Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: February 2019

7 - Magnetic Nanoparticles for Magnetic Resonance Imaging Contrast Agents

Related content

Powered by UNSILO
[1]Lu, A-H., Salabas, E. L., and Schueth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 46:8 (2007), 1222–44.
[2]Laurent, S., Forge, D., and Port, M., et al., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 108:6 (2008), 2064–110.
[3]Fortin, J-P., Wilhelm, C., Servais, J., Menager, C., Bacri, J-C., and Gazeau, F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc., 129:9 (2007), 2628–35.
[4]Cheng, K., Peng, S., Xu, C., and Sun, S. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc., 131:30 (2009), 10637–44.
[5]Lee, H., Yoon, T-J., Figueiredo, J-L., Swirski, F. K., and Weissleder, R. Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. USA., 106:30 (2009), 12459–64.
[6]Lee, I. S., Lee, N., Park, J., et al., Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc., 128:33 (2006), 10658–9.
[7]Rosi, N. L. and Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105:4 (2005), 1547–62.
[8]Willmann, J. K., Van Bruggen, N., Dinkelborg, L. M., and Gambhir, S. S. Molecular imaging in drug development. Nat. Rev. Drug Discov., 7:7 (2008), 591607.
[9]Harisinghani, M. G., Barentsz, J., Hahn, P. F., et al., Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med., 348:25 (2003), 2491–9.
[10]Lee, N. and Hyeon, T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev., 41:7 (2012), 2575–89.
[11]Hao, R., Xing, R., Xu, Z., Hou, Y., Gao, S., and Sun, S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater., 22:25 (2010), 2729–42.
[12]Xie, J., Liu, G., Eden, H. S., Ai, H., and Chen, X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res., 44:10 (2011), 883–92.
[13]Aime, S., Castelli, D. D., Crich, S. G., Gianolio, E., and Terreno, E. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc. Chem. Res., 42:7 (2009), 822–31.
[14]Sieber, M. A., Steger-Hartmann, T., Lengsfeld, P., and Pietsch, H. Gadolinium-based contrast agents and nsf: evidence from animal experience. J. Magn. Reson. Imaging, 30:6 (2009), 1268–76.
[15]Kim, D., Lee, N., Park, M., Kim, B. H., An, K., and Hyeon, T. Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc., 131:2 (2009), 454–5.
[16]Morales, M. P., Veintemillas-Verdaguer, S., Montero, M. I., et al., Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem. Mater., 11:11 (1999), 3058–64.
[17]Kim, B. H., Lee, N., Kim, H., et al., Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc., 133:32 (2011), 12624–31.
[18]Park, J., An, K., Hwang, Y. S., et al., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater., 3:12 (2004), 891–5.
[19]Brooks, R. A., Moiny, F., and Gillis, P. On T2-shortening by weakly magnetized particles: The chemical exchange model. Magn. Reson. Med., 45:6 (2001), 1014–20.
[20]Gillis, P., Moiny, F., and Brooks, R. A. On T2-shortening by strongly magnetized spheres: A partial refocusing model. Magn. Reson. Med., 47:2 (2002), 257–63.
[21]Jun, Y. W., Huh, Y-M., Choi, J. S., et al., Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc., 127:16 (2005), 5732–3.
[22]Lee, N., Kim, H., Choi, S. H., et al., Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc. Natl. Acad. Sci. USA., 108:7 (2011), 2662–7.
[23]Li, W., Tutton, S., Vu, A. T., et al., First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J. Magn. Reson. Imaging, 21:1 (2005), 4652.
[24]Lee, J-H., Huh, Y-M., Jun, Y-W., et al., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med., 13:1 (2007), 95–9.
[25]Jang, J-T., Nah, H., Lee, J-H., Moon, S. H., Kim, M. G., and Cheon, J. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed., 48:7 (2009), 1234–8.
[26]Chaubey, G. S., Barcena, C., Poudyal, N., et al., Synthesis and stabilization of FeCo nanoparticles. J. Am. Chem. Soc., 129:23 (2007), 7214–5.
