Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T07:59:23.627Z Has data issue: false hasContentIssue false

9 - Myeloproliferative neoplasms

Published online by Cambridge University Press:  10 January 2011

Ayalew Tefferi
Affiliation:
Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
Susan O'Brien
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Julie M. Vose
Affiliation:
University of Nebraska Medical Center, Omaha
Hagop M. Kantarjian
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Get access

Summary

Introduction

The 2008 World Health Organization (WHO) classification system for hematologic malignancies uses histology and genetic information to organize myeloid neoplasms into five operational categories: acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), “MDS/MPN,” and “myeloid/lymphoid neoplasms associated with eosinophilia and rearrangements of platelet-derived growth factor receptor α/β or fibroblast growth factor receptor 1” (Table 9.1). The MPN category is in turn subclassified into eight separate entities: chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), systemic mastocytosis (SM), chronic eosinophilic leukemia, not otherwise specified (CEL-NOS), chronic neutrophilic leukemia, and “MPN, unclassifiable.” The first four are referred to as “classic” MPN and further subclassified into BCR-ABL-positive (CML) and BCR-ABL-negative classic MPN. This chapter will focus on the latter.

Historical perspective

In 1951, William Dameshek (1900–69) grouped the four classic MPN (CML, PV, ET, and PMF), along with DiGuglielmo's syndrome (erythroleukemia), under the rubric of “myeloproliferative disorders (MPD).” However, the history of MPD antedates Dameshek by more than a century. In 1879, Gustav Heuck (1854–1940) described PMF under the title of “Two cases of leukemia with peculiar blood and bone marrow findings.” In 1904, Max Askanazy (1865–1940) reported another PMF case with substantial EMH of the liver and diffuse bone marrow fibrosis. In 1907, Herbert Assmann (1882–1950) described a similar case (“Heuck–Assmann syndrome”), which he called “osteosclerotic anemia.”

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tefferi, A, Thiele, J, Orazi, A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 2007;110:1092–7.CrossRefGoogle ScholarPubMed
Dameshek, W. Some speculations on the myeloproliferative syndromes. Blood 1951;6:372–5.Google ScholarPubMed
Heuck, G.Zwei Falle von Leukamie mit eigenthumlichem Blut-resp. Knochenmarksbefund (Two cases of leukemia with peculiar blood and bone marrow findings, respectively). Arch Pathol Anat Physiol Virchows 1879;78:475–96.CrossRefGoogle Scholar
Askanazy, M. Ueber extrauterine Bildung von Blutzellen in der Leber. Verh Dtsch Pathol Ges 1904;7:58–65.Google Scholar
Assmann, H. Beitrage zur osteosklerotischen anamie. Beitr Pathol Anat Allgemeinen Pathologie (Jena) 1907;41:565–95.Google Scholar
Jackson H Jr, Parker FJ, Lemon, HM. Agnogenic myeloid metaplasia of the spleen: a syndrome simulating other more definite hematological disorders. N Engl J Med 1940;222:985–94.CrossRefGoogle Scholar
Jaffe, ES, Harris, NL, Stein, H, et al. (eds.) World Health Organization Classification of Tumours: Pathology and Genetics of Haematopoietic and Lymphoid Tissues. Lyon, France, IARC Press. 2001; 1–351.Google Scholar
Mesa, RA, Verstovsek, S, Cervantes, F, et al. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk Res 2007;31:737–40.CrossRefGoogle Scholar
Vaquez, H.Sur une forme speciale de cyanose s'accompanant d'hyperglobulie excessive et peristente (On a special form of cyanosis accompanied by excessive and persistent erythrocytosis). Compt rend Soc de biol and suppl note, Bull et mem Soc med d'hop de Paris, 3 ser 1895;12:60.1892;4:384–8.Google Scholar
Osler, W.Chronic cyanosis, with polycythemia and enlarged spleen: a new clinical entity. Am J Med Sci 1903;126:187–201.CrossRefGoogle Scholar
Osler, W. A clinical lecture on erythraemia (polycythaemia with cyanosis, maladie de Vaquez). Lancet 1908;1:143–6.Google Scholar
