Skip to main content Accessibility help
×
Home
Long-Range Dependence and Self-Similarity
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 13
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This modern and comprehensive guide to long-range dependence and self-similarity starts with rigorous coverage of the basics, then moves on to cover more specialized, up-to-date topics central to current research. These topics concern, but are not limited to, physical models that give rise to long-range dependence and self-similarity; central and non-central limit theorems for long-range dependent series, and the limiting Hermite processes; fractional Brownian motion and its stochastic calculus; several celebrated decompositions of fractional Brownian motion; multidimensional models for long-range dependence and self-similarity; and maximum likelihood estimation methods for long-range dependent time series. Designed for graduate students and researchers, each chapter of the book is supplemented by numerous exercises, some designed to test the reader's understanding, while others invite the reader to consider some of the open research problems in the field today.

Reviews

'This is a marvelous book that brings together both classical background material and the latest research results on long-range dependence. The book is written so that it can be used as a main source by a graduate student, including all the essential proofs. I highly recommend this book.'

Mark M. Meerschaert - Michigan State University

'This volume lays a rock-solid foundation for the subjects of long-range dependence and self-similarity. It also provides an up-to-date survey of more specialized topics at the center of this research area. The text is very readable and suitable for graduate courses, as it is self-contained and does not require more than an introductory course on stochastic calculus and time series. It is also written with the necessary level of mathematical detail to make it suitable for self-study. I particularly enjoyed the very nice introduction to fractional Brownian motion, its different representations, its stochastic calculus, and the connection to fractional calculus. I strongly recommend this book, which is a welcome addition to the literature and useful for a large audience.'

Eric Moulines - Centre de Mathématiques Appliquées, École Polytechnique, Paris

'This book provides a modern, rigorous introduction to long-range dependence and self-similarity. The authors write with wonderful clarity, covering fundamental as well as selected specialized topics. The book can be highly recommended to anybody interested in mathematical foundations of long memory and self-similar processes.'

Jan Beran - University of Konstanz, Germany

'This is the most readable and lucid account I have seen on long-range dependence and self-similarity. Pipiras and Taqqu present a time-series-centric view of this subject that should appeal to both practitioners and researchers in stochastic processes and statistics. I was especially enamored by the insightful comments on the history of the subject that conclude each chapter. This alone is worth the price of the book!'

Richard Davis - Columbia University, New York

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
[1] J., Aaronson and M., Denker. Characteristic functions of random variables attracted to 1-stable laws. The Annals of Probability, 26(1):399–415, 1998. (Cited on pages 583 and 586.)
[2] K. M., Abadir, W., Distaso and L., Giraitis. Nonstationarity-extended local Whittle estimation. Journal of Econometrics, 141(2):1353–1384, 2007. (Cited on page 572.)
[3] K. M., Abadir, W., Distaso and L., Giraitis. Two estimators of the long-run variance: beyond short memory. Journal of Econometrics, 150(1):56–70, 2009. (Cited on page 28.)
[4] J., Abate and W., Whitt. The Fourier-series method for inverting transforms of probability distributions. Queueing Systems. Theory and Applications, 10(1-2):5–87, 1992. (Cited on page 271.)
[5] P., Abry and G., Didier. Wavelet estimation of operator fractional Brownian motions. To appear in Bernoulli. Preprint, 2015. (Cited on page 536.)
[6] P., Abry and V., Pipiras. Wavelet-based synthesis of the Rosenblatt process. Signal Processing, 86(9):2326–2339, 2006. (Cited on page 465.)
[7] P., Abry and F., Sellan. The wavelet-based synthesis for the fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation. Applied and Computational Harmonic Analysis, 3(4):377–383, 1996. (Cited on page 465.)
[8] P., Abry and D., Veitch. Wavelet analysis of long range dependent traffic. IEEE Transactions on Information Theory, 44(1):2–15, 1998. (Cited on page 111.)
[9] P., Abry, D., Veitch and P., Flandrin. Long-range dependence: revisiting aggregation with wavelets. Journal of Time Series Analysis, 19(3):253–266, 1998. (Cited on page 112.)
[10] P., Abry, P., Flandrin, M. S., Taqqu, and D., Veitch. Self-similarity and long-range dependence through the wavelet lens. In P., Doukhan, G., Oppenheim, and M. S., Taqqu, editors, Theory and Applications of Long-Range Dependence, pages 527–556. Birkhäuser, 2003. (Cited on page 112.)
[11] P., Abry, P., Chainais, L., Coutin and V., Pipiras. Multifractal random walks as fractional Wiener integrals. IEEE Transactions on Information Theory, 55(8):3825–3846, 2009. (Cited on page 612.)
[12] P., Abry, P., Borgnat, F., Ricciato, A., Scherrer and D., Veitch. Revisiting an old friend: on the observability of the relation between long range dependence and heavy tail. Telecommunication Systems, 43(3-4):147–165, 2010. (Cited on page 224.)
[13] S., Achard and I., Gannaz. Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, 2015. (Cited on page 574.)
[14] S., Achard, D. S., Bassett, A. Meyer-Lindenberg, and E. Bullmore. Fractal connectivity of long-memory networks. Physical Review E, 77:036104, Mar 2008. (Cited on page 537.)
[15] C., Agiakloglou, P., Newbold and M., Wohar. Bias in an estimator of the fractional difference parameter. Journal of Time Series Analysis, 14(3):235–246, 1993. (Cited on pages 111 and 573.)
[16] N. U., Ahmed and C., D. Charalambous. Filtering for linear systems driven by fractional Brownian motion. SIAM Journal on Control and Optimization, 41(1):313–330, 2002. (Cited on page 395.)
[17] H., Akaike. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Tsahkadsor, 1971), pages 267–281. Budapest: Akadémiai Kiadó, 1973. (Cited on page 552.)
[18] J. M. P., Albin. A note on Rosenblatt distributions. Statistics & Probability Letters, 40(1):83–91, 1998. (Cited on page 281.) 613
[19] D. W., Allan. Statistics of atomic frequency standards. Proceedings of the IEEE, 54(2):221– 230, 1966. (Cited on page 112.)
[20] E., Alòs and D., Nualart. Stochastic integration with respect to the fractional Brownian motion. Stochastics and Stochastics Reports, 75(3):129–152, 2003. (Cited on page 412.)
[21] E., Alòs, O., Mazet, and D., Nualart. Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 12. Stochastic Processes and their Applications, 86(1):121–139, 2000. (Cited on page 435.)
[22] E., Alòs, O., Mazet, and D., Nualart. Stochastic calculus with respect to Gaussian processes. The Annals of Probability, 29(2):766–801, 2001. (Cited on page 435.)
[23] F., Altissimo, B., Mojon and P., Zaffaroni. Can aggregation explain the persistence of inflation? Journal of Monetary Economics, 56(2):231–241, 2009. (Cited on page 224.)
[24] E., Alvarez-Lacalle, B., Dorow, J.-P., Eckmann, and E., Moses. Hierarchical structures induce long-range dynamical correlations in written texts. Proceedings of the National Academy of Sciences, 103(21):7956–7961, 2006. (Cited on page 228.)
[25] P.-O., Amblard and J.-F., Coeurjolly. Identification of the multivariate fractional Brownian motion. Signal Processing, IEEE Transactions on, 59(11):5152–5168, nov. 2011. (Cited on pages 488 and 536.)
[26] P.-O., Amblard, J.-F., Coeurjolly, F., Lavancier, and A., Philippe. Basic properties of the multivariate fractional Brownian motion. Séminaires & Congrès, 28:65–87, 2012. (Cited on pages 534 and 536.)
[27] A., Amirdjanova. Nonlinear filtering with fractional Brownian motion. Applied Mathematics and Optimization, 46(2-3):81–88, 2002. Special issue dedicated to the memory of Jacques-Louis Lions. (Cited on page 436.)
[28] A., Amirdjanova and M., Linn. Stochastic evolution equations for nonlinear filtering of random fields in the presence of fractional Brownian sheet observation noise. Computers & Mathematics with Applications. An International Journal, 55(8):1766–1784, 2008. (Cited on page 436.)
[29] T. G., Andersen and T., Bollerslev. Intraday periodicity and volatility persistence in financial markets. Journal of Empirical Finance, 4(2):115–158, 1997. (Cited on page 611.)
[30] T. G., Andersen, T., Bollerslev, F. X., Diebold, and H., Ebens. The distribution of realized stock return volatility. Journal of Financial Economics, 61(1):43–76, 2001. (Cited on page 611.)
[31] J., Andersson. An improvement of the GPH estimator. Economics Letters, 77(1):137–146, 2002. (Cited on page 111.)
[32] D. W. K., Andrews and P., Guggenberger. A bias-reduced log-periodogram regression estimator for the long-memory parameter. Econometrica, 71(2):675–712, 2003. (Cited on page 111.)
[33] D. W. K., Andrews and O., Lieberman. Valid Edgeworth expansions for the Whittle maximum likelihood estimator for stationary long-memory Gaussian time series. Econometric Theory, 21(4):710–734, 2005. (Cited on page 571.)
[34] D. W. K., Andrews and Y., Sun. Adaptive local polynomial Whittle estimation of long-range dependence. Econometrica, 72(2):569–614, 2004. (Cited on pages 560, 561, 565, 566, and 572.)
[35] G. E., Andrews, R., Askey and R., Roy. Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1999. (Cited on pages 280, 526, and 527.)
[36] V. V., Anh and K. E., Lunney. Parameter estimation of random fields with long-range dependence. Mathematical and Computer Modelling, 21(9):67–77, 1995. (Cited on page 537.)
[37] V. V., Anh, N., Leonenko and A., Olenko. On the rate of convergence to Rosenblatt-type distribution. Journal of Mathematical Analysis and Applications, 425(1):111–132, 2015. (Cited on page 343.)
[38] C. F., Ansley and R., Kohn. A note on reparameterizing a vector autoregressive moving average model to enforce stationarity. Journal of Statistical Computation and Simulation, 24(2):99–106, 1986. (Cited on page 570.)
[39] N., Antunes, V., Pipiras, P., Abry and D., Veitch. Small and large scale behavior of moments of Poisson cluster processes. Preprint, 2016. (Cited on page 224.)
[40] D., Applebaum. Lévy Processes and Stochastic Calculus, 2nd edition volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 2009. (Cited on page 268.)
[41] V. F., Araman and P., W. Glynn. Fractional Brownian motion with H < 12 as a limit of scheduled traffic. Journal of Applied Probability, 49(3):710–718, 2012. (Cited on page 225.)
[42] M. A., Arcones. Limit theorems for non-linear functionals of a stationary Gaussian sequence of vectors. The Annals of Probability, 22:2242–2274, 1994. (Cited on page 344.)
[43] M. A., Arcones. Distributional limit theorems over a stationary Gaussian sequence of random vectors. Stochastic Processes and their Applications, 88(1):135–159, 2000. (Cited on page 344.)
[44] B., Arras. On a class of self-similar processes with stationary increments in higher order Wiener chaoses. Stochastic Processes and their Applications, 124(7):2415–2441, 2014. (Cited on page 281.)
[45] B., Arras. A white noise approach to stochastic integration with respect to the Rosenblatt process. Potential Analysis, 43(4):547–591, 2015. (Cited on page 435.)
[46] R., Arratia. The motion of a tagged particle in the simple symmetric exclusion system on Z. The Annals of Probability, 11(2):362–373, 1983. (Cited on pages 168, 169, and 172.)
[47] J., Arteche. Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. Journal of Econometrics, 119(1):131–154, 2004. (Cited on page 611.)
[48] J., Arteche. Semiparametric inference in correlated long memory signal plus noise models. Econometric Reviews, 31(4):440–474, 2012. (Cited on page 611.)
[49] J., Arteche and J., Orbe. Bootstrap-based bandwidth choice for log-periodogram regression. Journal of Time Series Analysis, 30(6):591–617, 2009. (Cited on page 111.)
[50] J., Arteche and J., Orbe. Using the bootstrap for finite sample confidence intervals of the log periodogram regression. Computational Statistics & Data Analysis, 53(6):1940–1953, 2009. (Cited on page 111.)
[51] J., Arteche and P., M. Robinson. Semiparametric inference in seasonal and cyclical long memory processes. Journal of Time Series Analysis, 21(1):1–25, 2000. (Cited on page 573.)
[52] R. B., Ash and M., F.|Gardner. Topics in Stochastic Processes. Probability and Mathematical Statistics, Vol. 27. New York, London: Academic Press [Harcourt Brace Jovanovich, Publishers], 1975. (Citedonpages 437 and 438.)
[53] A., Astrauskas. Limit theorems for sums of linearly generated random variables. Lithuanian Mathematical Journal, 23(2):127–134, 1983. (Cited on pages 82, 110, and 111.)
[54] A., Astrauskas, J. B., Levy, and M. S., Taqqu. The asymptotic dependence structure of the linear fractional Lévy motion. Lithuanian Mathematical Journal, 31(1):1–19, 1991. (Cited on pages 83 and 110.)
[55] K., Atkinson and W., Han. Spherical Harmonics and Approximations on the Unit Sphere: an Introduction, volume 2044 of Lecture Notes in Mathematics. Heidelberg: Springer, 2012. (Cited on pages 526 and 527.)
[56] M., Ausloos and D. H., Berman. A multivariate Weierstrass-Mandelbrot function. Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 400(1819):331–350, 1985. (Cited on page 227.)
[57] M., Avarucci and D., Marinucci. Polynomial cointegration between stationary processes with long memory. Journal of Time Series Analysis, 28(6):923–942, 2007. (Cited on page 537.)
[58] F., Avram. On bilinear forms in Gaussian random variables and Toeplitz matrices. Probability Theory and Related Fields, 79(1):37–45, 1988. (Cited on page 571.)
[59] F., Avram and M. S., Taqqu. Noncentral limit theorems and Appell polynomials. The Annals of Probability, 15:767–775, 1987. (Cited on page 343.)
[60] F., Avram, N., Leonenko and L., Sakhno. On a Szeg?o type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields. ESAIM. Probability and Statistics, 14:210–255, 2010. (Cited on page 571.)
[61] A., Ayache and W., Linde. Series representations of fractional Gaussian processes by trigonometric and Haar systems. Electronic Journal of Probability, 14:no. 94, 2691–2719, 2009. (Cited on page 465.)
[62] A., Ayache and M. S., Taqqu. Rate optimality of wavelet series approximations of fractional Brownian motion. The Journal of Fourier Analysis and Applications, 9(5):451–471, 2003. (Cited on page 465.)
[63] A., Ayache, S., Leger and M., Pontier. Drap brownien fractionnaire. Potential Analysis, 17(1):31–43, 2002. (Cited on page 537.)
[64] M., Azimmohseni, A. R., Soltani, and M., Khalafi. Simulation of real discrete time Gaussian multivariate stationary processes with given spectral densities. Journal of Time Series Analysis, 36(6):783–796, 2015. (Cited on page 112.)
[65] E., Azmoodeh, T., Sottinen, L., Viitasaari and A., Yazigi. Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Statistics & Probability Letters, 94:230–235, 2014. (Cited on page 435.)
[66] F., Baccelli and A., Biswas. On scaling limits of power law shot-noise fields. Stochastic Models, 31(2):187–207, 2015. (Cited on page 225.)
[67] E., Bacry and J.-F., Muzy. Log-infinitely divisible multifractal processes. Communications in Mathematical Physics, 236(3):449–475, 2003. (Cited on page 612.)
[68] E., Bacry, J., Delour, and J.-F., Muzy. Multifractal random walk. Physical Review E, 64(2):026103, 2001. (Cited on page 612.)
[69] C., Baek and V., Pipiras. On distinguishing multiple changes in mean and long-range dependence using local Whittle estimation. Electronic Journal of Statistics, 8(1):931–964, 2014. (Cited on pages 225 and 573.)
[70] C., Baek, G., Didier and V., Pipiras. On integral representations of operator fractional Brownian fields. Statistics & Probability Letters, 92:190–198, 2014. (Cited on pages 537 and 538.)
[71] C., Baek, N., Fortuna and V., Pipiras. Can Markov switching model generate long memory? Economics Letters, 124(1):117–121, 2014. (Cited on pages 162 and 225.)
[72] C., Bahadoran, A., Benassi, and K., Dębicki. Operator-self-similar Gaussian processes with stationary increments. Preprint, 2003. (Cited on page 536.)
[73] L., Bai and J., Ma. Stochastic differential equations driven by fractional Brownian motion and Poisson point process. Bernoulli, 21(1):303–334, 2015. (Cited on page 436.)
[74] S., Bai and M., S. Taqqu. Multivariate limit theorems in the context of long-range dependence. Journal of Time Series Analysis, 34 (6): 717–743, 2013. (Cited on pages 320 and 344.)
[75] S., Bai and M. S., Taqqu. Multivariate limits of multilinear polynomial-form processes with long memory. Statistics & Probability Letters, 83(11):2473–2485, 2013. (Cited on pages 327 and 344.)
[76] S., Bai and M., S. Taqqu. Structure of the third moment of the generalized Rosenblatt distribution. Statistics & Probability Letters, 94:144–152, 2014. (Cited on page 344.)
[77] S., Bai and M.S., Taqqu. Generalized Hermite processes, discrete chaos and limit theorems. Stochastic Processes and their Applications, 124:1710–1739, 2014. (Cited on pages 276, 277, 281, and 344.)
[78] S., Bai and M. S., Taqqu. Convergence of long-memory discrete k-th order Volterra processes. Stochastic Processes and Their Applications, 125(5):2026–2053, 2015. (Cited on page 344.)
[79] S., Bai and M. S., Taqqu. The universality of homogeneous polynomial forms and critical limits. Journal of Theoretical Probability, 29(4):1710–1727, 2016. (Cited on page 344.)
[80] S., Bai and M. S., Taqqu. Short-range dependent processes subordinated to the Gaussian may not be strong mixing. Statistics & Probability Letters, 110:198–200, 2016. (Cited on page 612.)
[81] S., Bai and M. S., Taqqu. On the validity of resampling methods under long memory. To appear in The Annals of Statistics, 2017. (Cited on page 574.)
[82] S., Bai and M. S., Taqqu. The impact of diagonals of polynomial forms on limit theorems with long memory. Bernoulli, 23(1):710–742, 2017. (Cited on page 344.)
[83] S., Bai, M. S., Ginovyan, and M. S., Taqqu. Functional limit theorems for Toeplitz quadratic functionals of continuous time Gaussian stationary processes. Statistics & Probability Letters, 104:58–67, 2015. (Cited on page 571.)
[84] S., Bai, M. S., Ginovyan, and M. S., Taqqu. Limit theorems for quadratic forms of Lévy-driven continuous-time linear processes. Stochastic Processes and their Applications, 126(4):1036–1065, 2016. (Cited on page 571.)
[85] S., Bai, M. S., Taqqu, and T., Zhang. A unified approach to self-normalized block sampling. Stochastic Processes and their Applications, 126(8):2465–2493, 2016. (Cited on page 574.)
