Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: February 2011

14 - Uplink control signaling

Summary

The LTE system supports fast dynamic scheduling on a per subframe basis to exploit gains from channel-sensitive scheduling. Moreover, advanced techniques such as link adaptation, hybrid ARQ and MIMO are employed to meet the performance goals. A set of physical control channels are defined in both the uplink and the downlink to enable the operation of these techniques. In order to support channel sensitive scheduling and link adaptation in the downlink, the UEs measure and report their channel quality information back to the eNB. Similarly, for downlink hybrid ARQ operation, the hybrid ARQ ACK/NACK feedback from the UE is provided in the uplink.

Two types of feedback information are required for MIMO operation, the first is MIMO rank information and the second is preferred precoding information. It is well known that even when a system supports N × N MIMO, rank-N or N MIMO layers transmission is not always beneficial. The MIMO channel experienced by a UE generally limits the maximum rank that can be used for transmission. In general, for weak users in the system, a lower rank transmission is preferred over a higher rank transmission. This is because at low SINR, the capacity is power limited and not degree-of-freedom limited and therefore multiple layers transmission is not helpful. Moreover, when the antennas are correlated, the channel matrix is rank deficient leading to a single layer or rank-1 transmission. Therefore, the system should support a variable number of MIMO layers transmission to maximize gains from MIMO.

Related content

Powered by UNSILO