Epstein, E, Goedel, A. Hamorrhagische thrombozythamie bei vascularer schrumpfmilz (Hemorrhagic thrombocythemia with a vascular, sclerotic spleen). Virchows Arch A Pathol Anat Histopathol 1934;293:233–48.CrossRefGoogle Scholar
Fanger, H, Cella, LJ, Litchman, H. Thrombocythemia; report of three cases and review of literature. N Engl J Med 1954;250:456–61.CrossRefGoogle ScholarPubMed
Vardiman, JW, Brunning, RD, Arber, DA, et al. Introduction and overview of the classification of the myeloid neoplasms. In: SwerdlowSH, Campo E SH, Campo E, Harris, NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Vol. 2, 4th edn. Lyon, France, IARC Press. 2008:18–30.Google Scholar
Vardiman, JW, Brunning, RD, Harris, NL. WHO histological classification of chronic myeloproliferative diseases. In: Jaffe, ES, Harris, NL, Stein, H, et al., eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of the Haematopoietic and Lymphoid tissues. Lyon, France, IARC Press. 2001; 17–44.Google Scholar
Tefferi, A, Skoda, R, Vardiman, JW. Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol 2009;6:627–37.CrossRefGoogle ScholarPubMed
Hussein, K, Huang, J, Lasho, T, et al. Karyotype complements the International Prognostic Scoring System for primary myelofibrosis. Eur J Haematol 2009;82:255–9.CrossRefGoogle ScholarPubMed
Gangat, N, Strand, J, Lasho, TL, et al. Cytogenetic studies at diagnosis in polycythemia vera: clinical and JAK2V617F allele burden correlates. Eur J Haematol 2008;80:197–200.CrossRefGoogle ScholarPubMed
Gangat, N, Tefferi, A, Thanarajasingam, G, et al. Cytogenetic abnormalities in essential thrombocythemia: prevalence and prognostic significance. Eur J Haematol 2009;83:17–21.CrossRefGoogle ScholarPubMed
Hussein, K, Dyke, DL, Tefferi, A. Conventional cytogenetics in myelofibrosis: literature review and discussion. Eur J Haematol 2009;82:329–38.CrossRefGoogle ScholarPubMed
Santana-Davila, R, Holtan, SG, Dewald, GW, et al. Chromosome 5q deletion: specific diagnoses and cytogenetic details among 358 consecutive cases from a single institution. Leuk Res 2008;32:407–11.CrossRefGoogle ScholarPubMed
Bacher, U, Schnittger, S, Kern, W, et al. Distribution of cytogenetic abnormalities in myelodysplastic syndromes, Philadelphia negative myeloproliferative neoplasms, and the overlap MDS/MPN category. Ann Hematol 2009;88:1207–13.CrossRefGoogle ScholarPubMed
Steensma, DP, Dewald, GW, Lasho, TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood 2005;106:1207–9.CrossRefGoogle ScholarPubMed
Jones, AV, Kreil, S, Zoi, K, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005;106:2162–8.CrossRefGoogle ScholarPubMed
Renneville, A, Quesnel, B, Charpentier, A, et al. High occurrence of JAK2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia 2006;20:2067–70.CrossRefGoogle ScholarPubMed
Schmitt-Graeff, AH, Teo, SS, Olschewski, M, et al. JAK2V617F mutation status identifies subtypes of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Haematologica 2008;93:34–40.CrossRefGoogle ScholarPubMed
Kralovics, R, Passamonti, F, Buser, AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352:1779–90.CrossRefGoogle ScholarPubMed
Scott, LM, Tong, W, Levine, RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356:459–68.CrossRefGoogle ScholarPubMed
Pietra, D, Li, S, Brisci, A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 2008;111:1686–9.CrossRefGoogle ScholarPubMed
Pardanani, AD, Levine, RL, Lasho, T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006;108:3472–6.CrossRefGoogle ScholarPubMed
Schnittger, S, Haferlach, C, Beelen, DW, et al. Detection of three different MPLW515 mutations in 10.1% of all JAK2 V617 unmutated ET and 9.3% of all JAK2 V617F unmutated OMF: a study of 387 patients. ASH Annual Meeting Abstracts 2007;110:2546.Google Scholar
Vannucchi, AM, Antonioli, E, Pancrazzi, A, et al. The clinical phenotype of patients with essential thrombocythemia harboring MPL 515W>L/K mutation. ASH Annual Meeting Abstracts 2007;110:678.Google Scholar
Guglielmelli, P, Pancrazzi, A, Bergamaschi, G, et al. Anaemia characterises patients with myelofibrosis harbouring Mpl mutation. Br J Haematol 2007;137:244–7.CrossRefGoogle ScholarPubMed
Beer, PA, Campbell, PJ, Scott, LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008;112:141–9.CrossRefGoogle ScholarPubMed