[86] R. T., Baillie and T., Bollerslev. Contintegration, fractional cointegration, and exchange rate dynamics. The Journal of Finance, 49:737–745, 1994. (Cited on page 537.)
[87] R. T., Baillie and G., Kapetanios. Testing for neglected nonlinearity in long-memory models. Journal of Business & Economic Statistics, 25(4):447–461, 2007. (Cited on page 611.)
[88] R. T., Baillie and G., Kapetanios. Estimation and inference for impulse response functions from univariate strongly persistent processes. The Econometrics Journal, 16(3):373–399, 2013. (Cited on page 573.)
[89] R. T., Baillie, T., Bollerslev and H. O., Mikkelsen. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1):3–30, 1996. (Cited on page 611.)
[90] R. T., Baillie, G., Kapetanios and F., Papailias. Modified information criteria and selection of long memory time series models. Computational Statistics and Data Analysis, 76:116–131, 2014. (Cited on pages 552 and 572.)
[91] R. T., Baillie, G., Kapetanios and F., Papailias. Inference for impulse response coefficients from multivariate fractionally integrated processes. Econometric Reviews, 2016. (Cited on page 573.)
[92] R. M., Balan. Recent advances related to SPDEs with fractional noise. In R. C., Dalang, M., Dozzi, and F., Russo, editors, Seminar on Stochastic Analysis, Random Fields and Applications VII, volume 67 of Progress in Probability, pages 3–22. Basel: Springer, 2013. (Cited on page 227.)
[93] P., Balança. Some sample path properties of multifractional Brownian motion. Stochastic Processes and their Applications, 125(10):3823–3850, 2015. (Cited on page 611.)
[94] C., Barakat, P., Thiran, G., Iannaccone, C., Diot and P., Owezarski. Modeling Internet backbone traffic at the flow level. IEEE Transactions on Signal Processing, 51(8):2111–2124, 2003. (Cited on page 224.)
[95] Ph., Barbe and W. P., McCormick. Invariance principles for some FARIMA and nonstationary linear processes in the domain of a stable distribution. Probab. Theory Related Fields, 154(3-4):429–476, 2012. (Cited on page 111.)
[96] J.-M., Bardet. Testing for the presence of self-similarity of Gaussian time series having stationary increments. Journal of Time Series Analysis, 21:497–515, 2000. (Cited on page 112.)
[97] J.-M., Bardet. Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Transactions on Information Theory, 48:991–999, 2002. (Cited on page 112.)
[98] J.-M., Bardet and H., Bibi. Adaptive semiparametric wavelet estimator and goodness-of-fit test for long-memory linear processes. Electronic Journal of Statistics, 6:2383–2419, 2012. (Cited on page 112.)
[99] J.-M., Bardet, H., Bibi, and A., Jouini. Adaptive wavelet-based estimator of the memory parameter for stationary Gaussian processes. Bernoulli, 14(3):691–724, 2008. (Cited on page 112.)
[100] X., Bardina and K., Es-Sebaiy. An extension of bifractional Brownian motion. Communications on Stochastic Analysis, 5(2):333–340, 2011. (Cited on page 54.)
[101] O. E., Barndorff-Nielsen and N., N. Leonenko. Spectral properties of superpositions of OrnsteinUhlenbeck type processes. Methodology and Computing in Applied Probability, 7(3):335–352, 2005. (Cited on page 223.)
[102] J., Barral. Mandelbrot cascades and related topics. In Geometry and Analysis of Fractals, volume 88 of Springer Proc. Math. Stat., pages 1–45. Heidelberg: Springer, 2014. (Cited on page 612.)
[103] J., Barral and B., Mandelbrot. Multifractal products of cylindrical pulses. Probability Theory and Related Fields, 124(3):409–430, 2002. (Cited on page 612.)
[104] R. J., Barton and H. V., Poor. Signal detection in fractional Gaussian noise. IEEE Transactions on Information Theory, 34(5):943–959, 1988. (Cited on page 395.)
[105] G. K., Basak, N. H., Chan, and W., Palma. The approximation of long-memory processes by an arma model. Journal of Forecasting, 20(6):367–389, 2001. (Cited on page 571.)
[106] F., Baudoin and M., Hairer. A version of Hörmander's theorem for the fractional Brownian motion. Probability Theory and Related Fields, 139(3-4):373–395, 2007. (Cited on page 436.)
[107] F., Baudoin and C., Ouyang. Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions. Stochastic Processes and their Applications, 121(4):759–792, 2011. (Cited on page 436.)
[108] F., Baudoin, E., Nualart, C., Ouyang and S., Tindel. On probability laws of solutions to differential systems driven by a fractional Brownian motion. The Annals of Probability, 44(4):2554–2590, 2016. (Cited on page 436.)
[109] F., Baudoin, C., Ouyang and S., Tindel. Upper bounds for the density of solutions to stochastic differential equations driven by fractional Brownian motions. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 50(1):111–135, 2014. (Cited on page 436.)
[110] A., Baxevani and K., Podgórski. Lamperti transform and a series decomposition of fractional Brownian motion. Preprint, 2007. (Cited on page 465.)
[111] P., Becker-Kern and G., Pap. Parameter estimation of selfsimilarity exponents. Journal of Multivariate Analysis, 99(1):117–140, 2008. (Cited on page 536.)
[112] P., Becker-Kern, M. M., Meerschaert, and H.-P., Scheffler. Limit theorems for coupled continuous time random walks. The Annals of Probability, 32(1B):730–756, 2004. (Cited on page 227.)
[113] A., Benassi, S., Jaffard and D., Roux. Elliptic Gaussian random processes. Revista Matemática Iberoamericana, 13(1):19–90, 1997. (Cited on pages 145, 465, and 611.)
[114] A., Benassi, S., Cohen and J., Istas. Identifying the multifractional function of a Gaussian process. Statistics & Probability Letters, 39(4):337–345, 1998. (Cited on page 611.)
[115] A., Benassi, S., Cohen and J., Istas. Identification and properties of real harmonizable fractional Lévy motions. Bernoulli, 8(1):97–115, 2002. (Cited on page 145.)
[116] C., Bender. An S-transform approach to integration with respect to a fractional Brownian motion. Bernoulli, 9(6):955–983, 2003. (Cited on page 435.)
[117] C., Bender. An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter. Stochastic Processes and their Applications, 104(1):81–106, 2003. (Cited on page 435.)
[118] C., Bender, T., Sottinen and E., Valkeila. Arbitrage with fractional Brownian motion? Theory of Stochastic Processes, 13(1-2):23–34, 2007. (Cited on page 435.)
[119] D. A., Benson, M. M., Meerschaert, B., Baeumer, and H.-P., Scheffler. Aquifer operator scaling and the effect on solute mixing and dispersion. Water Resources Research, 42(1):W01415, 2006. (Cited on page 537.)
[120] J., Beran. A goodness of fit test for time series with long-range dependence. Journal of the Royal Statistical Society, Series B, 54:749–760, 1992. (Cited on page 554.)
[121] J., Beran. Statistics for Long-Memory Processes. New York: Chapman & Hall, 1994. (Cited on pages 109 and 572.)
[122] J., Beran. Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models. Journal of the Royal Statistical Society. Series B. Methodological, 57(4):659–672, 1995. (Cited on page 551.)
[123] J., Beran and Y., Feng. SEMIFAR models—a semiparametric approach to modelling trends, long-range dependence and nonstationarity. Computational Statistics & Data Analysis, 40(2):393–419, 2002. (Cited on page 573.)
[124] J., Beran, R. J., Bhansali, and D., Ocker. On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes. Biometrika, 85(4):921–934, 1998. (Cited on page 552.)
[125] J., Beran, S., Ghosh and D., Schell. On least squares estimation for long-memory lattice processes. Journal of Multivariate Analysis, 100(10):2178–2194, 2009. (Cited on pages 529 and 537.)
[126] J., Beran, M., Schützner, and S., Ghosh. From short to long memory: aggregation and estimation. Computational Statistics and Data Analysis, 54(11):2432–2442, 2010. (Cited on page 223.)
[127] J., Beran, Y., Feng, S., Ghosh and R., Kulik. Long-Memory Processes: Probabilistic Properties and Statistical Methods. Springer, 2013. (Cited on pages 109, 539, 545, 551, 573, 574, and 610.)
[128] J., Beran, S., Möhrle, and S., Ghosh. Testing for Hermite rank in Gaussian subordination processes. Journal of Computational and Graphical Statistics, 2016. (Cited on page 343.)
[129] C., Berg. The cube of a normal distribution is indeterminate. The Annals of Probability, 16(2):910– 913, 1988. (Cited on page 280.)
[130] I., Berkes, L., Horváth, P., Kokoszka, and Q.-M., Shao. On discriminating between long-range dependence and changes in mean. The Annals of Statistics, 34(3):1140–1165, 2006. (Cited on pages 225 and 573.)
[131] S. M., Berman. Local nondeterminism and local times of Gaussian processes. Indiana University Mathematics Journal, 23:69–94, 1973/74. (Cited on page 430.)
[132] S. M., Berman. High level sojourns for strongly dependent Gaussian processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 50:223–236, 1979. (Cited on page 343.)
[133] S. M., Berman. Sojourns of vector Gaussian processes inside and outside spheres. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 66:529–542, 1984. (Cited on page 344.)
[134] S. M., Berman. Sojourns and Extremes of Stochastic Processes. The Wadsworth & Brooks/Cole Statistics/Probability Series. Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software, 1992. (Cited on page 178.)
[135] M. V., Berry and Z.V., Lewis. On the Weierstrass-Mandelbrot fractal function. Proceedings of the Royal Society of London, A370:459–484, 1980. (Cited on page 227.)
[136] S., Bertelli and M., Caporin. A note on calculating autocovariances of long-memory processes. Journal of Time Series Analysis, 23(5):503–508, 2002. (Cited on pages 539 and 570.)
[137] J., Bertoin and I., Kortchemski. Self-similar scaling limits of Markov chains on the positive integers. The Annals of Applied Probability, 26(4):2556–2595, 2016. (Cited on page 612.)
[138] C., Berzin, A., Latour and J. R., León. Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion. Lecture Notes in Statistics. Springer International Publishing, 2014. (Cited on page 610.)
[139] A., Beskos, J., Dureau and K., Kalogeropoulos. Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion. Biometrika, 102(4):809–827, 2015. (Citedonpage 436.)
[140] A., Betken and M., Wendler. Subsampling for general statistics under long range dependence. Preprint, 2015. (Cited on page 574.)
[141] R. J., Bhansali and P. S., Kokoszka. Estimation of the long-memory parameter: a review of recent developments and an extension. In selected Proceedings of the Symposium on Inference for Stochastic Processes (Athens, GA, 2000), volume 37 of IMS Lecture Notes Monogr. Ser., pages 125–150. Beachwood, OH: Inst. Math. Statist., 2001. (Cited on page 571.)
[142] R. J., Bhansali and P. S., Kokoszka. Computation of the forecast coefficients for multistep prediction of long-range dependent time series. International Journal of Forecasting, 18(2):181–206, 2002. (Cited on page 571.)
[143] R. J., Bhansali and P. S., Kokoszka. Prediction of long-memory time series. In Theory and Applications of Long-Range Dependence, pages 355–367. Boston, MA: Birkhäuser Boston, 2003. (Cited on page 571.)
[144] R. J., Bhansali, L., Giraitis and P. S., Kokoszka. Estimation of the memory parameter by fitting fractionally differenced autoregressive models. Journal of Multivariate Analysis, 97(10):2101–2130, 2006. (Cited on page 573.)
[145] G., Bhardwaj and N. R., Swanson. An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series. Journal of Econometrics, 131(1-2):539– 578, 2006. (Cited on page 571.)
[146] F., Biagini, B., Øksendal, A., Sulem, and N., Wallner. An introduction to white-noise theory and Malliavin calculus for fractional Brownian motion. Proceedings of The Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, 460(2041):347–372, 2004. Stochastic analysis with applications to mathematical finance. (Cited on pages 435 and 610.)
[147] F., Biagini, Y., Hu, B., Øksendal, and T., Zhang. Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications (New York). London: Springer-Verlag London, Ltd., 2008. (Cited on page 436.)
[148] H., Biermé and A., Estrade. Poisson random balls: self-similarity and X-ray images. Advances in Applied Probability, 38(4):853–872, 2006. (Cited on page 224.)
[149] H., Biermé and F., Moisan, L., and Richard, . A turning-band method for the simulation of anisotropic fractional Brownian fields. Journal of Computational and Graphical Statistics, 24(3):885–904, 2015. (Cited on page 112.)
[150] H., Biermé and F., Richard. Estimation of anisotropic Gaussian fields through Radon transform. ESAIM. Probability and Statistics, 12:30–50 (electronic), 2008. (Cited on page 529.)
[151] H., Biermé, M. M., Meerschaert, and H.-P., Scheffler. Operator scaling stable random fields. Stochastic Processes and their Applications, 117(3):312–332, 2007. (Cited on pages 511, 512, 521, 522, 535, 536, and 537.)
[152] H., Biermé, C., Lacaux, and H.-P., Scheffler. Multi-operator scaling random fields. Stochastic Processes and their Applications, 121(11):2642–2677, 2011. (Cited on page 537.)
[153] H., Biermé, O., Durieu, and Y., Wang. Invariance principles for operator-scaling Gaussian random fields. To appear in The Annals of Applied Probability. Preprint, 2015. (Cited on page 226.)
[154] P., Billingsley. Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. New York: John Wiley & Sons Inc., 1999. A Wiley-Interscience Publication. (Cited on pages 219, 292, 296, 583, and 584.)
[155] N. H., Bingham. Szegö's theorem and its probabilistic descendants. Probability Surveys, 9:287–324, 2012. (Cited on page 571.)
[156] N. H., Bingham. Multivariate prediction and matrix Szegö theory. Probability Surveys, 9:325–339, 2012. (Cited on page 571.)
[157] N. H., Bingham, C. M., Goldie, and J. L., Teugels. Regular Variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1987. (Cited on pages 17, 19, 20, 25, 70, 109, 130, 176, 527, 582, and 586.)
[158] L., Bisaglia. Model selection for long-memory models. Quaderni di Statistica, 4:33–49, 2002. (Cited on page 571.)
[159] L., Bisaglia and M., Gerolimetto. An empirical strategy to detect spurious effects in long memory and occasional-break processes. Communications in Statistics - Simulation and Computation, 38:172–189, 2009. (Cited on page 573.)
[160] L., Bisaglia and D., Guégan. A comparison of techniques of estimation in long-memory processes. Computational Statistics and Data Analysis, 27:61–81, 1998. (Cited on page 571.)
[161] L., Bisaglia, S., Bordignon and N., Cecchinato. Bootstrap approaches for estimation and confidence intervals of long memory processes. Journal of Statistical Computation and Simulation, 80(9-10):959–978, 2010. (Cited on page 573.)
[162] J., Blath, A., González Casanova, N., Kurt, and D., Spanò. The ancestral process of long-range seed bank models. Journal of Applied Probability, 50(3):741–759, 2013. (Cited on page 226.)
[163] T., Blu and M., Unser. Self-similarity. II. Optimal estimation of fractal processes. IEEE Transactions on Signal Processing, 55(4):1364–1378, 2007. (Cited on page 465.)
[164] P., Bocchinia and G., Deodatis. Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields. Probabilistic Engineering Mechanics, 23:393–407, 2008. (Cited on page 344.)
[165] D. C., Boes and J. D., Salas. Nonstationarity of the mean and the Hurst phenomenon. Water Resourses Research, 14(1):135–143, 1978. (Cited on page 225.)
[166] L. V., Bogachev. Random walks in random environments. In J.-P., Francoise, G., Naber, and S. T., Tsou, editors, Encyclopedia of Mathematical Physics, volume 4, pages 353–371. Oxford: Elsevier, 2006. (Cited on page 178.)
[167] V. I., Bogachev. Gaussian Measures, volume 62 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society, 1998. (Cited on pages 409 and 422.)
[168] Y., Boissy, B. B., Bhattacharyya, X., Li, and G. D., Richardson. Parameter estimates for fractional autoregressive spatial processes. The Annals of Statistics, 33(6):2553–2567, 2005. (Cited on pages 529 and 537.)
[169] T., Bojdecki and A., Talarczyk. Particle picture interpretation of some Gaussian processes related to fractional Brownian motion. Stochastic Processes and their Applications, 122(5):2134–2154, 2012. (Cited on page 228.)
[170] T., Bojdecki, L. G., Gorostiza, and A., Talarczyk. Limit theorems for occupation time fluctuations of branching systems. I. Long-range dependence. Stochastic Processes and their Applications, 116(1):1–18, 2006. (Cited on page 228.)
[171] T., Bojdecki, L. G., Gorostiza, and A., Talarczyk. Limit theorems for occupation time fluctuations of branching systems. II. Critical and large dimensions. Stochastic Processes and their Applications, 116(1):19–35, 2006. (Cited on page 228.)
[172] T., Bojdecki, L. G., Gorostiza, and A., Talarczyk. From intersection local time to the Rosenblatt process. Journal of Theoretical Probability, 28(3):1227–1249, 2015. (Cited on page 228.)
[173] A., Bonami and A., Estrade. Anisotropic analysis of some Gaussian models. The Journal of Fourier Analysis and Applications, 9(3):215–236, 2003. (Cited on page 529.)
[174] P., Bondon and W., Palma. A class of antipersistent processes. Journal of Time Series Analysis, 28(2):261–273, 2007. (Cited on page 109.)
[175] A., Borodin and I., Corwin. Macdonald processes. Probability Theory and Related Fields, 158(1-2):225–400, 2014. (Cited on page 227.)
[176] A., Böttcher and B., Silbermann. Toeplitz matrices and determinants with Fisher-Hartwig symbols. Journal of Functional Analysis, 63(2):178–214, 1985. (Cited on page 211.)
[177] J.-P., Bouchaud and A., Georges. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Physics Reports, 195(4-5):127–293, 1990. (Cited on page 227.)
[178] J.-P., Bouchaud, A., Georges, J., Koplik, A., Provata, and S., Redner. Superdiffusion in random velocity fields. Physical Review Letters, 64(21):2503, 1990. (Cited on page 226.)
[179] M., Boutahar, V., Marimoutou and L., Nouira. Estimation methods of the long memory parameter: Monte Carlo analysis and application. Journal of Applied Statistics, 34(3-4):261–301, 2007. (Cited on page 571.)
[180] C., Boutillier and B., de Tilière. The critical Z-invariant Ising model via dimers: the periodic case. Probability Theory and Related Fields, 147(3-4):379–413, 2010. (Cited on page 227.)
[181] R. C., Bradley. Basic properties of strong mixing conditions. A survey and some open questions. Probability Surveys, 2:107–144, 2005. ISSN 1549-5787. Update of, and a supplement to, the 1986 original. (Cited on page 612.)
[182] M., Bramson and D., Griffeath. Renormalizing the 3-dimensional voter model. The Annals of Probability, 7(3):418–432, 1979. (Cited on page 226.)
[183] J.-C., Breton and I., Nourdin. Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion. Electronic Communications in Probability, 13:482–493, 2008. (Cited on page 281.)
