Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T09:57:52.259Z Has data issue: false hasContentIssue false

16 - Inter-cell interference control

Published online by Cambridge University Press:  28 February 2011

Farooq Khan
Affiliation:
Samsung Telecommunications America, Richardson, Texas
Get access

Summary

An important requirement for the LTE system is improved cell-edge performance and throughput. This is to provide some level of service consistency in terms of geographical coverage as well as in terms of available data throughput within the coverage area. In a cellular system, however, the SINR disparity between cell-center and cell-edge users can be of the order of 20 dB. The disparity can be even higher in a coverage-limited cellular system. This leads to vastly lower data throughputs for the cell-edge users relative to cell-center users creating a large QoS discrepancy.

The cell-edge performance may be either noise-limited or interference-limited. In a noise-limited situation that typically occurs in large cells in rural areas, the performance can generally be improved by providing a power gain. The power gain can be achieved by using high-gain directional transmit antennas, increased transmit power, transmit beam-forming and receive beam-forming or receive diversity, etc. The total transmit power is generally dictated by regulatory requirements and hence limits the coverage gains possible due to increased transmit power.

The situation is different in small cells interference-limited cases, where, in addition to noise, inter-cell interference also contributes to degraded cell-edge SINR. In this case, providing a transmit power gain may not help because as the signal power goes up, the interference power also increases. This is assuming that with a transmit power gain all cells in the system will operate at a higher transmit power.

Type
Chapter
Information
LTE for 4G Mobile Broadband
Air Interface Technologies and Performance
, pp. 409 - 425
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×