Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T03:01:16.343Z Has data issue: false hasContentIssue false

2 - Network architecture and protocols

Published online by Cambridge University Press:  28 February 2011

Farooq Khan
Affiliation:
Samsung Telecommunications America, Richardson, Texas
Get access

Summary

The LTE network architecture is designed with the goal of supporting packet-switched traffic with seamless mobility, quality of service (QoS) and minimal latency. A packet-switched approach allows for the supporting of all services including voice through packet connections. The result in a highly simplified flatter architecture with only two types of node namely evolved Node-B (eNB) and mobility management entity/gateway (MME/GW). This is in contrast to many more network nodes in the current hierarchical network architecture of the 3G system. One major change is that the radio network controller (RNC) is eliminated from the data path and its functions are now incorporated in eNB. Some of the benefits of a single node in the access network are reduced latency and the distribution of the RNC processing load into multiple eNBs. The elimination of the RNC in the access network was possible partly because the LTE system does not support macro-diversity or soft-handoff.

In this chapter, we discuss network architecture designs for both unicast and broadcast traffic, QoS architecture and mobility management in the access network. We also briefly discuss layer 2 structure and different logical, transport and physical channels along with their mapping.

Network architecture

All the network interfaces are based on IP protocols. The eNBs are interconnected by means of an X2 interface and to the MME/GW entity by means of an S1 interface as shown in Figure 2.1. The S1 interface supports a many-to-many relationship between MME/GW and eNBs.

Type
Chapter
Information
LTE for 4G Mobile Broadband
Air Interface Technologies and Performance
, pp. 5 - 19
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×