[184] P., Breuer and P., Major. Central limit theorems for non-linear functionals of Gaussian fields. Journal of Multivariate Analysis, 13:425–441, 1983. (Cited on pages 282, 343, and 344.)
[185] D. R., Brillinger. Time Series, volume 36 of Classics in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2001. Data Analysis and Theory, Reprint of the 1981 edition. (Cited on page 470.)
[186] P. J., Brockwell and R. A., Davis. Time Series: Theory and Methods, 2nd edition. New York: Springer Series in Statistics. Springer-Verlag, 1991. (Cited on pages xxi, 9, 14, 28, 32, 33, 37, 39, 109, 337, 470, 471, 497, 500, 541, 544, 552, and 554.)
[187] J., Brodsky and C., M. Hurvich. Multi-step forecasting for long-memory processes. Journal of Forecasting, 18:59–75, 1999. (Cited on page 571.)
[188] J. C., Bronski. Asymptotics of Karhunen-Loeve eigenvalues and tight constants for probability distributions of passive scalar transport. Communications in Mathematical Physics, 238(3):563–582, 2003. (Cited on page 464.)
[189] J. C., Bronski. Small ball constants and tight eigenvalue asymptotics for fractional Brownian motions. Journal of Theoretical Probability, 16(1):87–100, 2003. (Cited on page 464.)
[190] A., Brouste and M., Kleptsyna. Asymptotic properties of MLE for partially observed fractional diffusion system. Statistical Inference for Stochastic Processes, 13(1):1–13, 2010. (Cited on page 395.)
[191] A., Brouste, J., Istas, and S., Lambert-Lacroix. On fractional Gaussian random fields simulations. Journal of Statistical Software, 23(1):1–23, 2007. (Cited on page 112.)
[192] B., Buchmann and C., Klüppelberg. Fractional integral equations and state space transforms. Bernoulli, 12(3):431–456, 2006. (Cited on page 436.)
[193] A., Budhiraja, V., Pipiras and X., Song. Admission control for multidimensional workload input with heavy tails and fractional Ornstein-Uhlenbeck process. Advances in Applied Probability, 47:1–30, 2015. (Cited on page 224.)
[194] K., Burnecki and G., Sikora. Estimation of FARIMA parameters in the case of negative memory and stable noise. IEEE Transactions on Signal Processing, 61(11):2825–2835, 2013. (Cited on pages 111 and 573.)
[195] K., Burnecki, M., Maejima and A., Weron. The Lamperti transformation for self-similar processes. Yokohama Mathematical Journal, 44(1):25–42, 1997. (Cited on page 111.)
[196] M., Çağlar. A long-range dependent workload model for packet data traffic. Mathematics of Operations Research, 29(1):92–105, 2004. (Cited on page 224.)
[197] M., Calder and R., A. Davis. Introduction to Whittle (1953) “The Analysis of Multiple Stationary Time Series”. In S., Kotz and N. L., Johnson, editors, Breakthroughs in Statistics, volume 3, pages 141–148. Springer-Verlag, 1997. (Cited on page 570.)
[198] F., Camia, C., Garban and C. M., Newman. Planar Ising magnetization field I. Uniqueness of the critical scaling limit. The Annals of Probability, 43(2):528–571, 2015. (Cited on page 227.)
[199] F., Camia, C., Garban and C. M., Newman. Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 52(1):146–161, 2016. (Cited on page 227.)
[200] B., Candelpergher, M., Miniconi and F., Pelgrin. Long-memory process and aggregation of AR(1) stochastic processes: A new characterization. Preprint, 2015. (Cited on page 224.)
[201] G. M., Caporale, J., Cuñado, and L. A., Gil-Alana. Modelling long-run trends and cycles in financial time series data. Journal of Time Series Analysis, 34(3):405–421, 2013. (Cited on page 110.)
[202] K. A. E., Carbonez. Model selection and estimation of long-memory time-series models. Review of Business and Economics, XLIV(4):512–554, 2009. (Cited on page 571.)
[203] P., Carmona, L., Coutin and G., Montseny. Stochastic integration with respect to fractional Brownian motion. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 39(1):27–68, 2003. (Cited on page 435.)
[204] K. J. E., Carpio and D. J., Daley. Long-range dependence of Markov chains in discrete time on countable state space. Journal of Applied Probability, 44(4):1047–1055, 2007. (Cited on page 109.)
[205] T., Cass and P., Friz. Densities for rough differential equations under Hörmander's condition. Annals of Mathematics. Second Series, 171(3):2115–2141, 2010. (Cited on page 436.)
[206] T., Cass, M., Hairer, C., Litterer and S., Tindel. Smoothness of the density for solutions to Gaussian rough differential equations. The Annals of Probability, 43(1):188–239, 2015. (Cited on page 436.)
[207] A., Castaño-Martínez and F., López-Blázquez. Distribution of a sum of weighted noncentral chi-square variables. Test, 14(2):397–415, 2005. (Cited on page 271.)
[208] D., Celov, R., Leipus and A., Philippe. Time series aggregation, disaggregation, and long memory. Lietuvos Matematikos Rinkinys, 47(4):466–481, 2007. (Cited on pages 117, 221, and 223.)
[209] D., Chambers and E., Slud. Central limit theorems for nonlinear functionals of stationary Gaussian processes. Probability Theory and Related Fields, 80:323–346, 1989. (Cited on page 343.)
[210] D., Chambers and E., Slud. Necessary conditions for nonlinear functionals of Gaussian processes to satisfy central limit theorems. Stochastic Processes and their Applications, 32(1):93–107, 1989. (Cited on page 343.)
[211] M. J., Chambers. The simulation of random vector time series with given spectrum. Mathematical and Computer Modelling, 22(2):1–6, 1995. (Cited on page 112.)
[212] M. J., Chambers. Long memory and aggregation in macroeconomic time series. International Economic Review, 39(4):1053–1072, 1998. Symposium on Forecasting and Empirical Methods in Macroeconomics and Finance. (Cited on page 223.)
[213] G., Chan and A. T. A., Wood. An algorithm for simulating stationary Gaussian random fields. Applied Statistics, Algorithm Section, 46:171–181, 1997. (Cited on page 112.)
[214] G., Chan and A. T. A., Wood. Simulation of stationary Gaussian vector fields. Statistics and Computing, 9(4):265–268, 1999. (Cited on page 112.)
[215] N. H., Chan and W., Palma. State space modeling of long-memory processes. The Annals of Statistics, 26(2):719–740, 1998. (Cited on page 573.)
[216] C., Chen and L., Yan. Remarks on the intersection local time of fractional Brownian motions. Statistics & Probability Letters, 81(8):1003–1012, 2011. (Cited on page 436.)
[217] L.-C., Chen and A., Sakai. Critical two-point functions for long-range statistical-mechanical models in high dimensions. The Annals of Probability, 43(2):639–681, 2015. (Cited on page 227.)
[218] L. H. Y., Chen, L., Goldstein, and Q.-M., Shao. Normal Approximation by Stein's Method. Probability and its Applications (New York). Heidelberg: Springer, 2011. (Cited on page 426.)
[219] W. W., Chen. Efficiency in estimation of memory. Journal of Statistical Planning and Inference, 140(12):3820–3840, 2010. (Cited on page 572.)
[220] W. W., Chen and R., S.|Deo. A generalized Portmanteau goodness-of-fit test for time series models. Econometric Theory, 20(2):382–416, 2004. (Cited on page 553.)
[221] W. W., Chen and R., S. Deo. Estimation of mis-specified long memory models. Journal of Econometrics, 134(1):257–281, 2006. ISSN 0304-4076. (Cited on page 571.)
[222] W. W., Chen and C. M., Hurvich. Semiparametric estimation of multivariate fractional cointegration. Journal of the American Statistical Association, 98(463):629–642, 2003. (Cited on page 537.)
[223] W. W., Chen and C., M. Hurvich. Semiparametric estimation of fractional cointegrating subspaces. The Annals of Statistics, 34(6):2939–2979, 2006. (Cited on page 537.)
[224] W. W., Chen, C. M., Hurvich, and Y., Lu. On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series. Journal of the American Statistical Association, 101(474):812–822, 2006. (Cited on page 570.)
[225] X., Chen, W. V., Li, J., Rosiński, and Q.-M., Shao. Large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes. The Annals of Probability, 39(2):729–778, 2011. (Cited on page 436.)
[226] Z., Chen, L., Xu and D., Zhu. Generalized continuous time random walks and Hermite processes. Statistics & Probability Letters, 99:44–53, 2015. (Cited on page 228.)
[227] P., Cheridito. Arbitrage in fractional Brownian motion models. Finance and Stochastics, 7(4):533– 553, 2003. (Cited on page 435.)
[228] P., Cheridito and D., Nualart. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H ∈ (0, 1 2). Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 41(6):1049–1081, 2005. (Cited on pages 406, 433, and 435.)
[229] P., Cheridito, H., Kawaguchi and M., Maejima. Fractional Ornstein-Uhlenbeck processes. Electronic Journal of Probability, 8:no. 3, 14 pp. (electronic), 2003. (Cited on pages 384 and 394.)
[230] Y.-W., Cheung. Long memory in foreign exchange rates. Journal of Business and Economic Statistics, 11:93–101, 1993. (Cited on page 572.)
[231] Y.-W., Cheung and F. X., Diebold. On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean. Journal of Econometrics, 62:301–316, 1994. (Citedonpage 571.)
[232] Y.-W., Cheung and K. S., Lai. A fractional cointegration analysis of purchasing power parity. Journal of Business & Economic Statistics, 11(1):103–112, 1993. (Cited on page 537.)
[233] G., Chevillon and S., Mavroeidis. Learning can generate long memory. To appear in Journal of Econometrics. Preprint, 2013. (Cited on page 228.)
[234] Z., Chi. Construction of stationary self-similar generalized fields by random wavelet expansion. Probability Theory and Related Fields, 121(2):269–300, 2001. (Cited on page 465.)
[235] P., Chigansky and M., Kleptsyna. Spectral asymptotics of the fractional Brownian covariance operator. Preprint, 2015. (Cited on page 440.)
[236] P., Chigansky and M., Kleptsyna. Asymptotics of the Karhunen-Loève expansion for the fractional Brownian motion. Preprint, 2016. (Cited on page 439.)
[237] J.-P., Chilès and P., Delfiner. Geostatistics, 2nd edition. Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley & Sons Inc., 2012. Modeling spatial uncertainty. (Cited on page 538.)
[238] B. J., Christensen and M., Ø Nielsen. Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting. Journal of Econometrics, 133(1):343–371, 2006. (Cited on page 536.)
[239] A., Chronopoulou and S., Tindel. On inference for fractional differential equations. Statistical Inference for Stochastic Processes, 16(1):29–61, 2013. (Cited on page 436.)
[240] A., Chronopoulou, C. A., Tudor, and F. G., Viens. Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes. Comptes Rendus Mathématique. Académie des Sciences. Paris, 347(11-12):663–666, 2009. (Cited on page 281.)
[241] A., Chronopoulou, C. A., Tudor, and F. G., Viens. Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes. Communications on Stochastic Analysis, 5(1):161–185, 2011. (Cited on page 281.)
[242] C.-F., Chung. A note on calculating the autocovariances of the fractionally integrated ARMA models. Economics Letters, 45(3):293–297, 1994. (Cited on pages 539 and 570.)
[243] Z., Ciesielski, G., Kerkyacharian and B., Roynette. Quelques espaces fonctionnels associés à des processus gaussiens. Studia Mathematica, 107(2):171–204, 1993. (Cited on page 435.)
[244] R., Cioczek-Georges and B. B., Mandelbrot. Alternative micropulses and fractional Brownian motion. Stochastic Processes and their Applications, 64:143–152, 1996. (Cited on page 224.)
[245] B., Cipra. Statistical physicists phase out a dream. Science, 288(5471):1561–1562, 2000. (Cited on page 181.)
[246] M., Clausel. Gaussian fields satisfying simultaneous operator scaling relations. In Recent Developments in Fractals and Related Fields, Appl. Numer. Harmon. Anal., pages 327–341. Boston, MA: Birkhäuser Boston Inc., 2010. (Cited on page 537.)
[247] M., Clausel and B., Vedel. Explicit construction of operator scaling Gaussian random fields. Fractals, 19(1):101–111, 2011. (Cited on page 537.)
[248] M., Clausel, F., Roueff, M. S., Taqqu, and C., Tudor. Large scale behavior of wavelet coefficients of non-linear subordinated processes with long memory. Applied and Computational Harmonic Analysis, 32(2):223–241, 2012. (Cited on page 112.)
[249] M., Clausel, F., Roueff, M. S., Taqqu, and C., Tudor. High order chaotic limits of wavelet scalograms under long-range dependence. ALEA-Latin American Journal of Probability and Mathematical Statistics, 10(2):979–1011, 2013. (Cited on page 112.)
[250] M., Clausel, F., Roueff, M. S., Taqqu, and C., Tudor. Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes. ESAIM: Probability and Statistics, 18:42–76, 2014. (Cited on page 112.)
[251] J.-F., Coeurjolly. Identification of multifractional Brownian motion. Bernoulli, 11(6):987–1008, 2005. (Cited on page 611.)
[252] J.-F., Coeurjolly, P.-O., Amblard, and S., Achard. Wavelet analysis of the multivariate fractional Brownian motion. ESAIM. Probability and Statistics, 17:592–604, 2013. (Cited on page 536.)
[253] S., Cohen and J., Istas. Fractional Fields and Applications, volume 73 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Heidelberg: Springer, 2013. With a foreword by S., Jaffard. (Cited on pages 65, 110, 537, and 610.)
[254] S., Cohen and G., Samorodnitsky. Random rewards, fractional Brownian local times and stable self-similar processes. The Annals of Applied Probability, 16(3):1432–1461, 2006. (Cited on page 226.)
[255] S., Cohen, M. M., Meerschaert, and J., Rosiński. Modeling and simulation with operator scaling. Stochastic Processes and their Applications, 120(12):2390–2411, 2010. (Cited on page 536.)
[256] S., Cohen, F., Panloup and S., Tindel. Approximation of stationary solutions to SDEs driven by multiplicative fractional noise. Stochastic Processes and their Applications, 124(3):1197–1225, 2014. (Cited on page 436.)
[257] F., Comte and E., Renault. Long memory in continuous-time stochastic volatility models. Mathematical Finance, 8(4):291–323, 1998. (Cited on page 611.)
[258] P. L., Conti, L., De Giovanni, S. A., Stoev, and M. S., Taqqu. Confidence intervals for the long memory parameter based on wavelets and resampling. Statistica Sinica, 18(2):559–579, 2008. (Cited on page 573.)
[259] J., Contreras-Reyes, G. M., Goerg, and W., Palma. R package afmtools: Estimation, Diagnostic and Forecasting Functions for ARFIMA models (version 0.1.7). Chile: Universidad de Chile, 2011. URL http://cran.r-project.org/web/packages/afmtools. (Citedonpage 572.)
[260] D., Conus, M., Joseph, D., Khoshnevisan, and S.-Y., Shiu. Initial measures for the stochastic heat equation. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 50(1):136–153, 2014. (Cited on page 227.)
[261] J. B., Conway. A Course in Functional Analysis, 2nd edition, volume 96 of Graduate Texts in Mathematics. New York: Springer-Verlag, 1990. (Cited on page 260.)
[262] L., Coutin and L., Decreusefond. Abstract nonlinear filtering theory in the presence of fractional Brownian motion. The Annals of Applied Probability, 9(4): 1058–1090, 1999. (Cited on page 436.)
[263] L., Coutin and Z., Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probability Theory and Related Fields, 122(1):108–140, 2002. (Cited on page 435.)
[264] L., Coutin, D., Nualart and C. A., Tudor. Tanaka formula for the fractional Brownian motion. Stochastic Processes and their Applications, 94(2):301–315, 2001. (Cited on pages 432 and 433.)
[265] D. R., Cox. Long-range dependence: a review. In H.A., David and H.T., David, editors, Statistics: An Appraisal, pages 55–74. Iowa State University Press, 1984. (Cited on page 225.)
[266] D.R., Cox and M.W., Townsend. The use of correlograms for measuring yarn irregularity. Journal of the Textile Institute Proceedings, 42(4):P145–P151, 1951. (Cited on pages 109 and 225.)
[267] P. F., Craigmile. Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes. Journal of Time Series Analysis, 24(5):505–511, 2003. (Cited on page 112.)
[268] P. F., Craigmile, P., Guttorp and D. B., Percival. Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes. IEEE Transactions on Signal Processing, 53(8, part 2):3151–3161, 2005. (Cited on page 112.)
[269] N., Crato and B. K., Ray. Model selection and forecasting for long-range dependent processes. Journal of Forecasting, 15:107–125, 1996. (Cited on page 552.)
[270] M. E., Crovella and A., Bestavros. Self-similarity in World Wide Web traffic: evidence and possible causes. IEEE/ACM Transactions on Networking, 5(6):835–846, 1997. (Cited on page 121.)
[271] J. D., Cryer and K. S., Chan. Time Series Analysis: With Applications in R. Springer Texts in Statistics. Springer, 2008. (Cited on page 14.)
[272] J., Cuzick. A central limit theorem for the number of zeros of a stationary Gaussian process. The Annals of Probability, 4(4):547–556, 1976. (Cited on page 343.)
[273] C., Czichowsky and W., Schachermayer. Portfolio optimisation beyond semimartingales: shadow prices and fractional Brownian motion. To appear in The Annals of Applied Probability. Preprint, 2015. (Cited on page 435.)
[274] D., Dacunha-Castelle and L., Fermín. Disaggregation of long memory processes on C∞ class. Electronic Communications in Probability, 11:35–44 (electronic), 2006. (Cited on page 223.)
[275] D., Dacunha-Castelle and L., Fermín. Aggregation of autoregressive processes and long memory. Preprint, 2008. (Cited on page 223.)
[276] D., Dacunha-Castelle and G., Oppenheim. Mixtures, aggregation and long memory. Preprint, 2001. (Citedonpage 223.)
[277] R., Dahlhaus. Efficient parameter estimation for self similar processes. The Annals of Statistics, 17(4):1749–1766, 1989. (Cited on pages 540, 546, and 571.)
[278] R., Dahlhaus. Correction: Efficient parameter estimation for self-similar processes. The Annals of Statistics, 34(2):1045–1047, 2006. (Cited on pages 540, 546, and 571.)
[279] H., Dai. Convergence in law to operator fractional Brownian motions. Journal of Theoretical Probability, 26(3):676–696, 2013. (Cited on page 536.)
[280] W., Dai and C. C., Heyde. Itô's formula with respect to fractional Brownian motion and its application. Journal of Applied Mathematics and Stochastic Analysis, 9(4):439–448, 1996. (Cited on page 435.)
[281] D. J., Daley. The Hurst index of long-range dependent renewal processes. The Annals of Probability, 27(4):2035–2041, 1999. (Cited on page 610.)