[27]Seo, W. S., Lee, J. H., Sun, X., et al., FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater., 5:12 (2006), 971–6.
[28]Lee, J. H., Sherlock, S. P., Terashima, M., et al., High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. Magn. Reson. Med., 62:6 (2009), 1497–509.
[29]Cheong, S., Ferguson, P., Feindel, K. W., et al., Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angew. Chem. Int. Ed., 50:18 (2011), 4206–9.
[30]Hyeon, T., Lee, S. S., Park, J., Chung, Y., and Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc., 123:51 (2001), 12798–801.
[31]Peng, S., Wang, C., Xie, J., and Sun, S. Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc., 128:33 (2006), 10676–7.
[32]Lee, H., Yoon, T-J., and Weissleder, R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew. Chem. Int. Ed., 48:31 (2009), 5657–60.
[33]Yoon, T-J., Lee, H., Shao, H., and Weissleder, R. Highly magnetic core-shell nanoparticles with a unique magnetization mechanism. Angew. Chem. Int. Ed., 50:20 (2011), 4663–6.
[34]Yoon, T-J., Lee, H., Shao, H., Hilderbrand, S. A., and Weissleder, R. Multicore assemblies potentiate magnetic properties of biomagnetic nanoparticles. Adv. Mater., 23:41 (2011), 47934797.
[35]Perez, J. M., Josephson, L., ‘Loughlin, T. O’, Högemann, D., and Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol., 20:8 (2002), 816–20.
[36]Brooks, R. A. T2-shortening by strongly magnetized spheres: A chemical exchange model. Magn. Reson. Med. 47:2 (2002), 388–91.
[37]Tromsdorf, U. I., Bigall, N. C., Kaul, M. G., et al., Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett., 7:8 (2007), 2422–7.
[38]Bowen, C. V., Zhang, X., Saab, G., Gareau, P. J., and Rutt, B. K. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn. Reson. Med., 48:1 (2002), 5261.
[39]Lee, J. E., Lee, N., Kim, T., Kim, J., and Hyeon, T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res., 44:10 (2011), 893902.
[40]Lee, J-H., Jun, Y-W., Yeon, S-I., Shin, J-S., and Cheon, J. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int. Ed., 45:48 (2006), 8160–2.
[41]Lee, J. E., Lee, N., Kim, H., et al., Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc., 132:2 (2010), 552–7.
[42]Tong, S., Hou, S., Zheng, Z., Zhou, J., and Bao, G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett., 10:11 (2010), 4607–13.
[43]Granot, D. and Shapiro, E. M. Release activation of iron oxide nanoparticles: (REACTION) a novel environmentally sensitive MRI paradigm. Magn. Reson. Med., 65:5 (2011), 1253–9.
[44]Kaittanis, C., Santra, S., Santiesteban, O. J., Henderson, T. J., and Perez, J. M. The assembly state between magnetic nanosensors and their targets orchestrates their magnetic relaxation response. J. Am. Chem. Soc., 133:10 (2011), 3668–76.
[45]Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298:5599 (2002), 1759–62.
[46]Ling, D., Park, W., Park, Y. I., et al., Multiple-interaction ligands inspired by mussel adhesive protein: synthesis of highly stable and biocompatible nanoparticles. Angew. Chem. Int. Ed., 50:48 (2011), 11360–5.
[47]Perazella, M. A. Current status of gadolinium toxicity in patients with kidney disease. Clin. J. Am. Soc. Nephrol., 4:2 (2009), 461–9.
[48]Choi, H. S., Liu, W., Misra, P., et al., Renal clearance of quantum dots. Nat. Biotechnol., 25:10 (2007), 1165–70.
[49]Arbab, A. S., Wilson, L. B., Ashari, P., Jordan, E. K., Lewis, B. K., and Frank, J. A. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: Implications for cellular magnetic resonance imaging. NMR Biomed., 18:6 (2005), 383–9.
[50]Gao, J., Liang, G., Zhang, B., Kuang, Y., Zhang, X., and Xu, B. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc., 129:5 (2007), 1428–33.
[51]Bourrinet, P., Bengele, H. H., Bonnemain, B., et al., Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol., 41:3 (2006), 313–24.