Delhommeau, F, Dupont, S, James, C, et al. TET2 is a novel tumor suppressor gene inactivated in myeloproliferative neoplasms: identification of a pre-JAK2 V617F event. ASH Annual Meeting Abstracts 2008;112:lba-3. Late-Breaking Abstract.Google Scholar
Tefferi, A, Pardanani, A, Lim, KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2009;23:905–11.CrossRefGoogle ScholarPubMed
Tefferi, A, Levine, RL, Lim, KH, et al. Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia 2009;23:900–4.CrossRefGoogle ScholarPubMed
Tefferi, A, Lim, KH, Abdel-Wahab, O, et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 2009;23:1343–5. doi:101038/leu200959. 2009.
Wernig, G, Mercher, T, Okabe, R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006;107:4274–81.CrossRefGoogle Scholar
Pardanani, A, Fridley, BL, Lasho, TL, et al. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood 2008;111:2785–9.CrossRefGoogle ScholarPubMed
Jones, AV, Chase, A, Silver, RT, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 2009;41:446–9.CrossRefGoogle ScholarPubMed
Kilpivaara, O, Mukherjee, S, Schram, AM, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 2009;41:455–9.CrossRefGoogle ScholarPubMed
Olcaydu, D, Harutyunyan, A, Jager, R, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 2009;41:450–4.CrossRefGoogle ScholarPubMed
Messinezy, M, Westwood, NB, El-Hemaidi, I, et al. Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br J Haematol 2002;117:47–53.CrossRefGoogle ScholarPubMed
Mossuz, P, Girodon, F, Donnard, M, et al. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica 2004;89:1194–8.Google ScholarPubMed
Tefferi, A, Vardiman, JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008;22:14–22.CrossRefGoogle ScholarPubMed
Kittur, J, Knudson, RA, Lasho, TL, et al. Clinical correlates of JAK2V617F allele burden in essential thrombocythemia. Cancer 2007;109:2279–84.CrossRefGoogle ScholarPubMed
Vardiman, JW, Thiele, J, Arber, DA, et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009;114:937–51.CrossRefGoogle ScholarPubMed
Chaiter, Y, Brenner, B, Aghai, E, et al. High incidence of myeloproliferative disorders in Ashkenazi Jews in northern Israel. Leuk Lymphoma 1992;7:251–5.CrossRefGoogle ScholarPubMed
Ania, BJ, Suman, VJ, Sobell, JL, et al. Trends in the incidence of polycythemia vera among Olmsted County, Minnesota residents, 1935–1989. Am J Hematol 1994;47:89–93.CrossRefGoogle ScholarPubMed
Berglund, S, Zettervall, O. Incidence of polycythemia vera in a defined population. Eur J Haematol 1992;48:20–6.CrossRefGoogle Scholar
Jensen, MK, Nully Brown, P, Nielsen, OJ, et al. Incidence, clinical features and outcome of essential thrombocythaemia in a well defined geographical area. Eur J Haematol 2000;65:132–9.CrossRefGoogle Scholar
Ridell, B, Carneskog, J, Wedel, H, et al. Incidence of chronic myeloproliferative disorders in the city of Goteborg, Sweden 1983–1992. Eur J Haematol 2000;65:267–71.CrossRefGoogle ScholarPubMed
McNally, RJ, Rowland, D, Roman, E, et al. Age and sex distributions of hematological malignancies in the U.K. Hematol Oncol 1997;15:173–89.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Heudes, D, Carli, PM, Bailly, F, et al. Myeloproliferative disorders in the department of Cote d'Or between 1980 and 1986. Nouv Rev Fr Hematol 1989;31:375–8.Google Scholar
Mesa, RA, Silverstein, MN, Jacobsen, SJ, et al. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County study, 1976–1995. Am J Hematol 1999;61:10–15.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Johansson, P, Kutti, J, Andreasson, B, et al. Trends in the incidence of chronic Philadelphia chromosome negative (Ph-) myeloproliferative disorders in the city of Goteborg, Sweden, during 1983–99. J Intern Med 2004;256:161–5.CrossRefGoogle ScholarPubMed
Woodliff, HJ, Dougan, L. Myelofibrosis in Western Australia: an epidemiological study of 29 cases. Med J Aust 1976;1:523–5.Google ScholarPubMed
,Anonymous. Polycythemia vera: the natural history of 1213 patients followed for 20 years. Gruppo Italiano Studio Policitemia. Ann Intern Med 1995;123:656–64.