[282] D. J., Daley and D., Vere-Jones. An Introduction to the Theory of Point Processes. Vol. I, 2nd edition. Probability and its Applications (New York). New York: Springer-Verlag, 2003. Elementary Theory and Methods. (Cited on page 610.)
[283] D. J., Daley and D., Vere-Jones. An Introduction to the Theory of Point Processes. Vol. II, 2nd edition. Probability and its Applications (New York). New York: Springer, 2008. General theory and structure. (Cited on page 610.)
[284] D. J., Daley and R., Vesilo. Long range dependence of point processes, with queueing examples. Stochastic Processes and their Applications, 70(2):265–282, 1997. (Cited on page 610.)
[285] D. J., Daley, T., Rolski and R., Vesilo. Long-range dependent point processes and their Palm-Khinchin distributions. Advances in Applied Probability, 32(4):1051–1063, 2000. (Cited on page 610.)
[286] J., Damarackas and V., Paulauskas. Properties of spectral covariance for linear processes with infinite variance. Lithuanian Mathematical Journal, 54(3):252–276, 2014. (Cited on page 111.)
[287] I., Daubechies. Ten Lectures on Wavelets. SIAM Philadelphia, 1992. CBMS-NSF series, Volume 61. (Cited on pages 444 and 451.)
[288] B., D'Auria and S. I., Resnick. The influence of dependence on data network models. Advances in Applied Probability, 40(1):60–94, 2008. (Cited on page 224.)
[289] J., Davidson and P., Sibbertsen. Generating schemes for long memory processes: regimes, aggregation and linearity. Journal of Econometrics, 128(2):253–282, 2005. (Cited on page 224.)
[290] R. B., Davies and D. S., Harte. Tests for Hurst effect. Biometrika, 74(4):95–101, 1987. (Cited on page 112.)
[291] Yu. A., Davydov. The invariance principle for stationary processes. Theory of Probability and its Applications, 15:487–498, 1970. (Cited on page 111.)
[292] Ł., Dębowski. On processes with hyperbolically decaying autocorrelations. Journal of Time Series Analysis, 32:580–584, 2011. (Cited on page 571.)
[293] A., De Masi and P. A., Ferrari. Flux fluctuations in the one dimensional nearest neighbors symmetric simple exclusion process. Journal of Statistical Physics, 107(3-4):677–683, 2002. (Cited on page 168.)
[294] L., Decreusefond. Stochastic integration with respect to Volterra processes. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 41(2):123–149, 2005. (Cited on page 435.)
[295] L., Decreusefond and D., Nualart. Hitting times for Gaussian processes. The Annals of Probability, 36(1):319–330, 2008. (Cited on page 436.)
[296] L., Decreusefond and A. S., Üstünel. Stochastic analysis of the fractional Brownian motion. Potential Analysis, 10:177–214, 1999. (Cited on pages 395 and 435.)
[297] H., Dehling, A., Rooch and M. S., Taqqu. Non-parametric change-point tests for long-range dependent data. Scandinavian Journal of Statistics. Theory and Applications, 40(1):153–173, 2013. (Cited on page 573.)
[298] P., Deift, A., Its and I., Krasovsky. Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities. Annals of Mathematics. Second Series, 174(2):1243–1299, 2011. (Cited on page 211.)
[299] M. A., Delgado and P. M., Robinson. Optimal spectral bandwidth for long memory. Statistica Sinica, 6(1):97–112, 1996. (Cited on pages 111, 565, and 572.)
[300] M. A., Delgado, J., Hidalgo and C., Velasco. Bootstrap assisted specification tests for the ARFIMA model. Econometric Theory, 27(5):1083–1116, 2011. (Cited on page 554.)
[301] A., Dembo, C. L., Mallows, and L. A., Shepp. Embedding nonnegative definite Toeplitz matrices in nonnegative definite circulant matrices, with applications to covariance estimation. IEEE Transactions on Information Theory, 35:1206–1212, 1989. (Cited on page 112.)
[302] R., Deo, M., Hsieh, C. M., Hurvich, and P., Soulier. Long memory in nonlinear processes. In Dependence in Probability and Statistics, volume 187 of Lecture Notes in Statist., pages 221–244. New York: Springer, 2006. (Cited on pages 573 and 611.)
[303] R. S., Deo and W. W., Chen. On the integral of the squared periodogram. Stochastic Processes and their Applications, 85(1):159–176, 2000. (Cited on page 554.)
[304] A., Deya, A., Neuenkirch and S., Tindel. A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 48(2):518–550, 2012. (Cited on page 436.)
[305] G., Didier and V., Pipiras. Gaussian stationary processes: adaptive wavelet decompositions, discrete approximations, and their convergence. The Journal of Fourier Analysis and Applications, 14(2):203–234, 2008. (Cited on page 465.)
[306] G., Didier and V., Pipiras. Adaptive wavelet decompositions of stationary time series. Journal of Time Series Analysis, 31(3):182–209, 2010. (Cited on page 465.)
[307] G., Didier and V., Pipiras. Integral representations and properties of operator fractional Brownian motions. Bernoulli, 17(1):1–33, 2011. (Cited on pages 479, 481, 484, and 536.)
[308] G., Didier and V., Pipiras. Exponents, symmetry groups and classification of operator fractional Brownian motions. Journal of Theoretical Probability, 25(2):353–395, 2012. (Cited on pages 494, 495, and 536.)
[309] G., Didier, M. M., Meerschaert, and V., Pipiras. The exponents of operator self-similar random fields. Journal of Mathematical Analysis and Applications, 448(2):1450–1466, 2017. (Cited on pages 509 and 538.)
[310] G., Didier, M. M., Meerschaert, and V., Pipiras. Domain and range symmetries of operator fractional Brownian fields. Preprint, 2016. (Cited on page 538.)
[311] F., Diebold and G., Rudebusch. Long memory and persistence in aggregate output. Journal of Monetary Economics, 24:189–209, 1989. (Cited on page 572.)
[312] F. X., Diebold and A., Inoue. Long memory and regime switching. Journal of Econometrics, 105(1):131–159, 2001. (Cited on pages 162, 222, and 225.)
[313] C. R., Dietrich and G. N., Newsam. A fast and exact simulation for multidimensional Gaussian stochastic simulations. Water Resources Research, 29(8):2861–2869, 1993. (Cited on page 112.)
[314] C. R., Dietrich and G. N., Newsam. Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM Journal on Scientific Computing, 18(4):1088–1107, 1997. (Cited on page 112.)
[315] R. W., Dijkerman and R. R., Mazumdar. On the correlation structure of the wavelet coefficients of fractional Brownian motion. IEEE Trans. Inform. Theory, 40(5):1609–1612, 1994. (Cited on page 112.)
[316] Z., Ding, C. W. J., Granger, and R. F., Engle. A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1):83–106, 1993. (Cited on page 611.)
[317] G. S., Dissanayake, M. S., Peiris, and T., Proietti. State space modeling of Gegenbauer processes with long memory. Computational Statistics and Data Analysis, 2016. (Cited on page 110.)
[318] I., Dittmann and C. W. J., Granger. Properties of nonlinear transformations of fractionally integrated processes. Journal of Econometrics, 110(2):113–133, 2002. Long memory and nonlinear time series, Cardiff, 2000. (Cited on page 344.)
[319] R., Dmowska and B., Saltzman. Long-Range Persistence in Geophysical Time Series. Advances in Geophysics. Elsevier Science, 1999. (Cited on pages 111 and 610.)
[320] R. L., Dobrushin. Gaussian and their subordinated self-similar random generalized fields. The Annals of Probability, 7:1–28, 1979. (Cited on page 281.)
[321] R. L., Dobrushin and P., Major. Non-central limit theorems for nonlinear functionals of Gaussian fields. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 50(1):27–52, 1979. (Cited on pages 280, 343, 344, and 584.)
[322] C., Dombry and N., Guillotin-Plantard. A functional approach for random walks in random sceneries. Electronic Journal of Probability, 14:1495–1512, 2009. (Cited on pages 179 and 226.)
[323] C., Dombry and I., Kaj. The on-off network traffic model under intermediate scaling. Queueing Systems, 69(1):29–44, 2011. (Cited on page 224.)
[324] C., Dombry and I., Kaj. Moment measures of heavy-tailed renewal point processes: asymptotics and applications. ESAIM. Probability and Statistics, 17:567–591, 2013. (Cited on page 224.)
[325] J. L., Doob. Stochastic Processes. Wiley Classics Library. John Wiley & Sons Inc., New York, 1953. Reprint of the 1953 original, a Wiley-Interscience Publication. (Cited on page 476.)
[326] J. A., Doornik and M., Ooms. Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models. Computational Statistics & Data Analysis, 42(3):333–348, 2003. (Cited on pages 539 and 570.)
[327] R., Douc, E., Moulines and D. S., Stoffer. Nonlinear Time Series. Chapman & Hall/CRC Texts in Statistical Science Series. Chapman & Hall/CRC, Boca Raton, FL, 2014. Theory, methods, and applications with R examples. (Cited on page 14.)
[328] P., Doukhan, G., Oppenheim and M. S., Taqqu, editors. Theory and Applications of Long-Range Dependence. Boston: Birkhäuser, 2003. (Cited on page 610.)
[329] P., Driscoll. Smoothness of densities for area-like processes of fractional Brownian motion. Probability Theory and Related Fields, 155(1-2):1–34, 2013. (Cited on page 436.)
[330] R. M., Dudley and R., NorvaiŠa. Concrete Functional Calculus. Springer Monographs in Mathematics. New York: Springer, 2011. (Cited on page 435.)
[331] M., Dueker and R., Startz. Maximum-likelihood estimation of fractional cointegration with an application to US and Canadian bond rates. Review of Economics and Statistics, 80(3):420–426, 1998. (Cited on page 537.)
[332] N. G., Duffield and N., O'Connell. Large deviations and overflow probabilities for the general single-server queue, with applications. Mathematical Proceedings of the Cambridge Philosophical Society, 118(2):363–374, 1995. (Cited on page 611.)
[333] J. A., Duffy. A uniform law for convergence to the local times of linear fractional stable motions. The Annals of Applied Probability, 26(1):45–72, 2016. (Cited on page 111.)
[334] T. E., Duncan. Prediction for some processes related to a fractional Brownian motion. Statistics & Probability Letters, 76(2):128–134, 2006. (Cited on page 395.)
[335] T. E., Duncan. Mutual information for stochastic signals and fractional Brownian motion. IEEE Transactions on Information Theory, 54(10):4432–4438, 2008. (Cited on page 395.)
[336] T. E., Duncan and H., Fink. Corrigendum to “Prediction for some processes related to a fractional Brownian motion”. Statistics & Probability Letters, 81(8):1336–1337, 2011. (Cited on page 395.)
[337] T. E., Duncan, Y., Hu, and B., Pasik-Duncan. Stochastic calculus for fractional Brownian motion. I. Theory. SIAM Journal on Control and Optimization, 38(2):582–612, 2000. (Cited on page 435.)
[338] O., Durieu and Y., Wang. From infinite urn schemes to decompositions of self-similar Gaussian processes. Electronic Journal of Probability, 21, paper no. 43. (Cited on page 226.)
[339] D., Dürr, S., Goldstein, and J. L., Lebowitz. Asymptotics of particle trajectories in infinite one-dimensional systems with collisions. Communications on Pure and Applied Mathematics, 38(5):573–597, 1985. (Cited on pages 163, 165, and 225.)
[340] H., Dym and H. P., McKean. Fourier Series and Integrals. New York: Academic Press, 1972. (Cited on pages 575 and 577.)
[341] K., Dzhaparidze and H., van Zanten. A series expansion of fractional Brownian motion. Probability Theory and Related Fields, 130(1):39–55, 2004. (Cited on pages 463 and 465.)
[342] K., Dzhaparidze and H., van Zanten. Krein's spectral theory and the Paley-Wiener expansion for fractional Brownian motion. The Annals of Probability, 33(2)620–644, 2005. (Cited on pages 455, 456, 459, 460, 461, 462, and 465.)
[343] K., Dzhaparidze and H., van Zanten. Optimality of an explicit series expansion of the fractional Brownian sheet. Statistics & Probability Letters, 71(4):295–301, 2005. (Cited on page 465.)
[344] K., Dzhaparidze, H., van Zanten, and P., Zareba. Representations of fractional Brownian motion using vibrating strings. Stochastic Processes and their Applications, 115(12):1928–1953, 2005. (Cited on page 465.)
[345] M., Eddahbi, R., Lacayo, J. L., Solé, J., Vives, and C. A., Tudor. Regularity of the local time for the d-dimensional fractional Brownian motion with N-parameters. Stochastic Analysis and Applications, 23(2):383–400, 2005. (Cited on page 432.)
[346] E., Eglói. Dilative Stability. PhD thesis, University of Debrecen, 2008. (Cited on page 110.)
[347] T., Ehrhardt and B., Silbermann. Toeplitz determinants with one Fisher-Hartwig singularity. Journal of Functional Analysis, 148(1):229–256, 1997. (Cited on page 211.)
[348] R. J., Elliott and J., van der Hoek. A general fractional white noise theory and applications to finance. Mathematical Finance. An International Journal of Mathematics, Statistics and Financial Economics, 13(2):301–330, 2003. (Cited on page 435.)
[349] C., Ellis and P., Wilson. Another look at the forecast performance of ARFIMA models. International Review of Financial Analysis, 13(1):63–81, 2004. (Cited on page 571.)
[350] P., Embrechts and M., Maejima. Selfsimilar Processes. Princeton Series in Applied Mathematics. Princeton University Press, 2002. (Cited on pages 44, 110, 536, and 610.)
[351] N., Enriquez. A simple construction of the fractional Brownian motion. Stochastic Processes and Their Applications, 109(2):203–223, 2004. (Cited on pages 222 and 224.)
[352] K., Falconer. Fractal Geometry. John Wiley & Sons, Ltd., Chichester, third edition, 2014. Mathematical Foundations and Applications. (Cited on page 612.)
[353] J., Fan and I., Gijbels. Local Polynomial Modelling and its Applications, volume 66 of Monographs on Statistics and Applied Probability. London: Chapman & Hall, 1996. (Cited on page 566.)
[354] V., Fasen. Modeling network traffic by a cluster Poisson input process with heavy and light-tailed file sizes. Queueing Systems, 66(4):313–350, 2010. (Cited on page 224.)
[355] G., Fay and A., Philippe. Goodness-of-fit test for long range dependent processes. European Series in Applied and Industrial Mathematics (ESAIM). Probability and Statistics, 6:239–258 (electronic), 2002. ISSN 1292-8100. New directions in time series analysis (Luminy, 2001). (Cited on page 554.)
[356] G., Faÿ, B., González-Arévalo, T., Mikosch, and G., Samorodnitsky. Modeling teletraffic arrivals by a Poisson cluster process. Queueing Systems, 54(2):121–140, 2006. (Cited on page 224.)
[357] G., Faÿ, E., Moulines, F., Roueff, and M. S., Taqqu. Estimators of long-memory: Fourier versus wavelets. Journal of Econometrics, 151(2):159–177, 2009. (Cited on page 112.)
[358] G., Faÿ, E., Moulines, F., Roueff, and M. S., Taqqu. Estimators of long-memory: Fourier versus wavelets. The Journal of Econometrics, 151(2):159–177, 2009. (Cited on page 574.)
[359] W., Feller. The asymptotic distribution of the range of sums of independent random variables. Annals of Mathematical Statistics, 22:427–432, 1951. (Cited on pages 87 and 111.)
[360] W., Feller. An Introduction to Probability Theory and its Applications. Vol. II. New York: John Wiley & Sons Inc., New York, 1966. (Cited on pages 92 and 561.)
[361] W., Feller. An Introduction to Probability Theory and its Applications. Vol. I, 3rd edition. New York: John Wiley & Sons Inc., New York, 1968. (Cited on pages 35 and 109.)
[362] Y., Feng and J., Beran. Filtered log-periodogram regression of long memory processes. Journal of Statistical Theory and Practice, 3(4):777–793, 2009. (Cited on page 111.)
[363] M., Ferrante and C., Rovira. Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > ½. Bernoulli, 12(1):85–100, 2006. (Cited on page 436.)
[364] H., Fink, C., Klüppelberg, and M., Zähle. Conditional distributions of processes related to fractional Brownian motion. Journal of Applied Probability, 50(1):166–183, 2013. (Cited on page 395.)
[365] M. E., Fisher and R. E., Hartwig. Toeplitz determinants: some applications, theorems, and conjectures. In K. E., Shuler, editor, Advances in Chemical Physics: Stochastic Processes in Chemical Physics, volume 15, pages 333–353. Hoboken, NJ: John Wiley & Sons, Inc., 1968. (Cited on page 211.)
[366] P., Flandrin. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Transactions on Information Theory, 38:910–917, 1992. (Cited on page 112.)
[367] P., Flandrin, P., Borgnat, and P.-O., Amblard. From stationarity to self-similarity, and back: Variations on the Lamperti transformation. In G., Rangarajan and M., Ding, editors, Processes with Long-Range Correlations, pages 88–117. Springer, 2003. (Cited on page 111.)
[368] R., Fox and M. S., Taqqu. Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. The Annals of Statistics, 14:517–532, 1986. (Cited on page 571.)
[369] R., Fox and M. S., Taqqu. Central limit theorems for quadratic forms in random variables having long-range dependence. Probability Theory and Related Fields, 74:213–240, 1987. (Cited on page 571.)
[370] B., Franke and T., Saigo. A self-similar process arising from a random walk with random environment in random scenery. Bernoulli, 16(3):825–857, 2010. (Cited on page 226.)
[371] P., Frederiksen and F. S., Nielsen. Testing for long memory in potentially nonstationary perturbed fractional processes. Journal of Financial Econometrics, page nbs027, 2013. (Cited on page 611.)
[372] P., Frederiksen and M. Ø., Nielsen. Bias-reduced estimation of long-memory stochastic volatility. Journal of Financial Econometrics, 6(4):496–512, 2008. (Cited on page 611.)
[373] P., Frederiksen, F. S., Nielsen, and M. Ø., Nielsen. Local polynomial Whittle estimation of perturbed fractional processes. Journal of Econometrics, 167(2):426–447, 2012. (Cited on page 611.)
[374] M. P., Frías, M. D., Ruiz-Medina, F. J., Alonso, and J. M., Angulo. Spatiotemporal generation of long-range dependence models and estimation. Environmetrics, 17(2):139–146, 2006. (Cited on page 538.)
[375] M. P., Frías, F. J., Alonso, M. D., Ruiz-Medina, and J. M., Angulo. Semiparametric estimation of spatial long-range dependence. Journal of Statistical Planning and Inference, 138(5):1479–1495, 2008. (Cited on page 537.)
[376] M. P., Frías, M. D., Ruiz-Medina, F. J., Alonso, and J. M., Angulo. Spectral-marginal-based estimation of spatiotemporal long-range dependence. Communications in Statistics. Theory and Methods, 38(1-2):103–114, 2009. (Cited on page 538.)
