Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2013
  • Online publication date: October 2013

Chapter 12 - Tauopathies

Summary

This chapter reviews functional imaging studies, including those with functional magnetic resonance imaging (fMRI), and nuclear tracing studies such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) scanning as they relate to motor signs of Parkinson's disease (PD). fMRI of healthy controls (HC) performing unilateral hand movements typically identifies cerebral correlates in the motor system. To examine the functional changes occurring with learning of automatic finger movements, T. Wu and M. Hallett performed fMRI on a group of individuals with moderate or advanced PD before and after practicing a finger-sequence. To study cerebral correlates of increasing demand by dual-task performance, they also introduced two secondary distractor tests in addition to the sequential finger movements during the same experimental session. A whole brain analysis demonstrated a significant increase of the blood oxygen level dependent (BOLD) signal in the posterior mid-mesencephalon in PD with freezing.

References

1. DicksonDW, KouriN, MurrayME, JosephsKA. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci. 2011;45(3):384–9.
2. JosephsKA, HodgesJR, SnowdenJS, et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011;122(2):137–53.
3. JosephsKA. Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol. 2008;64(1):4–14.
4. FormanMS, FarmerJ, JohnsonJK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59(6):952–62.
5. HodgesJR, DaviesRR, XuerebJH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004;56(3):399–406.
6. JosephsKA, PetersenRC, KnopmanDS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology. 2006;66(1):41–8.
7. KerteszA, McMonagleP, BlairM, DavidsonW, MunozDG. The evolution and pathology of frontotemporal dementia. Brain. 2005;128(Pt 9):1996–2005.
8. JosephsKA, DuffyJR, StrandEA, et al. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain 2012;135(Pt 5):1522–36.
9. van SwietenJ, SpillantiniMG. Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathol. 2007;17(1):63–73.
10. WszolekZK, PfeifferRF, BhattMH, et al. Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration. Ann Neurol. 1992;32(3):312–20.
11. WhitwellJL, JosephsKA. Neuroimaging in frontotemporal lobar degeneration – predicting molecular pathology. Nat Rev. 2012;8(3):131–42.
12. LongoniG, AgostaF, KosticVS, et al. MRI measurements of brainstem structures in patients with Richardson’s syndrome, progressive supranuclear palsy-parkinsonism, and Parkinson’s disease. Mov Disord. 2011;26(2):247–55.
13. CosottiniM, CeravoloR, FaggioniL, et al. Assessment of midbrain atrophy in patients with progressive supranuclear palsy with routine magnetic resonance imaging. Acta Neurol Scand. 2007;116(1):37–42.
14. WhitwellJL, XuJ, MandrekarJ, et al. Imaging measures predict progression in progressive supranuclear palsy. Mov Disord. 2012;27(14):1801–4.
15. PaviourDC, PriceSL, StevensJM, LeesAJ, FoxNC. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology 2005;64(4):675–9.
16. QuattroneA, NicolettiG, MessinaD, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008;246(1):214–21.
17. WhitwellJL, AvulaR, MasterA, et al. Disrupted thalamocortical connectivity in PSP: a resting state fMRI, DTI, and VBM study. Parkinsonism Relat Disord. 2011;17(8):599–605.
18. JosephsKA, WhitwellJL, EggersSD, SenjemML, JackCR, Jr. Gray matter correlates of behavioral severity in progressive supranuclear palsy. Mov Disord. 2011;26(3):493–8.
19. LooiJC, MacfarlaneMD, WalterfangM, et al. Morphometric analysis of subcortical structures in progressive supranuclear palsy: In vivo evidence of neostriatal and mesencephalic atrophy. Psychiatry Res. 2011;194(2):163–75.
20. PadovaniA, BorroniB, BrambatiSM, et al. Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2006;77(4):457–63.
21. WhitwellJL, MasterAV, AvulaR, et al. Clinical correlates of white matter tract degeneration in PSP. Arch Neurol 2011;68(6):753–60.
22. KvickstromP, ErikssonB, van WestenD, et al. Selective frontal neurodegeneration of the inferior fronto-occipital fasciculus in progressive supranuclear palsy (PSP) demonstrated by diffusion tensor tractography. BMC Neurol. 2011;11:13.
23. ClarkeCE, LowryM.Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes. Eur J Neurol. 2001;8(6):573–7.
24. BrooksDJ, IbanezV, SawleGV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990;28(4):547–55.
25. SoliveriP, MonzaD, ParidiD, et al. Cognitive and magnetic resonance imaging aspects of corticobasal degeneration and progressive supranuclear palsy. Neurology. 1999;53(3):502–7.
26. WhitwellJL, JackCR, Jr., BoeveBF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology. 2010;75(21):1879–87.
27. BorroniB, GaribottoV, AgostiC, et al. White matter changes in corticobasal degeneration syndrome and correlation with limb apraxia. Arch Neurol. 2008 65(6):796–801.
28. BoelmansK, KaufmannJ, BodammerN, et al. Involvement of motor pathways in corticobasal syndrome detected by diffusion tensor tractography. Mov Disord. 2009;24(2):168–75.