Diehn, F, Tefferi, A. Pruritus in polycythaemia vera: prevalence, laboratory correlates and management. Br J Haematol 2001;115:619–21.CrossRefGoogle ScholarPubMed
Tefferi, A, Elliott, M. Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost 2007;33:313–20.CrossRefGoogle ScholarPubMed
Patel, RK, Lea, NC, Heneghan, MA, et al. Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome. Gastroenterology 2006;130:2031–8.CrossRefGoogle ScholarPubMed
Colaizzo, D, Amitrano, L, Tiscia, GL, et al. The JAK2 V617F mutation frequently occurs in patients with portal and mesenteric venous thrombosis. J Thromb Haemost 2007;5:55–61.CrossRefGoogle ScholarPubMed
Boissinot, M, Lippert, E, Girodon, F, et al. Latent myeloproliferative disorder revealed by the JAK2-V617F mutation and endogenous megakaryocytic colonies in patients with splanchnic vein thrombosis. Blood 2006;108:3223–4.CrossRefGoogle ScholarPubMed
Wright, CA, Tefferi, A. A single institutional experience with 43 pregnancies in essential thrombocythemia. Eur J Haematol 2001;66:152–9.CrossRefGoogle ScholarPubMed
Budde, U, Schaefer, G, Mueller, N, et al. Acquired von Willebrand's disease in the myeloproliferative syndrome. Blood 1984;64:981–5.Google ScholarPubMed
Wolanskyj, AP, Schwager, SM, McClure, RF, et al. Essential thrombocythemia beyond the first decade: life expectancy, long-term complication rates, and prognostic factors. Mayo Clin Proc 2006;81:159–66.CrossRefGoogle ScholarPubMed
Passamonti, F, Rumi, E, Pungolino, E, et al. Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med 2004;117:755–61.CrossRefGoogle ScholarPubMed
Gangat, N, Wolanskyj, AP, McClure, RF, et al. Risk stratification for survival and leukemic transformation in essential thrombocythemia: a single institutional study of 605 patients. Leukemia 2007;21:270–6.CrossRefGoogle ScholarPubMed
Gangat, N, Strand, J, Li, CY, et al. Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br J Haematol 2007;138:354–8.CrossRefGoogle ScholarPubMed
Berk, PD, Wasserman, LR, Fruchtman, SM, et al. Treatment of polycythemia vera: a summary of clinical trials conducted by the polycythemia vera study group. In: Wasserman, LR, Berk, PD, Berlin, NI, eds. Polycythemia Vera and the Myeloproliferative Disorders. Philadelphia, W.B. Saunders. 1995; 166–94.Google Scholar
Tefferi, A. Polycythemia vera: a comprehensive review and clinical recommendations. Mayo Clin Proc 2003;78:174–94.CrossRefGoogle ScholarPubMed
Cortelazzo, S, Viero, P, Finazzi, G, et al. Incidence and risk factors for thrombotic complications in a historical cohort of 100 patients with essential thrombocythemia. J Clin Oncol 1990;8:556–62.CrossRefGoogle Scholar
Carobbio, A, Finazzi, G, Guerini, V, et al. Leukocytosis is a risk factor for thrombosis in essential thrombocythemia: interaction with treatment, standard risk factors, and Jak2 mutation status. Blood 2007;109:2310–13.CrossRefGoogle ScholarPubMed
Barbui, T, Barosi, G, Grossi, A, et al. Practice guidelines for the therapy of essential thrombocythemia. A statement from the Italian Society of Hematology, the Italian Society of Experimental Hematology and the Italian Group for Bone Marrow Transplantation. Haematologica 2004;89:215–32.Google Scholar