[377] Y., Fyodorov, B., Khoruzhenko and N., Simm. Fractional Brownian motion with Hurst index H = 0 and the Gaussian Unitary Ensemble. The Annals of Probability, 44(4):2980–3031, 2016. (Cited on page 110.)
[378] V. J., Gabriel and L. F., Martins. On the forecasting ability of ARFIMA models when infrequent breaks occur. The Econometrics Journal, 7(2):455–475, 2004. (Cited on page 573.)
[379] R., Gaigalas. A Poisson bridge between fractional Brownian motion and stable Lévy motion. Stochastic Processes and their Applications, 116(3):447–462, 2006. (Cited on page 145.)
[380] R., Gaigalas and I., Kaj. Convergence of scaled renewal processes and a packet arrival model. Bernoulli, 9(4):671–703, 2003. (Cited on pages 145 and 224.)
[381] F. R., Gantmacher. The Theory of Matrices. Vols. 1, 2. Translated by K. A., Hirsch. New York: Chelsea Publishing Co., 1959. (Cited on page 494.)
[382] M. J., Garrido-Atienza, P. E., Kloeden, and A., Neuenkirch. Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion. Applied Mathematics and Optimization. An International Journal with Applications to Stochastics, 60(2):151–172, 2009. (Cited on page 436.)
[383] D., Gasbarra, T., Sottinen and E., Valkeila. Gaussian bridges. In Stochastic analysis and applications, volume 2 of Abel Symp., pages 361–382. Berlin: Springer, 2007. (Cited on page 395.)
[384] D., Geman and J., Horowitz. Occupation densities. The Annals of Probability, 8(1):1–67, 1980. (Cited on pages 430, 433, and 436.)
[385] J. E., Gentle. Numerical Linear Algebra for Applications in Statistics. Statistics and Computing. New York: Springer-Verlag, 1998. (Cited on page 542.)
[386] M. G., Genton, O., Perrin and M. S., Taqqu. Self-similarity and Lamperti transformation for random fields. Stochastic Models, 23(3):397–411, 2007. (Cited on page 111.)
[387] J., Geweke and S., Porter-Hudak. The estimation and application of long memory time series models. Journal of Time Series Analysis, 4(4):221–238, 1983. (Cited on pages 89 and 111.)
[388] A. P., Ghosh, A., Roitershtein and A., Weerasinghe. Optimal control of a stochastic processing system driven by a fractional Brownian motion input. Advances in Applied Probability, 42(1):183–209, 2010. (Cited on page 436.)
[389] H., Gilsing and T., Sottinen. Power series expansions for fractional Brownian motions. Theory of Stochastic Processes, 9(3-4):38–49, 2003. (Cited on page 465.)
[390] M. S., Ginovian. On Toeplitz type quadratic functionals of stationary Gaussian processes. Probability Theory and Related Fields, 100(3):395–406, 1994. (Cited on page 571.)
[391] M. S., Ginovyan and A. A., Sahakyan. Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes. Probability Theory and Related Fields, 138(3-4):551–579, 2007. (Cited on page 571.)
[392] L., Giraitis. Central limit theorem for functionals of a linear process. Lithuanian Mathematical Journal, 25:25–35, 1985. (Cited on page 343.)
[393] L., Giraitis. Central limit theorem for polynomial forms I. Lithuanian Mathematical Journal, 29:109–128, 1989. (Cited on page 343.)
[394] L., Giraitis. Central limit theorem for polynomial forms II. Lithuanian Mathematical Journal, 29:338–350, 1989. (Cited on page 343.)
[395] L., Giraitis and P.M., Robinson. Edgeworth expansions for semiparametric Whittle estimation of long memory. The Annals of Statistics, 31(4):1325–1375, 2003. (Cited on page 572.)
[396] L., Giraitis and D., Surgailis. CLT and other limit theorems for functionals of Gaussian processes. Probability Theory and Related Fields, 70:191–212, 1985. (Cited on page 343.)
[397] L., Giraitis and D., Surgailis. Multivariate Appell polynomials and the central limit theorem. In E., Eberlein and M. S., Taqqu, editors, Dependence in Probability and Statistics, pages 21–71. New York: Birkhäuser, 1986. (Cited on page 343.)
[398] L., Giraitis and D., Surgailis. Limit theorem for polynomials of linear processes with long range dependence. Lietuvos Matematikos Rinkinys, 29:128–145, 1989. (Cited on page 343.)
[399] L., Giraitis and D., Surgailis. A central limit theorem for quadratic forms in strongly dependent linear variables and application to asymptotical normality of Whittle's estimate. Probability Theory and Related Fields, 86:87–104, 1990. (Cited on page 571.)
[400] L., Giraitis and D., Surgailis. Central limit theorem for the empirical process of a linear sequence with long memory. Journal of Statistical Planning and Inference, 80(1-2):81–93, 1999. (Cited on page 344.)
[401] L., Giraitis and M. S., Taqqu. Central limit theorems for quadratic forms with time-domain conditions. The Annals of Probability, 26:377–398, 1998. (Cited on page 571.)
[402] L., Giraitis and M., S. Taqqu. Whittle estimator for finite-variance non-Gaussian time series with long memory. The Annals of Statistics, 27(1):178–203, 1999. (Cited on page 571.)
[403] L., Giraitis, P. M., Robinson, and A., Samarov. Rate optimal semiparametric estimation of the memory parameter of the Gaussian time series with long range dependence1. Journal of Time Series Analysis, 18(1):49–60, 1997. (Cited on page 572.)
[404] L., Giraitis, P. M., Robinson, and A., Samarov. Adaptive semiparametric estimation of the long memory parameter. Journal of Multivariate Analysis, 72:183–207, 2000. (Cited on page 572.)
[405] L., Giraitis, P., Kokoszka, R., Leipus, and G., Teyssière. Rescaled variance and related tests for long memory in volatility and levels. Journal of Econometrics, 112(2):265–294, 2003. (Cited on page 111.)
[406] L., Giraitis, H. L., Koul, and D., Surgailis. Large Sample Inference for Long Memory Processes. London: Imperial College Press, 2012. (Cited on pages 310, 311, 325, 539, 545, 546, 547, 549, 550, 571, 573, and 610.)
[407] R., Gisselquist. A continuum of collision process limit theorems. The Annals of Probability, 1:231–239, 1973. (Cited on pages 163 and 225.)
[408] A., Gloter and M., Hoffmann. Stochastic volatility and fractional Brownian motion. Stochastic Processes and their Applications, 113(1):143–172, 2004. (Cited on page 436.)
[409] B. V., Gnedenko and A. N., Kolmogorov. Limit distributions for sums of independent random variables. Readiing, MA: Addison-Wesley, 1954. (Cited on page 586.)
[410] A., Gnedin, B., Hansen and J., Pitman. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws. Probability Surveys, 4:146–171, 2007. (Cited on page 228.)
[411] T., Gneiting. Power-law correlations, related models for long-range dependence and their simulation. Journal of Applied Probability, 37(4):1104–1109, 2000. (Cited on page 112.)
[412] T., Gneiting and M., Schlather. Stochastic models that separate fractal dimension and the Hurst effect. SIAM Review, 46(2):269–282 (electronic), 2004. (Cited on page 538.)
[413] T., Gneiting, H., Ševčíková, D. B., Percival, M., Schlather, and Y., Jiang. Fast and exact simulation of large Gaussian lattice systems in R2: Exploring the limits. Journal of Computational and Graphical Statistics, 15(3):483–501, 2006. (Cited on page 112.)
[414] F., Godet. Linear prediction of long-range dependent time series. ESAIM. Probability and Statistics, 13:115–134, 2009. ISSN 1292-8100. (Cited on page 571.)
[415] F., Godet. Prediction of long memory processes on same-realisation. Journal of Statistical Planning and Inference, 140(4):907–926, 2010. (Cited on page 571.)
[416] I., Gohberg, S., Goldberg and M. A., Kaashoek. Basic Classes of Linear Operators. Basel: Birkhäuser Verlag, 2003. (Cited on page 438.)
[417] E., Gonçalves and C., Gouriéroux. Agrégation de processus autorégressifs d'ordre 1. Annales d’Économie et de Statistique, 12:127–149, 1988. (Cited on page 223.)
[418] V. V., Gorodetskii. On convergence to semi-stable Gaussian processes. Theory of Probability and its Applications, 22:498–508, 1977. (Cited on page 111.)
[419] M., Gradinaru and I., Nourdin. Milstein's type schemes for fractional SDEs. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 45(4):1085–1098, 2009. (Cited on page 436.)
[420] M., Gradinaru, F., Russo and P., Vallois. Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H ≥ ¼. The Annals of Probability, 31(4):1772–1820, 2003. (Cited on page 435.)
[421] I. S., Gradshteyn and I. M., Ryzhik. Table of Integrals, Series, and Products, 7th edition. Amsterdam: Elsevier/Academic Press, 2007. Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX). (Cited on pages 27, 30, 38, 50, 93, 98, 214, 295, 389, 489, 501, 533, and 550.)
[422] C. W. J., Granger. Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14(2):227–238, 1980. (Cited on page 223.)
[423] C. W. J., Granger and N., Hyung. Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. Journal of Empirical Finance, 11(3):399–421, 2004. (Cited on page 225.)
[424] C. W. J., Granger and R., Joyeux. An introduction to long-memory time series and fractional differencing. Journal of Time Series Analysis, 1:15–30, 1980. (Cited on page 109.)
[425] T., Graves, R. B., Gramacy, C. L. E., Franzke, and N. W., Watkins. Efficient Bayesian inference for ARFIMA processes. Nonlinear Processes in Geophysics, 22:679–700, 2015. (Cited on page 573.)
[426] T., Graves, R. B., Gramacy, N. W., Watkins, and C. L., E. Franzke. A brief history of long memory: Hurst, Mandelbrot and the road to ARFIMA. Preprint, 2016. (Cited on page 109.)
[427] H. L., Gray, N.-F., Zhang, and W. A., Woodward. On generalized fractional processes. Journal of Time Series Analysis, 10(3):233–257, 1989. (Cited on page 110.)
[428] H. L., Gray, N.-F., Zhang, and W. A., Woodward. A correction: “On generalized fractional processes” [J. Time Ser. Anal. 10 (1989), no. 3, 233–257. Journal of Time Series Analysis, 15(5):561–562, 1994. (Cited on page 110.)
[429] U., Grenander. Abstract Inference. New York: John Wiley & Sons, 1981. (Cited on pages 384 and 385.)
[430] U., Grenander and G., Szegö. Toeplitz Forms and their Applications. California Monographs in Mathematical Sciences. Berkeley: University of California Press, 1958. (Cited on page 337.)
[431] M., Grigoriu. Simulation of stationary non-Gaussian translation processes. Journal of Engineering Mechanics, 124(2):121–126, 1998. (Cited on page 344.)
[432] G., Gripenberg. White and colored Gaussian noises as limits of sums of random dilations and translations of a single function. Electronic Communications in Probability, 16:507–516, 2011. (Cited on page 465.)
[433] G., Gripenberg and I., Norros. On the prediction of fractional Brownian motion. Journal of Applied Probability, 33:400–410, 1996. (Cited on page 395.)
[434] S. D., Grose, G. M., Martin, and D. S., Poskitt. Bias correction of persistence measures in fractionally integrated models. Journal of Time Series Analysis, 36(5):721–740, 2015. (Cited on page 574.)
[435] P., Guasoni. No arbitrage under transaction costs, with fractional Brownian motion and beyond. Mathematical Finance. An International Journal of Mathematics, Statistics and Financial Economics, 16(3):569–582, 2006. (Cited on page 435.)
[436] J. A., Gubner. Theorems and fallacies in the theory of long-range-dependent processes. IEEE Transactions on Information Theory, 51(3):1234–1239, 2005. (Cited on pages 27 and 106.)
[437] D., Guégan. How can we define the concept of long memory? An econometric survey. Econometric Reviews, 24(2):113–149, 2005. (Cited on page 109.)
[438] C. A., Guerin, H., Nyberg, O., Perrin, S., Resnick, H., Rootzén, and C., Stărică. Empirical testing of the infinite source Poisson data traffic model. Stochastic Models, 19:56–199, 2003. (Cited on pages 121 and 224.)
[439] P., Guggenberger and Y., Sun. Bias-reduced log-periodogram and Whittle estimation of the long-memory parameter without variance inflation. Econometric Theory, 22(5):863–912, 2006. ISSN 0266-4666. (Cited on pages 111, 572, and 573.)
[440] H., Guo, C. Y., Lim, and M. M., Meerschaert. Local Whittle estimator for anisotropic random fields. Journal of Multivariate Analysis, 100(5):993–1028, 2009. (Cited on pages 529 and 537.)
[441] A., Gupta and S., Joshi. Some studies on the structure of covariance matrix of discrete-time fBm. IEEE Transactions on Signal Processing, 56(10, part 1):4635–4650, 2008. (Cited on page 464.)
[442] A., Gut. Probability: A Graduate Course. Springer Texts in Statistics. New York: Springer, 2005. (Cited on pages 300, 314, and 317.)
[443] B., Haas and G., Miermont. Self-similar scaling limits of non-increasing Markov chains. Bernoulli, 17(4):1217–1247, 2011. (Cited on page 612.)
[444] M., Hairer. Ergodicity of stochastic differential equations driven by fractional Brownian motion. The Annals of Probability, 33(2):03–758, 2005. (Cited on page 436.)
[445] M., Hairer. Solving the KPZ equation. Annals of Mathematics. Second Series, 178(2):559–664, 2013. (Cited on page 227.)
[446] M., Hairer and N. S., Pillai. Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. The Annals of Probability, 41(4):2544–2598, 2013. (Cited on page 436.)
[447] P., Hall, B.-Y., Jing, and S. N., Lahiri. On the sampling window method for long-range dependent data. Statistica Sinica, 8(4):1189–1204, 1998. (Cited on page 573.)
[448] K. H., Hamed. Improved finite-sample hurst exponent estimates using rescaled range analysis. Water Resources Research, 43(4), 2007. (Cited on page 111.)
[449] A., Hammond and S., Sheffield. Power law Pólya's urn and fractional Brownian motion. Probability Theory and Related Fields, 157(3-4):691–719, 2013. (Cited on pages 172, 173, 177, and 226.)
[450] E. J., Hannan. Multiple Time Series. John Wiley and Sons, Inc., 1970. (Cited on pages 470, 471, 478, and 479.)
[451] E. J., Hannan. The asymptotic theory of linear time series models. Journal of Applied Probability, 10:130–145, 1973. (Cited on page 570.)
[452] E. J., Hannan and B. G., Quinn. The determination of the order of an autoregression. Journal of the Royal Statistical Society. Series B. Methodological, 41(2):190–195, 1979. (Cited on page 552.)
[453] T., Hara. Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. The Annals of Probability, 36(2):530–593, 2008. (Cited on page 227.)
[454] G. H., Hardy. Weierstrass's non-differentiable function. Transactions of the American Mathematical Society, 17:322–323, 1916. (Cited on page 216.)
[455] T. E., Harris. Diffusion with “collisions” between particles. Journal of Applied Probability, 2:323–338, 1965. (Cited on pages 163 and 225.)
[456] T. E., Harris. A correlation inequality for Markov processes in partially ordered state spaces. The Annals of Probability, 5(3):451–454, 1977. (Cited on page 172.)
[457] A. C., Harvey. 16 - long memory in stochastic volatility. In J., Knight and S., Satchell, editors, Forecasting Volatility in the Financial Markets (Third Edition), Quantitative Finance, pages 351–363. Oxford: Butterworth-Heinemann, 2007. (Cited on page 572.)
[458] J., Haslett and A. E., Raftery. Space-time modelling with long-memory dependence: assessing Ireland's wind power resource. Applied Statistics, 38:1–50, 1989. Includes discussion. (Cited on page 572.)
[459] U., Hassler and M., Olivares. Semiparametric inference and bandwidth choice under long memory: experimental evidence. İstatistik. Journal of the Turkish Statistical Association, 6(1):27–41, 2013. (Citedonpage 572.)
[460] U., Hassler, P. M. M., Rodrigues, and A., Rubia. Testing for general fractional integration in the time domain. Econometric Theory, 25(6):1793–1828, 2009. (Cited on page 574.)
[461] M. A., Hauser. Maximum likelihood estimators for ARMA and ARFIMA models: a Monte Carlo study. Journal of Statistical Planning and Inference, 80(1-2):229–255, 1999. (Cited on pages 550 and 571.)
[462] D., Heath, S., Resnick and G., Samorodnitsky. Heavy tails and long range dependence in on/off processes and associated fluid models. Mathematics of Operations Research, 23:146–165, 1998. (Cited on page 224.)
[463] H., Helgason, V., Pipiras and P., Abry. Fast and exact synthesis of stationary multivariate Gaussian time series using circulant embedding. Signal Processing, 91(5):1123–1133, 2011. (Cited on pages 112 and 470.)
[464] H., Helgason, V., Pipiras and P., Abry. Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding. Signal Processing, 91:1741–1758, 2011. (Cited on pages 339 and 344.)
[465] H., Helgason, V., Pipiras and P., Abry. Fast and exact synthesis of stationary multivariate Gaussian time series using circulant embedding. Signal Processing, 91(5):1123–1133, 2011. (Cited on page 486.)
[466] H., Helgason, V., Pipiras and P., Abry. Smoothing windows for the synthesis of Gaussian stationary random fields using circulant matrix embedding. Journal of Computational and Graphical Statistics, 23(3):616–635, 2014. (Cited on page 112.)
[467] P., Henrici. Applied and Computational Complex Analysis. New York: Wiley-Interscience [John Wiley & Sons], 1974. Volume 1: Power series—integration—conformal mapping—location of zeros, Pure and Applied Mathematics. (Cited on page 340.)
[468] M., Henry. Robust automatic bandwidth for long memory. Journal of Time Series Analysis, 22(3):293–316, 2001. (Cited on pages 565 and 572.)
[469] M., Henry. Bandwidth choice, optimal rates and adaptivity in semiparametric estimation of long memory. In Long Memory in Economics, pages 157–172. Berlin: Springer, 2007. (Cited on page 572.)
[470] M., Henry and P. M., Robinson. Bandwidth choice in Gaussian semiparametric estimation of long range dependence. In P. M., Robinson and M., Rosenblatt, editors, Athens Conference on Applied Probability and Time Series Analysis. Volume II: Time Series Analysis in Memory of E. J. Hannan, pages 220–232, New York: Springer-Verlag, 1996. Lecture Notes in Statistics, 115. (Cited on pages 565 and 572.)
[471] E., Herbin and E., Merzbach. Stationarity and self-similarity characterization of the set-indexed fractional Brownian motion. Journal of Theoretical Probability, 22(4):1010–1029, 2009. (Cited on page 537.)
[472] C. C., Heyde. On modes of long-range dependence. Journal of Applied Probability, 39(4): 882–888, 2002. (Cited on page 109.)
[473] C. C., Heyde and R., Gay. Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence. Stochastic Processes and their Applications, 45:169–182, 1993. (Cited on page 571.)