29. RizzoG, MartinelliP, MannersD, et al. Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson’s disease. Brain. 2008;131(Pt 10):2690–700.
30. AbeK, TerakawaH, TakanashiM, et al. Proton magnetic resonance spectroscopy of patients with parkinsonism. Brain Res Bull 2000;52(6):589–95.
31. HuWT, RipponGW, BoeveBF, et al. Alzheimer’s disease and corticobasal degeneration presenting as corticobasal syndrome. Mov Disord. 2009;24(9):1375–9.
32. CiliaR, RossiC, FrosiniD, et al. Dopamine transporter SPECT imaging in corticobasal syndrome. PloS One 2011;6(5):e18301.
33. KlaffkeS, KuhnAA, PlotkinM, et al. Dopamine transporters, D2 receptors, and glucose metabolism in corticobasal degeneration. Mov Disord. 2006;21(10):1724–7.
34. JosephsKA, EggersSD, JackCR, Jr., WhitwellJL. Neuroanatomical correlates of the progressive supranuclear palsy corticobasal syndrome hybrid. Eur J Neurol. 2012;19(11):1440–6. doi:10.1111/j.1468–1331.2012.03726.
35. JosephsKA, WhitwellJL, DicksonDW, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging 2008;29(2):280–9.
36. WhitwellJL, JackCR, Jr., ParisiJE, et al. Rates of cerebral atrophy differ in different degenerative pathologies. Brain. 2007;130(Pt 4):1148–58.
37. HassanA, WhitwellJL, BoeveBF, et al. Symmetric corticobasal degeneration (S-CBD). Parkinsonism Relat Disord. 2010;16(3):208–14.
38. WhitwellJL, JackCR, Jr., BoeveBF, et al. Atrophy patterns in IVS10+16, IVS10+3, N279K, S305N, P301L, and V337M MAPT mutations. Neurology. 2009;73(13):1058–65.
39. WhitwellJL, WeigandSD, GunterJL, et al. Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN. Neurology. 2011;77(4):393–8.
40. RohrerJD, RidgwayGR, ModatM, et al. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage. 2010;53(3):1070–6.
41. SpinaS, FarlowMR, UnverzagtFW, et al. The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family. Brain. 2008;131(Pt 1):72–89.
42. MiyoshiM, ShinotohH, WszolekZK, et al. In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: a PET and MRI study. Parkinsonism Relat Disord. 2010;16(6):404–8.
43. ArvanitakisZ, WitteRJ, DicksonDW, et al. Clinical-pathologic study of biomarkers in FTDP-17 (PPND family with N279K tau mutation). Parkinsonism Relat Disord. 2007;13(4):230–9.
44. KantarciK, BoeveBF, WszolekZK, et al. MRS in presymptomatic MAPT mutation carriers: a potential biomarker for tau-mediated pathology. Neurology. 2010;75(9):771–8.
45. ZhouJ, GreiciusMD, GennatasED, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain. 2010;133(Pt 5):1352–67.
46. WhitwellJL, JosephsKA, AvulaR, et al. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology. 2011;77(9):866–74.
47. SeelaarH, PapmaJM, GarrauxG, et al. Brain perfusion patterns in familial frontotemporal lobar degeneration. Neurology. 2011;77(4):384–92.
48. PalPK, WszolekZK, KishoreA, et al. Positron emission tomography in pallido-ponto-nigral degeneration (PPND) family (frontotemporal dementia with parkinsonism linked to chromosome 17 and point mutation in tau gene). Parkinsonism Relat Disord. 2001;7(2):81–8.
49. SperfeldAD, CollatzMB, BaierH, et al. FTDP-17: an early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Ann Neurol. 1999;46(5):708–15.
50. KishoreA, WszolekZK, SnowBJ, et al. Presynaptic nigrostriatal function in genetically tested asymptomatic relatives from the pallido-ponto-nigral degeneration family. Neurology. 1996;47(6):1588–90.
51. RankinKP, MayoMC, SeeleyWW, et al. Behavioral variant frontotemporal dementia with corticobasal degeneration pathology: phenotypic comparison to bvFTD with Pick’s disease. J Mol Neurosci. 2011;45(3):594–608.
52. WhitwellJL, JackCR, Jr., ParisiJE, et al. Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J Mol Neurosci. 2011;45(3):372–8.
53. RohrerJD, LashleyT, SchottJM, et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain. 2011;134(Pt 9):2565–81.
54. MukherjeeO, WangJ, GitchoM, et al. Molecular characterization of novel progranulin (GRN) mutations in frontotemporal dementia. Hum Mutat. 2008;29(4):512–21.
55. JosephsKA, KatsuseO, Beccano-KellyDA, et al. Atypical progressive supranuclear palsy with corticospinal tract degeneration. J Neuropathol Exp Neurol. 2006;65(4):396–405.
56. BigioEH, LiptonAM, YenSH, et al. Frontal lobe dementia with novel tauopathy: sporadic multiple system tauopathy with dementia. J Neuropathol Exp Neurol. 2001;60(4):328–41.
57. WalterfangM, FaheyM, DesmondP, et al. White and gray matter alterations in adults with Niemann-Pick disease type C: a cross-sectional study. Neurology. 2010;75(1):49–56.
58. WalterfangM, MacfarlaneMD, LooiJC, et al. Pontine-to-midbrain ratio indexes ocular-motor function and illness stage in adult Niemann-Pick disease type C. Eur J Neurol. 2012;19(3):462–7.
59. EspayAJ, HendersonKK. Postencephalitic parkinsonism and basal ganglia necrosis due to Epstein-Barr virus infection. Neurology. 2011;76(17):1529–30.
60. RutherfordNJ, ZhangYJ, BakerM, et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 2008;4(9):e1000193.
61. JellingerKA, BancherC.Senile dementia with tangles (tangle predominant form of senile dementia). Brain Pathol. 1998;8(2):367–76.