Elliott, MA, Tefferi, A. Thrombosis and haemorrhage in polycythaemia vera and essential thrombocythaemia. Br J Haematol 2005;128:275–90.CrossRefGoogle ScholarPubMed
Di Nisio, M, Barbui, T, Di Gennaro, L, et al. The haematocrit and platelet target in polycythemia vera. Br J Haematol 2007;136:249–59.CrossRefGoogle ScholarPubMed
Gangat, N, Wolanskyj, A, Schwager, S, et al. Leukocytosis at diagnosis and the risk of subsequent thrombosis in low-risk essential thrombocythemia and polycythemia vera. ASH Annual Meeting Abstracts 2008;112:1751.Google Scholar
Fabris, F, Casonato, A, Grazia del Ben, M, et al. Abnormalities of von Willebrand factor in myeloproliferative disease: a relationship with bleeding diathesis. Br J Haematol 1986;63:75–83.CrossRefGoogle ScholarPubMed
Cervantes, F, Dupriez, B, Pereira, A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009;113:2895–901.CrossRefGoogle Scholar
Tefferi, A, Mesa, RA, Pardanani, A, et al. Red blood cell transfusion need at diagnosis adversely affects survival in primary myelofibrosis-increased serum ferritin or transfusion load does not. Am J Hematol 2009;84:265–7.CrossRefGoogle ScholarPubMed
Campbell, PJ, Scott, LM, Buck, G, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005;366:1945–53.CrossRefGoogle ScholarPubMed
Vannucchi, AM, Antonioli, E, Guglielmelli, P, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 2007;110:840–6.CrossRefGoogle ScholarPubMed
Tefferi, A, Lasho, TL, Schwager, SM, et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera. Cancer 2006;106:631–5.CrossRefGoogle ScholarPubMed
Vannucchi, AM, Antonioli, E, Guglielmelli, P, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia 2007;21:1952–9.CrossRefGoogle ScholarPubMed
Tefferi, A, Strand, JJ, Lasho, TL, et al. Bone marrow JAK2V617F allele burden and clinical correlates in polycythemia vera. Leukemia 2007;21:2074–5.CrossRefGoogle ScholarPubMed
Tefferi, A, Lasho, TL, Schwager, SM, et al. The JAK2 tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Br J Haematol 2005;131:320–8.CrossRefGoogle ScholarPubMed
Barosi, G, Bergamaschi, G, Marchetti, M, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood 2007;110:4030–6.CrossRefGoogle ScholarPubMed
Tefferi, A, Lasho, TL, Huang, J, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia 2008;22:756–61.CrossRefGoogle ScholarPubMed
Landolfi, R, Marchioli, R, Kutti, J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 2004;350:114–24.CrossRefGoogle ScholarPubMed
Cortelazzo, S, Finazzi, G, Ruggeri, M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995;332:1132–6.CrossRefGoogle Scholar
Najean, Y, Rain, JD. Treatment of polycythemia vera – the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood 1997;90:3370–7.Google ScholarPubMed
,Anonymous. Treatment of polycythaemia vera by radiophosphorus or busulphan: a randomized trial. “Leukemia and Hematosarcoma” Cooperative Group, European Organization for Research on Treatment of Cancer (E.O.R.T.C.). Br J Cancer 1981;44:75–80.
Harrison, CN, Campbell, PJ, Buck, G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005;353:33–45.CrossRefGoogle ScholarPubMed
Chievitz, E, Thiede, T. Complications and causes of death in polycythemia vera. Acta Med Scand 1962;172:513–23.CrossRefGoogle Scholar
Berk, PD, Goldberg, JD, Donovan, PB, et al. Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. Semin Hematol 1986;23:132–43.Google ScholarPubMed
Silver, RT. Interferon alfa: effects of long-term treatment for polycythemia vera. Semin Hematol 1997;34:40–50.Google ScholarPubMed
Elliott, MA, Tefferi, A. Interferon-alpha therapy in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost 1997;23:463–72.CrossRefGoogle ScholarPubMed
Silver, RT. Long-term effects of the treatment of polycythemia vera with recombinant interferon-alpha. Cancer 2006;107:451–8.CrossRefGoogle ScholarPubMed
Samuelsson, J, Hasselbalch, H, Bruserud, O, et al. A phase II trial of pegylated interferon alpha-2b therapy for polycythemia vera and essential thrombocythemia: feasibility, clinical and biologic effects, and impact on quality of life. Cancer 2006;106:2397–405.CrossRefGoogle ScholarPubMed
Kiladjian, JJ, Cassinat, B, Turlure, P, et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood 2006;108:2037–40.CrossRefGoogle ScholarPubMed
Jones, AV, Silver, RT, Waghorn, K, et al. Minimal molecular response in polycythemia vera patients treated with imatinib or interferon alpha. Blood 2006;107:3339–41.CrossRefGoogle ScholarPubMed
Passamonti, F, Malabarba, L, Orlandi, E, et al. Pipobroman is safe and effective treatment for patients with essential thrombocythaemia at high risk of thrombosis. Br J Haematol 2002;116:855–61.CrossRefGoogle ScholarPubMed
Sanctis, V, Mazzucconi, MG, Spadea, A, et al. Long-term evaluation of 164 patients with essential thrombocythaemia treated with pipobroman: occurrence of leukaemic evolution. Br J Haematol 2003;123:517–21.CrossRefGoogle ScholarPubMed
Passamonti, F, Brusamolino, E, Lazzarino, M, et al. Efficacy of pipobroman in the treatment of polycythemia vera: long-term results in 163 patients. Haematologica 2000;85:1011–18.Google ScholarPubMed
Tefferi, A, Fonseca, R. Selective serotonin reuptake inhibitors are effective in the treatment of polycythemia vera-associated pruritus. Blood 2002;99:2627.CrossRefGoogle ScholarPubMed
Finazzi, G, Barbui, T. How I treat patients with polycythemia vera. Blood 2007;109:5104–111.CrossRefGoogle Scholar
Barbui, T, Finazzi, G. When and how to treat essential thrombocythemia. N Engl J Med 2005;353:85–6.CrossRefGoogle ScholarPubMed
Genderen, PJ, Mulder, PG, Waleboer, M, et al. Prevention and treatment of thrombotic complications in essential thrombocythaemia: efficacy and safety of aspirin. Br J Haematol 1997;97:179–84.CrossRefGoogle ScholarPubMed
Finazzi, G, Ruggeri, M, Rodeghiero, F, et al. Second malignancies in patients with essential thrombocythaemia treated with busulphan and hydroxyurea: long-term follow-up of a randomized clinical trial. Br J Haematol 2000;110:577–83.CrossRefGoogle ScholarPubMed
Finazzi, G, Ruggeri, M, Rodeghiero, F, et al. Efficacy and safety of long-term use of hydroxyurea in young patients with essential thrombocythemia and a high risk of thrombosis. Blood 2003;101:3749.CrossRefGoogle Scholar
Finazzi, G, Caruso, V, Marchioli, R, et al. Acute leukemia in polycythemia vera. An analysis of 1,638 patients enrolled in a prospective observational study. Blood 2005;105:2664–70.CrossRefGoogle Scholar
Kerbauy, DM, Gooley, TA, Sale, GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant 2007;13:355–65.CrossRefGoogle ScholarPubMed
Siragusa, S, Passamonti, F, Cervantes, F, et al. Survival in young patients with intermediate-/high-risk myelofibrosis: estimates derived from databases for non transplant patients. Am J Hematol 2009;84:140–3.CrossRefGoogle Scholar
Bacigalupo, A, Soraru, M, Dominietto, A, et al. Allogenic hematopoietic stem-cell transplant for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant 2010;45:419–21.CrossRefGoogle Scholar
Kroger, N, Badbaran, A, Holler, E, et al. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood 2007;109:1316–21.CrossRefGoogle ScholarPubMed
Hussein, K, Dyke, DL, Tefferi, A. Conventional cytogenetics in myelofibrosis: literature review and discussion. Eur J Haematol 2009;82:329–38.CrossRefGoogle ScholarPubMed
Silverstein, MN. Agnogenic Myeloid Metaplasia. Acton Mass, Publishing Science Group. 1975; 126.Google Scholar
Rodriguez, JN, Martino, ML, Dieguez, JC, et al. rHuEpo for the treatment of anemia in myelofibrosis with myeloid metaplasia. Experience in 6 patients and meta-analytical approach. Haematologica 1998;83:616–21.Google ScholarPubMed
Cervantes, F, Alvarez-Larran, A, Hernandez-Boluda, JC, et al. Darbepoetin-alpha for the anaemia of myelofibrosis with myeloid metaplasia. Br J Haematol 2006;134:184–6.CrossRefGoogle ScholarPubMed
Cervantes, F, Alvarez-Larran, A, Hernandez-Boluda, JC, et al. Erythropoietin treatment of the anaemia of myelofibrosis with myeloid metaplasia: results in 20 patients and review of the literature. Br J Haematol 2004;127:399–403.CrossRefGoogle ScholarPubMed
Cervantes, F, Hernandez-Boluda, JC, Alvarez, A, et al. Danazol treatment of idiopathic myelofibrosis with severe anemia. Haematologica 2000;85:595–9.Google ScholarPubMed
Cervantes, F, Alvarez-Larran, A, Domingo, A, et al. Efficacy and tolerability of danazol as a treatment for the anaemia of myelofibrosis with myeloid metaplasia: long-term results in 30 patients. Br J Haematol 2005;129:771–5.CrossRefGoogle ScholarPubMed
Tefferi, A, Elliot, MA. Serious myeloproliferative reactions associated with the use of thalidomide in myelofibrosis with myeloid metaplasia. Blood 2000;96:4007.Google ScholarPubMed
Elliott, MA, Mesa, RA, Li, CY, et al. Thalidomide treatment in myelofibrosis with myeloid metaplasia. Br J Haematol 2002;117:288–96.CrossRefGoogle ScholarPubMed
Marchetti, M, Barosi, G, Balestri, F, et al. Low-dose thalidomide ameliorates cytopenias and splenomegaly in myelofibrosis with myeloid metaplasia: a phase II trial. J Clin Oncol 2004;22:424–31.CrossRefGoogle ScholarPubMed
Mesa, RA, Elliott, MA, Schroeder, G, et al. Durable responses to thalidomide-based drug therapy for myelofibrosis with myeloid metaplasia. Mayo Clin Proc 2004;79:883–9.CrossRefGoogle ScholarPubMed
Mesa, RA, Steensma, DP, Pardanani, A, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood 2003;101:2534–41.CrossRefGoogle ScholarPubMed
Tefferi, A, Cortes, J, Verstovsek, S, et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood 2006;108:1158–64.CrossRefGoogle ScholarPubMed
Tefferi, A, Lasho, TL, Mesa, RA, et al. Lenalidomide therapy in del(5)(q31)-associated myelofibrosis: cytogenetic and JAK2V617F molecular remissions. Leukemia 2007;21:1827–8.CrossRefGoogle ScholarPubMed
Tefferi, A, Verstovsek, S, Barosi, G, et al. Pomalidomide therapy in anemic patients with myelofibrosis: results from a phase-2 randomized multicenter study. ASH Annual Meeting Abstracts 2008;112:663.Google Scholar
Lofvenberg, E, Wahlin, A. Management of polycythaemia vera, essential thrombocythaemia and myelofibrosis with hydroxyurea. Eur J Haematol 1988;41:375–81.CrossRefGoogle ScholarPubMed
Naqvi, T, Baumann, MA. Myelofibrosis: response to busulfan after hydroxyurea failure. Int J Clin Pract 2002;56:312–13.Google ScholarPubMed
Petti, MC, Latagliata, R, Spadea, T, et al. Melphalan treatment in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 2002;116:576–81.CrossRefGoogle ScholarPubMed
Tefferi, A, Silverstein, MN, Li, CY. 2-Chlorodeoxyadenosine treatment after splenectomy in patients who have myelofibrosis with myeloid metaplasia. Br J Haematol 1997;99:352–7.CrossRefGoogle ScholarPubMed
Tefferi, A, Elliot, MA, Yoon, SY, et al. Clinical and bone marrow effects of interferon alfa therapy in myelofibrosis with myeloid metaplasia. Blood 2001;97:1896.CrossRefGoogle ScholarPubMed
Tefferi, A, Mesa, RA, Nagorney, DM, et al. Splenectomy in myelofibrosis with myeloid metaplasia: a single-institution experience with 223 patients. Blood 2000;95:2226–33.Google ScholarPubMed
Koch, CA, Li, CY, Mesa, RA, et al. Nonhepatosplenic extramedullary hematopoiesis: associated diseases, pathology, clinical course, and treatment. Mayo Clin Proc 2003;78:1223–33.CrossRefGoogle ScholarPubMed
Elliott, MA, Chen, MG, Silverstein, MN, et al. Splenic irradiation for symptomatic splenomegaly associated with myelofibrosis with myeloid metaplasia. Br J Haematol 1998;103:505–11.CrossRefGoogle ScholarPubMed
Passamonti, F, Randi, ML, Rumi, E, et al. Increased risk of pregnancy complications in patients with essential thrombocythemia carrying the JAK2 (617V>F) mutation. Blood 2007;110:485–9.CrossRefGoogle ScholarPubMed
Griesshammer, M, Struve, S, Harrison, CM. Essential thrombocythemia/polycythemia vera and pregnancy: the need for an observational study in Europe. Semin Thromb Hemost 2006;32:422–9.CrossRefGoogle Scholar
Elliott, MA, Tefferi, A. Thrombocythaemia and pregnancy. Best Pract Res Clin Haematol 2003;16:227–42.CrossRefGoogle Scholar
Gangat, N, Wolanskyj, AP, Schwager, S, et al. Predictors of pregnancy outcome in essential thrombocythemia: a single institution study of 63 pregnancies. Eur J Haematol 2009;82:350–3.CrossRefGoogle ScholarPubMed
James, C, Ugo, V, Couedic, JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:1144–8.CrossRefGoogle ScholarPubMed
Pikman, Y, Lee, BH, Mercher, T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3:e270.CrossRefGoogle ScholarPubMed
Lasho, TL, Tefferi, A, Hood, JD, et al. TG101348, a JAK2-selective antagonist, inhibits primary hematopoietic cells derived from myeloproliferative disorder patients with JAK2V617F, MPLW515K or JAK2 exon 12 mutations as well as mutation negative patients. Leukemia 2008;22:1790–2.CrossRefGoogle ScholarPubMed
Wernig, G, Kharas, MG, Okabe, R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 2008;13:311–20.CrossRefGoogle ScholarPubMed
Pardanani, AD, Gotlib, J, Jamieson, C, et al. A phase I study of TG101348, an orally bioavailable JAK2-selective inhibitor, in patients with myelofibrosis. ASH Annual Meeting Abstracts 2008;112:97.Google Scholar
Verstovsek, S, Kantarjian, HM, Pardanani, AD, et al. The JAK inhibitor, INCB018424, demonstrates durable and marked clinical responses in primary myelofibrosis (PMF) and post-polycythemia/essential thrombocythemia myelofibrosis (post PV/ETMF). ASH Annual Meeting Abstracts 2008;112:1762.Google Scholar
Pardanani, A, Lasho, T, Smith, G, et al. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia 2009;23:1441–5.CrossRefGoogle ScholarPubMed
Tefferi, A, Huang, J, Schwager, S, et al. Validation and comparison of contemporary prognostic models in primary myelofibrosis: analysis based on 334 patients from a single institution. Cancer 2007;109:2083–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×