[474] J., Hidalgo and Y., Yajima. Semiparametric estimation of the long-range parameter. Annals of the Institute of Statistical Mathematics, 55(4):705–736, 2003. (Cited on page 572.)
[475] N. J., Higham. Functions of Matrices. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2008. Theory and computation. (Cited on page 480.)
[476] H. C., Ho and T., Hsing. On the asymptotic expansion of the empirical process of long memory moving averages. The Annals of Statistics, 24:992–1024, 1996. (Cited on page 344.)
[477] H. C., Ho and T., Hsing. Limit theorems for functionals of moving averages. The Annals of Probability, 25:1636–1669, 1997. (Cited on pages 313, 315, and 344.)
[478] H. C., Ho and T. C., Sun. A central limit theorem for non-instantaneous filters of a stationary Gaussian process. Journal of Multivariate Analysis, 22:144–155, 1987. (Cited on pages 343 and 344.)
[479] N., Hohn, D., Veitch and P., Abry. Cluster processes: a natural language for network traffic. IEEE Transactions on Signal Processing, 51(8):2229–2244, 2003. (Cited on page 224.)
[480] S., Holan, T., McElroy, and So., Chakraborty. A Bayesian approach to estimating the long memory parameter. Bayesian Analysis, 4(1):159–190, 2009. (Cited on page 573.)
[481] R., Holley and D. W., Stroock. Central limit phenomena of various interacting systems. Annals of Mathematics. Second Series, 110(2):333–393, 1979. (Cited on page 226.)
[482] R., Horn and C., Johnson. Topics in Matrix Analysis. New York, NY: Cambridge University Press, 1991. (Cited on pages 467, 468, and 480.)
[483] L., Horváth and Q.-M., Shao. Limit theorems for quadratic forms with applications to Whittle's estimate. The Annals of Applied Probability, 9(1):146–187, 1999. (Cited on page 571.)
[484] J. R. M., Hosking. Fractional differencing. Biometrika, 68(1):165–176, 1981. (Cited on pages 43 and 109.)
[485] J. R. M., Hosking. Modeling persistence in hydrological time series using fractional differencing. Water Resources Research, 20:1898–1908, 1984. (Cited on pages 556 and 572.)
[486] J. R. M., Hosking. Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series. Journal of Econometrics, 73(1):261–284, 1996. (Cited on page 574.)
[487] Y., Hosoya. The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence. Journal of Econometrics, 73:217–236, 1996. (Cited on page 571.)
[488] C., Houdré and V., Pérez-Abreu, editors. Chaos expansions, multiple Wiener-Itô integrals and their applications. Probability and Stochastics Series. Boca Raton, FL: CRC Press, 1994. Papers from the workshop held in Guanajuato, July 27–31, 1992. (Cited on page 610.)
[489] C., Houdré and J., Villa. An example of infinite dimensional quasi-helix. In Stochastic models (Mexico City, 2002), volume 336 of Contemp. Math., pages 195–201. Providence, RI: Amer. Math. Soc., 2003. (Cited on pages 54, 55, and 110.)
[490] T., Hsing. Linear processes, long-range dependence and asymptotic expansions. Statistical Inference for Stochastic Processes, 3 (1-2): 19–29, 2000. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). (Cited on page 344.)
[491] Y., Hu. Integral transformations and anticipative calculus for fractional Brownian motions. Memoirs of the American Mathematical Society, 175(825), 2005. (Cited on page 436.)
[492] Y., Hu and B., Øksendal. Chaos expansion of local time of fractional Brownian motions. Stochastic Analysis and Applications, 20(4):815–837, 2002. (Cited on pages 432 and 436.)
[493] Y., Hu and B., Øksendal. Fractional white noise calculus and applications to finance. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6(1):1–32, 2003. (Cited on page 435.)
[494] Y., Hu, J., Huang, D., Nualart and S., Tindel. Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electronic Journal of Probability, 20:no. 55, 50 pp. (electronic), 2003. (Cited on page 227.)
[495] Y., Hu, Y., Liu and D., Nualart. Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions. The Annals of Applied Probability, 26(2):1147–1207, 2016. (Cited on pages 418, 419, and 424.)
[496] Y., Hu, D., Nualart, S., Tindel and F., Xu. Density convergence in the Breuer-Major theorem for Gaussian stationary sequences. Bernoulli, 21(4):2336–2350, 2015. (Cited on page 343.)
[497] J., Hualde and P. M., Robinson. Semiparametric inference in multivariate fractionally cointegrated systems. Journal of Econometrics, 157(2):492–511, 2010. (Cited on page 537.)
[498] J., Hualde and P. M., Robinson. Gaussian pseudo-maximum likelihood estimation of fractional time series models. The Annals of Statistics, 39(6):3152–3181, 2011. (Cited on page 551.)
[499] W. N., Hudson and J. D., Mason. Operator-self-similar processes in a finite-dimensional space. Transactions of the American Mathematical Society, 273(1):281–297, 1982. (Cited on pages 493 and 536.)
[500] Y., Huh, J.S., Kim, S. H., Kim, and M.W., Suh. Characterizing yarn thickness variation by correlograms. Fibers and Polymers, 6(1):66–71, 2005. (Cited on page 225.)
[501] H. E., Hurst. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116:770–779, 1951. (Cited on pages 84, 108, and 111.)
[502] C. M., Hurvich. Model selection for broadband semiparametric estimation of long memory in time series. Journal of Time Series Analysis, 22(6):679–709, 2001. (Cited on page 573.)
[503] C. M., Hurvich. Multistep forecasting of long memory series using fractional exponential models. International Journal of Forecasting, 18(2):167–179, 2002. (Cited on page 571.)
[504] C. M., Hurvich and K. I., Beltrao. Automatic semiparametric estimation of the memory parameter of a long-memory time series. Journal of Time Series Analysis, 15:285–302, 1994. (Cited on page 573.)
[505] C. M., Hurvich and J., Brodsky. Broadband semiparametric estimation of the memory parameter of a long-memory time series using fractional exponential models. Journal of Time Series Analysis, 22(2):221–249, 2001. (Cited on page 573.)
[506] C. M., Hurvich and W. W., Chen. An efficient taper for potentially overdifferenced long-memory time series. Journal of Time Series Analysis, 21(2):155–180, 2000. (Cited on page 566.)
[507] C. M., Hurvich and R. S., Deo. Plug-in selection of the number of frequencies in regression estimates of the memory parameter of a long-memory time series. Journal of Time Series Analysis, 20:331–341, 1999. (Cited on pages 111 and 573.)
[508] C. M., Hurvich and B. K., Ray. Estimation of the memory parameter for nonstationary or noninvertible fractionally integrated processes. Journal of Time Series Analysis, 16(1):17–41, 1995. (Cited on page 573.)
[509] C. M., Hurvich and B. K., Ray. The local Whittle estimator of long-memory stochastic volatility. Journal of Financial Econometrics, 1(3):445–470, 2003. (Cited on page 611.)
[510] C. M., Hurvich, R., Deo and J., Brodsky. The mean squared error of Geweke and Porter-Hudak's estimator of the memory parameter of a long-memory time series. Journal of Time Series Analysis, 19:19–46, 1998. (Cited on pages 111 and 573.)
[511] C. M., Hurvich, E., Moulines and P., Soulier. The FEXP estimator for potentially non-stationary linear time series. Stochastic Processes and their Applications, 97(2):307–340, 2002. (Cited on page 573.)
[512] C. M., Hurvich, E., Moulines and P., Soulier. Estimating long memory in volatility. Econometrica, 73(4):1283–1328, 2005. (Cited on page 611.)
[513] F., Iacone. Local Whittle estimation of the memory parameter in presence of deterministic components. Journal of Time Series Analysis, 31(1):37–49, 2010. (Cited on pages 225 and 573.)
[514] I. A., Ibragimov. An estimate for the spectral function of a stationary Gaussian process. Teor. Verojatnost. i Primenen, 8:391–430, 1963. (Cited on page 343.)
[515] I. A., Ibragimov and Yu. V., Linnik. Independent and Stationary Sequences of Random Variables. The Netherlands: Wolters-Nordhoff, 1971. (Cited on pages 583 and 586.)
[516] SAS Institute Inc. SAS/IML 9.2 Users Guide. Cary, NC: SAS Institute Inc., 2008. (Cited on page 572.)
[517] C.-K., Ing, H.-T., Chiou, and M., Guo. Estimation of inverse autocovariance matrices for long memory processes. Bernoulli, 22(3):1301–1330, 2016. (Cited on page 574.)
[518] A., Inoue. Abel-Tauber theorems for Fourier-Stieltjes coefficients. Journal of Mathematical Analysis and Applications, 211(2):460–480, 1997. (Cited on page 109.)
[519] A., Inoue. Asymptotic behavior for partial autocorrelation functions of fractional ARIMA processes. The Annals of Applied Probability, 12(4):1471–1491, 2002. (Cited on page 555.)
[520] A., Inoue. AR and MA representation of partial autocorrelation functions, with applications. Probability Theory and Related Fields, 140(3-4):523–551, 2008. (Cited on page 109.)
[521] A., Inoue and Y., Kasahara. Explicit representation of finite predictor coefficients and its applications. The Annals of Statistics, 34(2):973–993, 2006. (Cited on page 571.)
[522] A., Inoue, Y., Nakano and V., Anh. Linear filtering of systems with memory and application to finance. Journal of Applied Mathematics and Stochastic Analysis. JAMSA, pages Art. ID 53104, 26, 2006. (Cited on page 395.)
[523] A., Iouditsky, E., Moulines and P., Soulier. Adaptive estimation of the fractional differencing coefficient. Bernoulli, 7(5):699–731, 2001. (Cited on page 573.)
[524] K., Itô. Multiple Wiener integral. Journal of the Mathematical Society of Japan, 3:157–169, 1951. (Cited on page 280.)
[525] A. V., Ivanov and N. N., Leonenko. Statistical Analysis of Random Fields.Dordrecht/Boston/London: Kluwer Academic Publishers, 1989. Translated from the Russian, 1986 edition. (Cited on page 344.)
[526] A., Jach and P., Kokoszka. Wavelet-domain test for long-range dependence in the presence of a trend. Statistics. A Journal of Theoretical and Applied Statistics, 42(2):101–113, 2008. (Cited on page 225.)
[527] S., Jaffard, B., Lashermes and P., Abry. Wavelet leaders in multifractal analysis. In Wavelet analysis and applications, Appl. Numer. Harmon. Anal., pages 201–246. Basel: Birkhäuser, 2007. (Cited on page 612.)
[528] S., Jaffard, C., Melot, R., Leonarduzzi, H., Wendt, P., Abry, S. G., Roux, and M. E., Torres. p-exponent and p-leaders, part i: Negative pointwise regularity. Physica A: Statistical Mechanics and its Applications, 448:300–318, 2016. (Cited on page 612.)
[529] S., Janson. Gaussian Hilbert Spaces, volume 129 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 1997. (Cited on pages 276, 281, and 610.)
[530] M. D., Jara. Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Communications on Pure and Applied Mathematics, 62(2):198–214, 2009. (Cited on page 226.)
[531] M. D., Jara and T., Komorowski. Limit theorems for some continuous-time random walks. Advances in Applied Probability, 43(3):782–813, 2011. (Cited on page 228.)
[532] M. D., Jara and C., Landim. Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 42(5):567–577, 2006. (Cited on page 226.)
[533] M. D., Jara, C., Landim and S., Sethuraman. Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes. Probability Theory and Related Fields, 145(3-4):565–590, 2009. (Cited on page 226.)
[534] S., Johansen and M. Ø., Nielsen. Likelihood inference for a nonstationary fractional autoregressive model. Journal of Econometrics, 158(1):51–66, 2010. (Cited on page 537.)
[535] S., Johansen and M. Ø., Nielsen. Likelihood inference for a fractionally cointegrated vector autoregressive model. Econometrica, 80(6):2667–2732, 2012. (Cited on page 537.)
[536] M., Jolis and N., Viles. Continuity in the Hurst parameter of the law of the Wiener integral with respect to the fractional Brownian motion. Statistics & Probability Letters, 80(7-8):566–572, 2010. (Cited on page 395.)
[537] C., Jost. On the connection between Molchan-Golosov and Mandelbrot-Van Ness representations of fractional Brownian motion. Journal of Integral Equations and Applications, 20(1):93–119, 2008. (Citedonpage 395.)
[538] G., Jumarie. Stochastic differential equations with fractional Brownian motion input. International Journal of Systems Science, 24(6):1113–1131, 1993. (Cited on page 435.)
[539] P., Jung and G., Markowsky. Random walks at random times: convergence to iterated Lévy motion, fractional stable motions, and other self-similar processes. The Annals of Probability, 41(4):2682–2708, 2013. (Cited on page 226.)
[540] P., Jung and G., Markowsky. Hölder continuity and occupation-time formulas for fBm self-intersection local time and its derivative. Journal of Theoretical Probability, 28(1):299–312, 2015. (Citedonpage 436.)
[541] P., Jung, T., Owada and G., Samorodnitsky. Functional central limit theorem for negatively dependent heavy-tailed stationary infinitely divisible processes generated by conservative flows. Preprint, 2015. (Cited on page 228.)
[542] Z. J., Jurek and J. D., Mason. Operator-Limit Distributions in Probability Theory. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: John Wiley & Sons Inc., 1993. A Wiley-Interscience Publication. (Cited on pages 494 and 535.)
[543] T., Kaarakka and P., Salminen. On fractional Ornstein-Uhlenbeck processes. Communications on Stochastic Analysis, 5(1):121–133, 2011. (Cited on page 395.)
[544] J.-P., Kahane and J., Peyrière. Sur certaines martingales de Benoit Mandelbrot. Advances in Mathematics, 22(2):131–145, 1976. (Cited on page 612.)
[545] I., Kaj. Stochastic Modeling in Broadband Communications Systems. SIAM Monographs on Mathematical Modeling and Computation. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2002. (Cited on page 224.)
[546] I., Kaj and M. S., Taqqu. Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In In and out of equilibrium. 2, volume 60 of Progr. Probab., pages 383–427. Basel: Birkhäuser, 2008. (Cited on pages 149 and 224.)
[547] I., Kaj, L., Leskelä, I., Norros, and V., Schmidt. Scaling limits for random fields with long-range dependence. The Annals of Probability, 35(2):528–550, 2007. (Cited on page 224.)
[548] A., Kamont. On the fractional anisotropic Wiener field. Probability and Mathematical Statistics, 16(1):85–98, 1996. (Cited on page 537.)
[549] I., Karatzas and S. E., Shreve. Brownian Motion and Stochastic Calculus, 2nd edition, volume 113 of Graduate Texts in Mathematics. New York: Springer-Verlag, 1991. (Cited on pages 14 and 452.)
[550] S., Kechagias and V., Pipiras. Identification, estimation and applications of a bivariate long-range dependent time series model with general phase. Preprint, 2015. (Cited on pages 502 and 536.)
[551] S., Kechagias and V., Pipiras. Definitions and representations of multivariate long-range dependent time series. Journal of Time Series Analysis, 36(1):1–25, 2015. (Cited on pages 470, 502, 535, and 536.)
[552] M., Kendall and A., Stuart. The Advanced Theory of Statistics. Vol. 1, 4th edition. New York: Macmillan Publishing Co., Inc., 1977. Distribution Theory. (Cited on page 332.)
[553] H., Kesten and F., Spitzer. A limit theorem related to a new class of self-similar processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 50:5–25, 1979. (Cited on pages 177 and 226.)
[554] H., Kesten, M. V., Kozlov, and F., Spitzer. A limit law for random walk in a random environment. Compositio Mathematica, 30:145–168, 1975. (Cited on page 178.)
[555] C. S., Kim and P. C., Phillips. Log periodogram regression: the nonstationary case, 2006. Cowles Foundation Discussion Paper. (Cited on page 111.)
[556] Y. M., Kim and D. J., Nordman. Properties of a block bootstrap under long-range dependence. Sankhya A. Mathematical Statistics and Probability, 73(1):79–109, 2011. (Cited on page 574.)
[557] Y. M., Kim and D. J., Nordman. A frequency domain bootstrap for Whittle estimation under long-range dependence. J. Multivariate Anal., 115:405–420, 2013. (Cited on page 574.)
[558] J. F. C., Kingman. Poisson Processes, volume 3 of Oxford Studies in Probability. New York:The Clarendon Press Oxford University Press, 1993. Oxford Science Publications. (Cited on pages 125, 127, 593, and 594.)
[559] C., Kipnis. Central limit theorems for infinite series of queues and applications to simple exclusion. The Annals of Probability, 14(2):397–408, 1986. (Cited on page 226.)
[560] C., Kipnis and S. R. S., Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Communications in Mathematical Physics, 104(1):1–19, 1986. (Cited on page 226.)
[561] J., Klafler and I. M., Sokolov. Anomalous diffusion spreads its wings. Physics World, 18 (8): 29–32, 2005. (Cited on page 227.)
[562] F. C., Klebaner. Introduction to Stochastic Calculus with Applications, 2nd edition. London: Imperial College Press, 2005. (Cited on page 382.)
[563] V, KlemeŠ. The Hurst pheomenon: a puzzle? Water Resources Research, 10(4):675–688, 1974. (Cited on pages 111 and 225.)
[564] M. L., Kleptsyna and A., Le Breton. Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises. Statistical Inference for Stochastic Processes, 5(3):249–271, 2002. (Cited on page 395.)
[565] M. L., Kleptsyna, P. E., Kloeden, and V. V., Anh. Linear filtering with fractional Brownian motion. Stochastic Analysis and Applications, 16(5):907–914, 1998. (Cited on page 395.)
[566] M. L., Kleptsyna, A., Le Breton, and M.-C., Roubaud. Parameter estimation and optimal filtering for fractional type stochastic systems. Statistical Inference for Stochastic Processes, 3(1-2):173–182, 2000. 19th “Rencontres Franco-Belges de Statisticiens” (Marseille, 1998). (Cited on page 395.)
[567] F., Klingenhöfer and M., Zähle. Ordinary differential equations with fractal noise. Proceedings of the American Mathematical Society, 127(4):1021–1028, 1999. (Cited on page 414.)
[568] C., Klüppelberg and C., Kühn. Fractional Brownian motion as a weak limit of Poisson shot noise processes—with applications to finance. Stochastic Processes and their Applications, 113(2):333–351, 2004. (Cited on page 225.)
[569] C., Klüppelberg and T., Mikosch. Explosive Poisson shot noise processes with applications to risk reserves. Bernoulli, 1(1-2):125–147, 1995. (Cited on page 225.)
[570] C., Klüppelberg, T., Mikosch, and A., Schärf. Regular variation in the mean and stable limits for poisson shot noise. Bernoulli, 9(3):467–496, 2003. (Cited on page 225.)
[571] P. S., Kokoszka and M. S., Taqqu. Fractional ARIMA with stable innovations. Stochastic Processes and their Applications, 60:19–47, 1995. (Cited on pages 82, 83, 107, 111, and 573.)
[572] P. S., Kokoszka and M. S., Taqqu. Infinite variance stable moving averages with long memory. Journal of Econometrics, 73:79–99, 1996. (Cited on pages 82 and 111.)
[573] P. S., Kokoszka and M. S., Taqqu. Parameter estimation for infinite variance fractional ARIMA. The Annals of Statistics, 24:1880–1913, 1996. (Cited on pages 82, 111, and 573.)
[574] P. S., Kokoszka and M. S., Taqqu. Can one use the Durbin-Levinson algorithm to generate infinite variance fractional ARIMA time series. Journal of Time Series Analysis, 22(3):317–337, 2001. (Citedonpage 107.)
[575] A. N., Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS (N.S.), 26:115–118, 1940. (Cited on page 110.)
[576] T., Konstantopoulos and S.-J., Lin. Macroscopic models for long-range dependent network traffic. Queueing Systems, 28:215–243, 1998. (Cited on page 224.)
[577] S., Kotz, N., Balakrishnan and N. L., Johnson. Continuous Multivariate Distributions. Vol. 1, 2nd edition. New York: Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience, 2000. Models and applications. (Cited on page 332.)
[578] D., Koutsoyiannis. Uncertainty, entropy, scaling and hydrological statistics. 1. Marginal distributional properties of hydrological processes and state scaling/Incertitude, entropie, effet d’échelle et propriétés stochastiques hydrologiques. 1. Propriétés distributionnelles marginales des processus hydrologiques et échelle d’état. Hydrological Sciences Journal, 50(3):381–404, 2005. (Cited on page 228.)
[579] L., Kristoufek. Testing power-law cross-correlations: rescaled covariance test. The European Physical Journal B. Condensed Matter and Complex Systems, 86(10):86:418, 11, 2013. (Cited on page 537.)
[580] K., Kubilius and V., Skorniakov. On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion. Statistics & Probability Letters, 109:159–167, 2016. (Citedonpage 436.)
[581] R., Kulik and P., Soulier. Limit theorems for long-memory stochastic volatility models with infinite variance: partial sums and sample covariances. Advances in Applied Probability, 44(4):1113–1141, 2012. (Cited on page 111.)
[582] H., Künsch. Statistical aspects of self-similar processes. Proceedings of the First World Congress of the Bernoulli Society, 1:67–74, 1987. (Cited on page 572.)
[583] M., Kunze. An Introduction to Malliavin Calculus. Lecture Notes, 2013. (Cited on page 603.)
[584] M., Kuronen and L., Leskelä. Hard-core thinnings of germ-grain models with power-law grain sizes. Advances in Applied Probability, 45(3):595–625, 2013. (Cited on page 224.)
[585] T. G., Kurtz. Limit theorems for workload input models. In F. P., Kelly, S., Zachary, and I., Ziedins, editors, Stochastic Networks: Theory and Applications, pages 339–366. Oxford: Clarendon Press, 1996. (Cited on page 224.)
[586] S., Kwapień and N. A., Woyczyński. Random Series and Stochastic Integrals: Single and multiple. Boston: Birkhäuser, 1992. (Cited on page 463.)
[587] R. G., Laha and V. K., Rohatgi. Operator self-similar stochastic processes in Rd. Stochastic Processes and their Applications, 12(1):73–84, 1982. (Cited on page 536.)
[588] S. N., Lahiri and P. M., Robinson. Central limit theorems for long range dependent spatial linear processes. Bernoulli, 22(1):345–375, 2016. (Cited on page 344.)
[589] J., Lamperti. Semi-stable stochastic processes. Transactions of the American Mathematical Society, 104:62–78, 1962. (Cited on pages 66, 68, 69, 110, and 111.)
[590] J., Lamperti. Semi-stable Markov processes. I. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 22:205–225, 1972. (Cited on page 612.)
[591] J. A., Lane. The central limit theorem for the Poisson shot-noise process. Journal of Applied Probability, 21(2):287–301, 1984. (Cited on page 225.)
[592] K., Lange. Optimization. Springer Texts in Statistics. New York: Springer-Verlag, 2004. (Cited on page 540.)
[593] N., Lanjri Zadi and D., Nualart. Smoothness of the law of the supremum of the fractional Brownian motion. Electronic Communications in Probability, 8:102–111 (electronic), 2003. (Cited on pages 434 and 436.)
[594] K., Łasak and C., Velasco. Fractional cointegration rank estimation. Journal of Business & Economic Statistics, 33(2):241–254, 2015. (Cited on page 537.)
[595] F., Lavancier. Long memory random fields. In Dependence in Probability and Statistics, volume 187 of Lecture Notes in Statist., pages 195–220. New York: Springer, 2006. (Cited on pages 524, 529, and 537.)
[596] F., Lavancier. Invariance principles for non-isotropic long memory random fields. Statistical Inference for Stochastic Processes, 10(3):255–282, 2007. (Cited on pages 529 and 537.)
[597] F., Lavancier, A., Philippe and D., Surgailis. Covariance function of vector self-similar processes. Statistics & Probability Letters, 79(23):2415–2421, 2009. (Cited on pages 491 and 536.)
[598] G. F., Lawler. Conformally Invariant Processes in the Plane, volume 114 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society, 2005. (Cited on page 227.)
[599] A. J., Lawrence and N. T., Kottegoda. Stochastic modelling of riverflow time series. Journal of the Royal Statistical Society, A 140(1):1–47, 1977. (Cited on page 111.)
[600] A., Le Breton. Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion. Statistics & Probability Letters, 38(3):263–274, 1998. (Cited on page 395.)
[601] N. N., Lebedev. Special Functions and their Applications. Dover Publications Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication. (Cited on pages 266, 280, and 363.)
[602] J., Lebovits and J. L., Véhel. White noise-based stochastic calculus with respect to multifractional Brownian motion. Stochastics, 86(1):87–124, 2014. (Cited on page 611.)
[603] P., Lei and D., Nualart. A decomposition of the bifractional Brownian motion and some applications. Statistics & Probability Letters, 79(5):619–624, 2009. (Cited on pages 55, 56, and 110.)
[604] R., Leipus and D., Surgailis. Random coefficient autoregression, regime switching and long memory. Advances in Applied Probability, 35(3):737–754, 2003. (Cited on page 223.)
[605] R., Leipus, G., Oppenheim, A., Philippe, and M.-C., Viano. Orthogonal series density estimation in a disaggregation scheme. Journal of Statistical Planning and Inference, 136(8):2547–2571, 2006. (Cited on page 223.)
[606] R., Leipus, A., Philippe, D., Puplinskaitė, and D., Surgailis. Aggregation and long memory: recent developments. Journal of the Indian Statistical Association, 52(1):81–111, 2014. (Cited on page 224.)
[607] W. E., Leland, M. S., Taqqu, W., Willinger, and D. V., Wilson. On the self-similar nature of Ethernet traffic (Extended version). IEEE/ACM Transactions on Networking, 2:1–15, 1994. (Cited on page 224.)
[608] J. A., León and S., Tindel. Malliavin calculus for fractional delay equations. Journal of Theoretical Probability, 25(3):854–889, 2012. (Cited on page 436.)
[609] R., Leonarduzzi, H., Wendt, P., Abry, S., Jaffard, C., Melot, S. G., Roux, and M. E., Torres. p-exponent and p-leaders, part ii: Multifractal analysis. Relations to detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 448:319–339, 2016. (Cited on page 612.)
[610] N., Leonenko and A., Olenko. Tauberian and Abelian theorems for long-range dependent random fields. Methodology and Computing in Applied Probability, 15(4):715–742, 2013. (Cited on pages 526, 529, and 537.)
[611] N., Leonenko and E., Taufer. Convergence of integrated superpositions of Ornstein-Uhlenbeck processes to fractional Brownian motion. Stochastics. An International Journal of Probability and Stochastic Processes, 77(6):477–499, 2005. (Cited on page 224.)
[612] N. N., Leonenko. Limit Theorems for Random Fields with Singular Spectrum. Kluwer, 1999. (Cited on pages 344, 537, and 610.)
[613] N. N., Leonenko and A. Ya., Olenko. Tauberian theorems for correlation functions and limit theorems for spherical averages of random fields. Random Operators and Stochastic Equations, 1(1):58–68, 1992. (Cited on page 344.)
[614] N. N., Leonenko and V. N., Parkhomenko1. Central limit theorem for non-linear transforms of vector Gaussian fields. Ukrainian Mathematical Journal, 42(8):1057–1063, 1990. (Cited on page 344.)
[615] N. N., Leonenko, M. D., Ruiz-Medina, and M. S., Taqqu. Non-central limit theorems for random fields subordinated to gamma-correlated random fields. To appear in Bernoulli, 2017. (Cited on page 343.)
[616] N. N., Leonenko, M. D., Ruiz-Medina, and M. S., Taqqu. Rosenblatt distribution subordinated to Gaussian random fields with long-range dependence. Stochastic Analysis and Applications, 35(1):144–177, 2017. (Cited on page 343.)
[617] J. B., Levy and M. S., Taqqu. Renewal reward processes with heavy-tailed interrenewal times and heavy-tailed rewards. Bernoulli, 6(1):23–44, 2000. (Cited on page 224.)
[618] C., Lévy-Leduc and M. S., Taqqu. Long-range dependence and the rank of decompositions. In D., Carfi, M.L., Lapidus, E.P.J., Pearse, and M., van Frankenhuijsen, editors, Fractal geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied mathematics, volume 601 of Contemp. Math., pages 289–305. American Mathematical Society, 2013. (Cited on pages 343 and 344.)
[619] C., Lévy-Leduc, H., Boistard, E., Moulines, M. S., Taqqu, and V. A., Reisen. Large sample behaviour of some well-known robust estimators under long-range dependence. Statistics. A Journal of Theoretical and Applied Statistics, 45(1):59–71, 2011. (Cited on page 573.)
[620] C., Lévy-Leduc, H., Boistard, E., Moulines, M. S., Taqqu, and V. A., Reisen. Robust estimation of the scale and of the autocovariance function of Gaussian short- and long-range dependent processes. Journal of Time Series Analysis, 32(2):135–156, 2011. (Cited on page 574.)
[621] A., Lewbel. Aggregation and simple dynamics. The American Economic Review, 84(4):905–918, 1994. (Cited on page 224.)
[622] L., Li. Response to comments on “PCA based Hurst exponent estimator for fBm signals under disturbances”. ArXiv preprint arXiv:0805.3002, 2010. (Cited on page 464.)
[623] L., Li, J., Hu, Y., Chen and Y., Zhang. PCA based Hurst exponent estimator for fBm signals under disturbances. IEEE Transactions on Signal Processing, 57(7):2840–2846, 2009. (Cited on page 464.)
[624] W., Li, C., Yu, A., Carriquiry and W., Kliemann. The asymptotic behavior of the R/S statistic for fractional Brownian motion. Statistics & Probability Letters, 81(1):83–91, 2011. (Cited on page 111.)
[625] Y., Li and Y., Xiao. Multivariate operator-self-similar random fields. Stochastic Processes and their Applications, 121(6):1178–1200, 2011. (Cited on page 538.)
[626] Y., Li, W., Wang and Y., Xiao. Exact moduli of continuity for operator-scaling Gaussian random fields. Bernoulli, 21(2):930–956, 2015. (Cited on page 537.)
[627] O., Lieberman and P., C. B., Phillips. Expansions for the distribution of the maximum likelihood estimator of the fractional difference parameter. Econometric Theory, 20(3):464–484, 2004. (Cited on pages 571 and 572.)
[628] O., Lieberman and P. C. B., Phillips. Expansions for approximate maximum likelihood estimators of the fractional difference parameter. The Econometrics Journal, 8(3):367–379, 2005. (Cited on page 572.)
[629] O., Lieberman and P. C. B., Phillips. Refined inference on long memory in realized volatility. Econometric Reviews, 27(1-3) 254–267, 2008. (Cited on page 611.)
[630] O., Lieberman, J., Rousseau and D. M., Zucker. Small-sample likelihood-based inference in the ARFIMA model. Econometric Theory, 16(2):231–248, 2000. (Cited on page 571.)
[631] O., Lieberman, R., Rosemarin and J., Rousseau. Asymptotic theory for maximum likelihood estimation of the memory parameter in stationary Gaussian processes. Econometric Theory, 28(2):457–470, 2012. (Cited on pages 540, 546, and 571.)
[632] T. M., Liggett. Interacting Particle Systems. Classics in Mathematics. Berlin: Springer-Verlag, 2005. Reprint of the 1985 original. (Cited on pages 168 and 226.)
[633] C. Y., Lim, M. M., Meerschaert, and H.-P., Scheffler. Parameter estimation for operator scaling random fields. Journal of Multivariate Analysis, 123:172–183, 2014. (Cited on page 537.)
[634] S. J., Lin. Stochastic analysis of fractional Brownian motions. Stochastics and Stochastics Reports, 55(1-2):121–140, 1995. (Cited on page 435.)
[635] G., Lindgren. Stationary Stochastic Processes. Chapman & Hall/CRC Texts in Statistical Science Series. Boca Raton, FL: CRC Press, 2013. Theory and applications. (Cited on pages 14 and 398.)
[636] M., Linn and A., Amirdjanova. Representations of the optimal filter in the context of nonlinear filtering of random fields with fractional noise. Stochastic Processes and their Applications, 119(8):2481–2500, 2009. (Cited on page 436.)
[637] M., Lippi and P., Zaffaroni. Aggregation of simple linear dynamics: exact asymptotics results. Econometrics Discussion Paper 350, STICERD-LSE, 1998. (Cited on page 223.)
[638] Br., Liseo, D., Marinucci, and L., Petrella. Bayesian semiparametric inference on long-range dependence. Biometrika, 88(4):1089–1104, 2001. (Cited on page 573.)
[639] B., Liu and D., Munson, Jr. Generation of a random sequence having a jointly specified marginal distribution and autocovariance. Acoustics, Speech and Signal Processing, IEEE Transactions on, 30(6):973–983, Dec 1982. (Cited on page 344.)
[640] J., Livsey, R., Lund, S., Kechagias and V., Pipiras. Multivariate count time series with flexible autocovariances. Preprint, 2016. (Cited on page 340.)
[641] I. N., Lobato. Consistency of the averaged cross-periodogram in long memory series. Journal of Time Series Analysis, 18(2):137–155, 1997. (Cited on page 536.)
[642] I. N., Lobato. A semiparametric two-step estimator in a multivariate long memory model. Journal of Econometrics, 90(1):129–153, 1999. (Cited on page 536.)
[643] I. N., Lobato and P. M., Robinson. A nonparametric test for I(0). Review of Economic Studies, 65(3):475–495, 1998. (Cited on page 536.)
[644] A., Lodhia, S., Sheffield, X., Sun and S. S., Watson. Fractional Gaussian fields: A survey. Probability Surveys, 13:1–56, 2016. (Cited on page 537.)
[645] L., López-Oliveros and S. I., Resnick. Extremal dependence analysis of network sessions. Extremes, 14(1):1–28, 2011. (Cited on page 121.)
[646] S. B., Lowen. Efficient generation of fractional Brownian motion for simulation of infrared focal-plane array calibration drift. Methodology and Computing in Applied Probability, 1 (4): 445–456, 1999. (Cited on page 112.)
[647] S. B., Lowen and M. C., Teich. Power-law shot noise. IEEE Transactions on Information Theory, IT-36(6):1302–1318, 1990. (Cited on page 225.)
[648] S. B., Lowen and M. C., Teich. Fractal-Based Point Processes. Wiley Series in Probability and Statistics. Hoboken, NJ: Wiley-Interscience [John Wiley & Sons], 2005. (Cited on pages 225 and 610.)
[649] A., Luceño. A fast likelihood approximation for vector general linear processes with long series: application to fractional differencing. Biometrika, 83(3):603–614, 1996. (Cited on page 570.)
[650] C., Ludeña and M., Lavielle. The Whittle estimator for strongly dependent stationary Gaussian fields. Scandinavian Journal of Statistics. Theory and Applications, 26(3):433–450, 1999. (Cited on page 537.)
[651] R. B., Lund, S. H., Holan, and J., Livsey. Long memory discrete-valued time series. In R. A., Davis, S. H., Holan, R., Lund, and N., Ravishanker, editors, Handbook of Discrete-Valued Time Series, pages 447–458. CRC Press, 2015. (Cited on page 611.)
[652] H., Luschgy and G., Pagès. Functional quantization of Gaussian processes. Journal of Functional Analysis, 196(2):486–531, 2002. (Cited on page 465.)
[653] H., Luschgy and G., Pagès. High-resolution product quantization for Gaussian processes under sup-norm distortion. Bernoulli, 13(3):653–671, 2007. (Cited on page 465.)
[654] H., Lütkepohl. New Introduction to Multiple Time Series Analysis. Berlin: Springer-Verlag, 2005. (Cited on page 470.)
[655] T., Lyons and Z., Qian. System Control and Rough Paths. Oxford Mathematical Monographs. Oxford: Oxford University Press, 2002. Oxford Science Publications. (Cited on page 435.)
[656] M., Lysy and N. S., Pillai. Statistical inference for stochastic differential equations with memory. Preprint, 2013. (Cited on page 436.)
[657] C., Ma. Correlation models with long-range dependence. Journal of Applied Probability, 39(2):370–382, 2002. (Cited on page 109.)
[658] C., Ma. Vector random fields with long-range dependence. Fractals, 19(2):249–258, 2011. (Cited on page 538.)
[659] C., Maccone. Eigenfunction expansion for fractional Brownian motions. Il Nuovo Cimento. B. Serie 11, 61(2):229–248, 1981. ISSN 0369-4100. (Cited on page 465.)
[660] C., Maccone. On the fractional Brownian motions BLH(t) and on the process B(t2H). Lettere al Nuovo Cimento. Rivista Internazionale della Società Italiana di Fisica. Serie 2, 36(2):33–34, 1983. (Cited on page 465.)
[661] M., Maejima. Some sojourn time problems for strongly dependent Gaussian processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57:1–14, 1981. (Cited on page 343.)
[662] M., Maejima. Some limit theorems for sojourn times of strongly dependent Gaussian processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 60:359–380, 1982. (Cited on page 343.)
[663] M., Maejima. Sojourns of multidimensional Gaussian processes with dependent components. Yokohama Math. J., 33:121–130, 1985. (Cited on page 344.)
[664] M., Maejima. A remark on self-similar processes with stationary increments. The Canadian Journal of Statistics, 14(1):81–82, 1986. (Cited on pages 108 and 110.)
[665] M., Maejima. Some sojourn time problems for 2-dimensional Gaussian processes. Journal of Multivariate Analysis, 18:52–69, 1986. (Cited on page 344.)
[666] M., Maejima. Norming operators for operator-self-similar processes. In Stochastic Processes and Related Topics, Trends Math., pages 287–295. Boston, MA: Birkhäuser Boston, 1998. (Cited on page 536.)
[667] M., Maejima and J., Mason. Operator-self-similar stable processes. Stochastic Processes and their Applications, 54:139–163, 1994. (Cited on pages 476, 477, 478, 479, and 536.)
[668] M., Maejima and C. A., Tudor. Selfsimilar processes with stationary increments in the second Wiener chaos. Probability and Mathematical Statistics, 32(1):167–186, 2012. (Cited on page 281.)
[669] M., Maejima and C. A., Tudor. On the distribution of the Rosenblatt process. Statistics & Probability Letters, 83(6):1490–1495, 2013. (Cited on page 281.)
[670] M., Magdziarz. Correlation cascades, ergodic properties and long memory of infinitely divisible processes. Stochastic Processes and their Applications, 119(10):3416–3434, 2009. (Cited on page 111.)
[671] M., Magdziarz, A., Weron, K., Burnecki and J., Klafter. Fractional Brownian motion versus the continuous-time random walk: A simple test for subdiffusive dynamics. Physical Review Letters, 103(18):180602, 2009. (Cited on page 228.)
[672] P., Major. Multiple Wiener-Itô Integrals, volume 849 of Lecture Notes in Mathematics. Berlin: Springer, 1981. With applications to limit theorems. (Cited on pages 280 and 600.)
[673] P., Major. Multiple Wiener-Itô Integrals, volume 849 of Lecture Notes in Mathematics. Springer, Cham, second edition, 2014. With applications to limit theorems. (Cited on pages 280, 281, 584, and 610.)
[674] V., Makogin and Y., Mishura. Example of a Gaussian self-similar field with stationary rectangular increments that is not a fractional Brownian sheet. Stochastic Analysis and Applications, 33(3):413–428, 2015. (Cited on page 537.)
[675] S., Mallat. A Wavelet Tour of Signal Processing. Boston: Academic Press, 1998. (Cited on pages 443, 444, 450, and 451.)
[676] B. B., Mandelbrot. Long-run linearity, locally Gaussian processes, H-spectra and infinite variances. International Economic Review, 10:82–113, 1969. (Cited on page 224.)
[677] B. B., Mandelbrot. Intermittent turbulence in self-similar cascades; divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 62:331–358, 1974. (Cited on page 612.)
[678] B. B., Mandelbrot. Limit theorems on the self-normalized range for weakly and strongly dependent processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 31:271–285, 1975. (Citedonpage 111.)
[679] B. B., Mandelbrot. The Fractal Geometry of Nature. New York: W. H. Freeman and Co., 1982. (Citedonpages 217 and 227.)
[680] B. B., Mandelbrot. A multifractal walk down Wall Street. Scientific American, pages 70–73, February 1999. (Cited on page 612.)
[681] B. B., Mandelbrot. The Fractalist. New York: Pantheon Books, 2012. Memoir of a scientific maverick, With an afterword by Michael Frame. (Cited on page xxii.)
[682] B. B., Mandelbrot and J. W., Van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Review, 10:422–437, 1968. (Cited on pages 109, 110, 111, and 395.)
[683] B. B., Mandelbrot and J. R., Wallis. Noah, Joseph and operational hydrology. Water Resources Research, 4:909–918, 1968. (Cited on page 111.)
[684] B.B., Mandelbrot and J. R., Wallis. Computer experiments with fractional Gaussian noises, Parts 1, 2, 3. Water Resources Research, 5:228–267, 1969. (Cited on pages 109 and 111.)
[685] B. B., Mandelbrot and J. R., Wallis. Some long-run properties of geophysical records. Water Resources Research, 5:321–340, 1969. (Cited on page 111.)
[686] B. B., Mandelbrot and J. R., Wallis. Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resources Research, 5:967–988, 1969. (Cited on page 111.)
[687] M., Mandjes. Large Deviations for Gaussian Queues. John Wiley & Sons, Ltd., Chichester, 2007. Modelling Communication Networks. (Cited on page 611.)
[688] V. S., Mandrekar and L., Gawarecki. Stochastic analysis for Gaussian random processes and fields, volume 145 of Monographs on Statistics and Applied Probability. Boca Raton, FL: CRC Press, 2016. With applications. (Cited on page 436.)
[689] D., Marinucci and G., Peccati. Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications, volume 389. Cambridge University Press, 2011. (Cited on page 610.)
[690] D., Marinucci and P., M. Robinson. Alternative forms of fractional Brownian motion. Journal of Statistical Planning and Inference, 80(1-2):111–122, 1999. (Cited on page 110.)
[691] D., Marinucci and P., M. Robinson. Semiparametric fractional cointegration analysis. Journal of Econometrics, 105(1):225–247, 2001. (Cited on page 537.)
[692] T., Marquardt. Fractional Lévy processes with an application to long memory moving average processes. Bernoulli, 12(6):1099–1126, 2006. (Cited on page 110.)
[693] G., Maruyama. Nonlinear functionals of Gaussian stationary processes and their applications. In G., Maruyama and J.V., Prohorov, editors, Proceedings of the Third Japan-URSS symposium on probability theory, volume 550 of Lecture notes in Mathematics, pages 375–378, New York: Springer Verlag, 1976. (Cited on page 343.)
[694] G., Maruyama. Wiener functionals and probability limit theorems. I. The central limit theorems. Osaka Journal of Mathematics, 22(4):697–732, 1985. (Cited on page 343.)
[695] J., Mason. A comparison of the properties of operator-stable distributions and operator-self-similar processes. Colloquia Mathematica Societatis János Bolyai, 36:751–760, 1984. (Cited on page 536.)
[696] J., Mason and M., Xiao. Sample path properties of operator-self-similiar Gaussian random fields. Theory of Probability and its Applications, 46(1):58–78, 2002. (Cited on pages 536 and 537.)
[697] L., Massoulie and A., Simonian. Large buffer asymptotics for the queue with fractional Brownian input. Journal of Applied Probability, 36(3):894–906, 1999. (Cited on page 611.)
[698] M., Matsui and N.-R., Shieh. The Lamperti transforms of self-similar Gaussian processes and their exponentials. Stochastic Models, 30(1):68–98, 2014. (Cited on page 111.)
[699] K., Maulik, S., Resnick, and H., Rootzén. Asymptotic independence and a network traffic model. Journal of Applied Probability, 39(4):671–699, 2002. (Cited on page 224.)
[700] L., Mayoral. Heterogeneous dynamics, aggregation and the persistence of economic shocks. International Economic Review, 54(5):1295–1307, 2013. (Cited on page 224.)
[701] A., McCloskey and P., Perron. Memory parameter estimation in the presence of level shifts and deterministic trends. Econometric Theory, FirstView: 1–42, 10 2013. (Cited on pages 225 and 573.)
[702] B. M., McCoy. Advanced Statistical Mechanics, volume 146 of International Series of Monographs on Physics. Oxford: Oxford University Press, 2010. (Cited on pages 183 and 204.)
[703] B. M., McCoy and T. T., Wu. The Two-Dimensional Ising Model. Cambridge, MA: Harvard University Press, 1973. (Cited on pages 184, 187, 193, 194, 206, 209, 213, and 223.)
[704] T., McElroy and A., Jach. Tail index estimation in the presence of long-memory dynamics. Computational Statistics & Data Analysis, 56(2):266–282, 2012. (Cited on page 111.)
[705] T. S., McElroy and S. H., Holan. On the computation of autocovariances for generalized Gegenbauer processes. Statistica Sinica, 22(4):1661–1687, 2012. (Cited on page 110.)
[706] T. S., McElroy and S. H., Holan. Computation of the autocovariances for time series with multiple long-range persistencies. Computational Statistics and Data Analysis, 101:44–56, 2016. (Cited on page 110.)
[707] M. M., Meerschaert. Fractional calculus, anomalous diffusion, and probability. In Fractional dynamics, pages 265–284. Hackensack, NJ: World Sci. Publ., 2012. (Cited on page 396.)
[708] M. M., Meerschaert and F., Sabzikar. Stochastic integration for tempered fractional Brownian motion. Stochastic Processes and their Applications, 124(7):2363–2387, 2014. (Cited on page 395.)
[709] M. M., Meerschaert and H.-P., Scheffler. Spectral decomposition for operator self-similar processes and their generalized domains of attraction. Stochastic Processes and their Applications, 84(1):71–80, 1999. (Cited on page 536.)
[710] M. M., Meerschaert and H.-P., Scheffler. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley Series in Probability and Statistics. New York: John Wiley & Sons Inc., 2001. (Cited on pages 495, 510, 535, and 536.)
[711] M. M., Meerschaert and H.-P., Scheffler. Triangular array limits for continuous time random walks. Stochastic Processes and their Applications, 118(9):1606–1633, 2008. (Cited on page 227.)
[712] M. M., Meerschaert and A., Sikorskii. Stochastic Models for Fractional Calculus, volume 43 of de Gruyter Studies in Mathematics. Berlin: Walter de Gruyter & Co., 2012. (Cited on pages 352, 396, and 610.)
[713] M. M., Meerschaert, E., Nane and Y., Xiao. Correlated continuous time random walks. Statistics & Probability Letters, 79(9):1194–1202, 2009. (Cited on page 228.)
[714] F. G., Mehler. Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung. Journal für die Reine und Angewandte Mathematik. [Crelle's Journal], 66:161–176, 1866. (Cited on page 342.)
[715] Y., Meyer. Wavelets and Operators, volume 37 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 1992. (Cited on pages 444 and 445.)
[716] Y., Meyer, F., Sellan and M. S., Taqqu. Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. The Journal of Fourier Analysis and Applications, 5(5):465–494, 1999. (Cited on pages 440, 445, 450, 452, 453, and 465.)
[717] T., Mikosch and G., Samorodnitsky. Scaling limits for cumulative input processes. Mathematics of Operations Research, 32(4):890–918, 2007. (Cited on page 224.)
[718] T., Mikosch and C., Stărică. Changes of structure in financial time series and the GARCH model. REVSTAT Statistical Journal, 2(1):41–73, 2004. (Cited on page 225.)
[719] T., Mikosch, S., Resnick, H., Rootzén, and A., Stegeman. Is network traffic approximated by stable Lévy motion or fractional Brownian motion? The Annals of Applied Probability, 12(1):23–68, 2002. (Cited on page 224.)
[720] J., Militk`y and S., Ibrahim. Complex characterization of yarn unevenness. In X., Zeng, Y., Li, D., Ruan, and L., Koehl, editors, Computational Textile, volume 55 of Studies in Computational Intelligence, pages 57–73. Berlin/Heidelberg: Springer, 2007. (Cited on page 225.)
[721] T. C., Mills. Time series modelling of two millennia of northern hemisphere temperatures: long memory or shifting trends? Journal of the Royal Statistical Society. Series A. Statistics in Society, 170(1):83–94, 2007. (Cited on pages 225 and 557.)
[722] Y. S., Mishura. Stochastic Calculus for Fractional Brownian Motion and Related Processes, volume 1929 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2008. (Cited on pages 436 and 610.)
[723] Y. S., Mishura and G. M., Shevchenko. Rate of convergence of Euler approximations of solution to mixed stochastic differential equation involving Brownian motion and fractional Brownian motion. Random Operators and Stochastic Equations, 19(4):387–406, 2011. (Cited on page 436.)
[724] A., Moberg, D. M., Sonechkin, K., Holmgren, N. M., Datsenko, and W., Karlen. Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433:613–617, 2005. (Cited on page 557.)
[725] G. M., Molčan and Ju. I., Golosov. Gaussian stationary processes with asymptotically a power spectrum. Doklady Akademii Nauk SSSR, 184:546–549, 1969. (Cited on page 395.)
[726] G. M., Molchan. Gaussian processes with spectra which are asymptotically equivalent to a power of λ. Theory of Probability and Its Applications, 14:530–532, 1969. (Cited on page 395.)
[727] G. M., Molchan. Linear problems for fractional Brownian motion: a group approach. Theory of Probability and Its Applications, 47(1):69–78, 2003. (Cited on page 395.)
[728] J. F., Monahan. Numerical Methods of Statistics, 2nd edition. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press, 2011. (Cited on page 542.)
[729] A., Montanari. Longe range dependence in Hydrology. In P., Doukhan, G., Oppenheim, and M. S., Taqqu, editors, Theory and Applications of Long-range Dependence, pages 461–472. Birkhäuser, 2003. (Cited on page 111.)
[730] A., Montanari, R., Rosso and M. S., Taqqu. Some long-run properties of rainfall records in Italy. Journal of Geophysical Research – Atmospheres, 101(D23):431–438, 1996. (Cited on page 572.)
[731] A., Montanari, R., Rosso and M. S., Taqqu. Fractionally differenced ARIMA models applied to hydrologic time series: identification, estimation and simulation. Water Resources Research, 33:1035–1044, 1997. (Cited on page 111.)
[732] T., Mori and H., Oodaira. The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals. Probability Theory and Related Fields, 71(3):367–391, 1986. (Cited on page 281.)
[733] P., Mörters and Y., Peres. Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press, 2010. With an appendix by Oded Schramm and Wendelin Werner. (Cited on page 14.)
[734] E., Moulines and P., Soulier. Broadband log-periodogram regression of time series with long-range dependence. The Annals of Statistics, 27(4):1415–1439, 1999. (Cited on page 573.)
[735] E., Moulines, F., Roueff and M. S., Taqqu. Central limit theorem for the log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context. Fractals, 15(4):301–313, 2007. (Cited on page 112.)
[736] E., Moulines, F., Roueff and M. S., Taqqu. On the spectral density of the wavelet coefficients of long-memory time series with application to the log-regression estimation of the memory parameter. Journal of Time Series Analysis, 28(2):155–187, 2007. (Cited on page 112.)
[737] E., Moulines, F., Roueff and M. S., Taqqu. A wavelet Whittle estimator of the memory parameter of a non-stationary Gaussian time series. The Annals of Statistics, 36(4):1925–1956, 2008. (Cited on pages 112 and 574.)
[738] N., Naganuma. Asymptotic error distributions of the cranknicholson scheme for SDEs driven by fractional Brownian motion. Journal of Theoretical Probability, 28(3):1082–1124, 2015. (Cited on page 436.)
[739] M., Narukawa. On semiparametric testing of I(d) by FEXP models. Communications in Statistics. Theory and Methods, 42(9):1637–1653, 2013. (Cited on page 573.)
[740] M., Narukawa and Y., Matsuda. Broadband semi-parametric estimation of long-memory time series by fractional exponential models. Journal of Time Series Analysis, 32(2):175–193, 2011. (Cited on page 568.)
[741] A., Neuenkirch. Optimal approximation of SDE's with additive fractional noise. Journal of Complexity, 22(4):459–474, 2006. (Cited on page 436.)
[742] A., Neuenkirch. Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Processes and their Applications, 118(12):2294–2333, 2008. (Cited on page 436.)
[743] A., Neuenkirch and I., Nourdin. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. Journal of Theoretical Probability, 20(4):871–899, 2007. (Cited on page 436.)
[744] A., Neuenkirch, I., Nourdin and S., Tindel. Delay equations driven by rough paths. Electronic Journal of Probability, 13: no. 67, 2031–2068, 2008. (Cited on page 436.)
[745] J. M., Nichols, C. C., Olson, J. V., Michalowicz, and F., Bucholtz. A simple algorithm for generating spectrally colored, non-Gaussian signals. Probabilistic Engineering Mechanics, 25(3):315–322, 2010. (Cited on page 344.)
[746] F. S., Nielsen. Local Whittle estimation of multi-variate fractionally integrated processes. Journal of Time Series Analysis, 32(3):317–335, 2011. (Cited on page 536.)
[747] M. Ø., Nielsen. Local empirical spectral measure of multivariate processes with long range dependence. Stochastic Processes and their Applications, 109(1):145–166, 2004. (Cited on page 536.)
[748] M. Ø., Nielsen. Local Whittle analysis of stationary fractional cointegration and the implied-realized volatility relation. Journal of Business & Economic Statistics, 25(4):427–446, 2007. (Cited on page 536.)
[749] M. Ø., Nielsen. Nonparametric cointegration analysis of fractional systems with unknown integration orders. Journal of Econometrics, 155(2):170–187, 2010. (Cited on page 537.)
[750] M. Ø., Nielsen and P., Frederiksen. Fully modified narrow-band least squares estimation of weak fractional cointegration. The Econometrics Journal, 14(1):77–120, 2011. (Cited on page 536.)
[751] M. Ø., Nielsen and P. H., Frederiksen. Finite sample comparison of parametric, semiparametric, and wavelet estimators of fractional integration. Econometric Reviews, 24(4):405–443, 2005. (Cited on page 571.)
[752] M., Niss. History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena. Archive for History of Exact Sciences, 59(3):267–318, 2005. (Cited on page 227.)
[753] M., Niss. History of the Lenz-Ising model 1950–1965: from irrelevance to relevance. Archive for History of Exact Sciences, 63(3):243–287, 2009. (Cited on page 227.)
[754] D. J., Noakes, K. W., Hipel, A. I., McLeod, C., Jimenez, and S., Yakowitz. Forecasting annual geophysical time series. International Journal of Forecasting, 4(1):103–115, 1998. (Cited on page 572.)
[755] J. P., Nolan. Stable Distributions - Models for Heavy Tailed Data. Boston: Birkhauser, 2014. (Cited on page 111.)
[756] I., Norros. A storage model with self-similar input. Queueing Systems And Their Applications, 16:387–396, 1994. (Cited on page 611.)
[757] I., Norros and E., Saksman. Local independence of fractional Brownian motion. Stochastic Processes and their Applications, 119(10):3155–3172, 2009. (Cited on page 395.)
[758] I., Norros, E., Valkeila and J., Virtamo. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli, 15:571–587, 1999. (Cited on page 395.)
[759] L., Nouira, M., Boutahar and V., Marimoutou. The effect of tapering on the semiparametric estimators for nonstationary long memory processes. Statistical Papers, 50(2):225–248, 2009. (Citedonpage 573.)
[760] I., Nourdin. Selected Aspects of Fractional Brownian Motion, volume 4 of Bocconi & Springer Series. Springer, Milan; Bocconi University Press, Milan, 2012. (Cited on pages 305, 343, 344, 436, and 610.)
[761] I., Nourdin and G., Peccati. Stein's method and exact Berry-Esseen asymptotics for functionals of Gaussian fields. The Annals of Probability, 37(6):2231–2261, 2009. (Cited on page 571.)
[762] I., Nourdin and G., Peccati. Stein's method on Wiener chaos. Probability Theory and Related Fields, 145(1-2):75–118, 2009. (Cited on pages 344 and 436.)
[763] I., Nourdin and G., Peccati. Normal Approximations with Malliavin Calculus, volume 192 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 2012. From Stein's Method to Universality. (Cited on pages 305, 343, 344, 426, 427, 435, 436, 604, and 610.)
[764] I., Nourdin and J., Rosiński. Asymptotic independence of multiple Wiener-Itô integrals and the resulting limit laws. The Annals of Probability, 42(2):497–526, 2014. (Cited on pages 324 and 344.)
[765] I., Nourdin and T., Simon. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statistics & Probability Letters, 76(9):907–912, 2006. (Cited on pages 413, 414, 418, and 434.)
[766] I., Nourdin, D., Nualart and C. A., Tudor. Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 46(4):1055–1079, 2010. (Cited on page 280.)
[767] I., Nourdin,