Skip to main content Accessibility help
  • Print publication year: 2017
  • Online publication date: March 2017

The Higher Infinite in Proof Theory

Aczel, P.: The Type Theoretic Interpretation of Constructive Set Theory, in: Mac-Intyre, A. Pacholski, L., and Paris, J. (eds.), Logic Colloquium –77, North-Holland, Amsterdam 1978.
Aczel, P.: The Type Theoretic Interpretation of Constructive Set Theory: Choice Principles, in: Troelstra, A. S., van Dalen, D. (eds), The L.E.J. Brouwer Centenary Symposium, North-Holland, Amsterdam 1982.
Aczel, P.: The Type Theoretic Interpretation of Constructive Set Theory: Inductive Definitions, in: Marcus, R. B. et al. (eds), Logic, Methodology, and Philosopy of Science VII, North-Holland, Amsterdam 1986.
Bachmann, H.: Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordinakahlen, Vierteljahresschrift Naturforsch. Ges. Zürich 95 (1950) 115–147.
Barwise, J.: Admissible Sets and Structures (Springer, Berlin 1975).
Buchholz, W.: A new system of proof-theoretic ordinal functions, Ann. Pure Appl. Math. Logic 32 (1986) 195–207.
Buchholz, W. Schütte, K.: Proof theory of impredicative subsystems of analysis (Bibliopolis, Naples, 1988).
Drake, F.: Set Theory: An introduction to large cardinals (Amsterdam, North Holland, 1974)
Feferman, S.: Systems of predicative analysis, Journal of Symbolic Logic 29 (1964) 1–30.
Feferman, S.: Systems of predicative analysis II. Representations of ordinals, Journal of Symbolic Logic 33 (1968) 193–220.
Feferman, S.: Proof theory: a personal report, in: Takeuti, G. Proof Theory, 2nd edition (North-Holland, Amsterdam, 1987) 445–485.
Feferman, S.: Hilbert's program relativized: Proof-theoretical and foundational reductions, JSL 53 (1988) 364–384.
Feferman, S.: Gödel's program for new axioms: Why, where, how and what? to appear in: Gödel –96 conference, Brno. 23 pages.
Friedman, H. and Ščedrov, S.: Large sets in intuitionistic set theory, Annals of Pure and Applied Logic 27 (1984) 1–24.
Friedman, H. and Sheard, S.: Elementary descent recursion and proof theory, Annals of Pure and Applied Logic 71 (1995) 1–45.
Gaifman, H.: A generalization of Mahlo's method for obtaining large cardinal numbers, Israel Journal of Mathematics 5 (1967) 188–200.
Girard, J.-.Y.: A survey of Ill-logic. Part I: Dilators, Annals of Mathematical Logic 21 (1981) 75–219.
Griffor, E. and Rathjen, M.: The strength of some Martin-Löf type theories. Archive for Mathematical Logic 33 (1994) 347–385.
Hinman, P.G.: Recursion-theoretic hierarchies (Springer, Berlin, 1978).
Isles, D.: Regular ordinals and normal forms, in: Kino, A. Myhill, J. Vesley, R.E. (eds.): Intuitionism and proof theory (North-Holland, Amsterdam, 1968) 288–300.
Jäger, G. and Pohlers, W.: Eine beweistheoretische Untersuchung von Δ1 2 – CA + BI und verwandter Systeme, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1982).
Kanamori, A. Magidor, M.: The evolution of large cardinal axioms in set theory. In: Müller, G. H. Scott, D.S. (eds.) Higher Set Theory. Lecture Notes in Mathematics 669 (Springer, Berlin, 1978) 99-275.
Kreisel, G.: A survey of proof theory, Journal of Symbolic Logic 33 (1968) 321–388.
Mahlo, P.: Über lineare transfinite Mengen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 63 (1911) 187–225.
Mahlo, P.: Zur Theorie und Anwendung der ρ0-Zahlen, ibid. 64 (1912) 108–112.
Mahlo, P.: Zur Theorie und Anwendung der ρ0-Zahlen, ibid. 65 (1913) 268–282.
Martin-Löf, P.: Intuitionistic Type Theory, (Bibliopolis, Naples 1984).
Moschovakis, Y.N.: Recursion in the universe of sets, mimeographed note, 1976.
Moss, L.: Power set recursion, Annals of Pure and Applied Logic 71 (1995) 247–306.
Myhill, J.: Constructive Set Theory, JSL 40 (1975) 347–382.
Normann, D.: Set recursion, in: Fenstad et al. (eds.): Generalized recursion theory II (North-Holland, Amsterdam, 1978) 303–320.
Pfeiffer, H. Ausgezeichnete Folgen für gewisse Abschnitte der zweiten und weiterer Zahlklassen (Dissertation, Hannover, 1964).
Pohlers, W.: Contributions of the Schütte school in Munich to proof theory, in: Takeuti, G. Proof Theory, 2nd edition (North-Holland, Amsterdam, 1987) 406–431.
Pohlers, W.: A short course in ordinal analysis, in: Aczel, P. Simmons, H. Wainer, S. (eds.): Proof Theory (Cambridge University Press, Cambridge, 1992) 27–78.
Rathjen, M.: Ordinal notations based on a weakly Mahlo cardinal, Archive for Mathematical Logic 29 (1990) 249–263.
Rathjen, M.: Proof-Theoretic Analysis of KPM, Arch. Math. Logic 30 (1991) 377–403.
Rathjen, M.: The role of parameters in bar rule and bar induction, Journal of Symbolic Logic 56 (1991) 715–730.
Rathjen, M.: Fragments of Kripke-Platek set theory with infinity, in: Aczel, P. Simmons, H. Wainer, S. (eds.): Proof Theory (Cambridge University Press, Cambridge, 1992) 251–273.
Rathjen, M.: How to develop proof–theoretic ordinal functions on the basis of admissible sets. Mathematical Quarterly 39 (1993) 47–54.
Rathjen, M.: Admissible proof theory and beyond. In: Logic, Methodology and Philosophy of Science IX (Prawitz, D. Skyrms, B. and Westerstahl, D. eds.), Elsevier Science B.V. (1994) 123–147.
Rathjen, M.: Collapsing functions based on recursively large ordinals: A well-ordering proof for KPM. Archive for Mathematical Logic 33 (1994) 35–55.
Rathjen, M.: Proof theory of reflection. Annals of Pure and Applied Logic 68 (1994) 181–224.
Rathjen, M.: Recent advances in ordinal analysis: Π1 2-CA and related systems. Bulletin of Symbolic Logic 1 (1995) 468–485.
Rathjen, M.: An ordinal analysis of Π1 2 comprehension and related systems, preprint.
Richter, W. and Aczel, P.: Inductive definitions and reflecting properties of admissible ordinals. In: Fenstad, J.E. Hinman, (eds.) Generalized Recursion Theory (North Holland, Amsterdam, 1973) 301–381.
Rose, H.E.: Subrecursion: functions and hierarchies. (Clarendon Press, Oxford, 1984).
Sacks, G.E.: Higher recursion theory (Springer, Berlin, 1990).
Schlüter, A.: Provability in set theories with reflection, preprint, 1995.
Schütte, K.: Beweistheorie (Springer, Berlin, 1960).
Schwichtenberg, H.: Proof theory: Some applications of cut-elimination. In: Barwise, J. (ed.): Handbook of Mathematical Logic (North Holland, Amsterdam, 1977) 867–895.
Solovay, R.M. Reinhardt, W.N. Kanamori, A.: Strong Axioms of Infinity and Elementary Embeddings, