajlović, M, Dragasević, N, Stefanova, E, et al. Transcranial sonography in spinocerebellar ataxia type 2. J Neurol. 2008;255:11641167.Google Scholar
Stockner, H, Sojer, M, Seppi, K, et al. Midbrain sonography in patients with essential tremor. Mov Disord. 2007;22:414417.Google Scholar
Fedotova, EIu, Chechetkin, AO, Shadrina, MI, et al. Transcranial sonography in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova. 2011;111:4955.Google ScholarPubMed
Kim, JY, Kim, ST, Jeon, SH, Lee, WY. Midbrain transcranial sonography in Korean patients with Parkinson’s disease. Mov Disord. 2007;22:19221926.CrossRefGoogle ScholarPubMed
Vivo-Orti, MN, Tembl, JI, Sastre-Bataller, I, et al. Evaluación de la sustancia negra mediante ultrasonografía transcraneal. Rev Neurol. 2013;56:268274.Google Scholar
Alonso-Cánovas, A, López-Sendón, JL, Buisán, J, et al. Sonography for diagnosis of Parkinson disease – from theory to practice: a study on 300 participants. J Ultrasound Med. 2014;33:20692074.Google Scholar
Berg, D, Behnke, S, Seppi, K, et al. Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord. 2013;28:216219.CrossRefGoogle ScholarPubMed
Walter, U. Substantia nigra hyperechogenicity is a risk marker of Parkinson’s disease: no. J Neural Transm. 2011;118:607612.Google Scholar
Doepp, F, Plotkin, M, Siegel, L, et al. Brain parenchyma sonography and 123I-FP-CIT SPECT in Parkinson’s disease and essential tremor. Mov Disord. 2008;23: 405410.Google Scholar
Walter, U, Dressler, D, Wolters, A, Probst, T, Grossmann, A, Benecke, R. Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology. 2004;63:504509.CrossRefGoogle ScholarPubMed
Behnke, S, Berg, D, Naumann, M, Becker, G. Differentiation of Parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J Neurol Neurosurg Psychiatry. 2005;76:423425.Google Scholar
Walter, U, Dressler, D, Wolters, A, et al. Sonographic discrimination of dementia with Lewy bodies and Parkinson’s disease with dementia. J Neurol. 2006;253:448454.CrossRefGoogle ScholarPubMed
Walter, U, Dressler, D, Probst, T, et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol. 2007;64:16351640.Google Scholar
Bouwmans, AE, Vlaar, AM, Srulijes, K, Mess, WH, Weber, WE. Transcranial sonography for the discrimination of idiopathic Parkinson’s disease from the atypical parkinsonian syndromes. Int Rev Neurobiol. 2010;90:121146.CrossRefGoogle ScholarPubMed
Ebentheuer, J, Canelo, M, Trautmann, E, Trenkwalder, C. Substantia nigra echogenicity in progressive supranuclear palsy. Mov Disord. 2010;25:773777.CrossRefGoogle ScholarPubMed
Busse, K, Heilmann, R, Kleinschmidt, S, et al. Value of combined midbrain sonography, olfactory and motor function assessment in the differential diagnosis of early Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83:441447.Google Scholar
Berardelli, A, Wenning, GK, Antonini, A, et al. EFNS/MDS-ES/ENS recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol. 2013;20:1634.CrossRefGoogle ScholarPubMed
Becker, G, Becker, T, Struck, M, et al. Reduced echogenicity of brainstem raphe specific to unipolar depression: a transcranial color-coded real-time sonography study. Biol Psychiatry. 1995;38:180184.Google Scholar
Walter, U, Hoeppner, J, Prudente-Morrissey, L, et al. Parkinson’s disease-like midbrain sonography abnormalities are frequent in depressive disorders. Brain. 2007;130:17991807.CrossRefGoogle ScholarPubMed
Berg, D, Supprian, T, Hofmann, E, et al. Depression in Parkinson’s disease: brainstem midline alteration on transcranial sonography and magnetic resonance imaging. J Neurol. 1999;246:11861193.CrossRefGoogle ScholarPubMed
Krogias, C, Eyding, J, Postert, T. Transcranial sonography in Huntington’s disease. Int Rev Neurobiol. 2010;90: 237257.Google Scholar
Wollenweber, FA, Schomburg, R, Probst, M, et al. Width of the third ventricle assessed by transcranial sonography can monitor brain atrophy in a time- and cost-effective manner – results from a longitudinal study on 500 subjects. Psychiatry Res. 2011;191:212216.Google Scholar
Naumann, M, Becker, G, Toyka, KV, Supprian, T, Reiners, K. Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology. 1996;47:12841290.CrossRefGoogle ScholarPubMed
Walter, U. Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol. 2010;90:166178.CrossRefGoogle ScholarPubMed
Brüggemann, N, Schneider, SA, Sander, T, Klein, C, Hagenah, J. Distinct basal ganglia hyperechogenicity in idiopathic basal ganglia calcification. Mov Disord. 2010;25:26612664.CrossRefGoogle ScholarPubMed
Seidel, G, Kaps, M, Dorndorf, W. Transcranial color-coded duplex sonography of intracerebral hematomas in adults. Stroke. 1993;24:15191527.CrossRefGoogle ScholarPubMed
Mäurer, M, Shambal, S, Berg, D, et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke. 1998;29:25632567.Google Scholar
Niesen, WD, Burkhardt, D, Hoeltje, J, et al. Transcranial grey-scale sonography of subdural haematoma in adults. Ultraschall Med. 2006;27:251255.CrossRefGoogle ScholarPubMed
Kiphuth, IC, Huttner, HB, Struffert, T, Schwab, S, Köhrmann, M. Sonographic monitoring of ventricle enlargement in posthemorrhagic hydrocephalus. Neurology. 2011;76:858862.CrossRefGoogle ScholarPubMed
Gerriets, T, Stolz, E, Modrau, B, et al. Sonographic monitoring of midline shift in hemispheric infarctions. Neurology. 1999;52:4549.Google Scholar
Plate, A, Ahmadi, SA, Pauly, O, et al. Three-dimensional sonographic examination of the midbrain for computer-aided diagnosis of movement disorders. Ultrasound Med Biol. 2012;38:20412050.Google Scholar
Skoloudík, D, Jelínková, M, Blahuta, J, et al. Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J Neuroradiol. 2014;35(12):22732278.Google Scholar
Forzoni, L, D’Onofrio, S, De Beni, S, et al. Virtual navigator registration procedure for transcranial application. In: Hellmich, C, Hamza, MH, Simsik, D, eds. Proceedings of the IASTED International Conference Biomedical Engineering (BioMed 2012). Innsbruck: International Association of Science and Technology for Development (IASTED), 2012,496503.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×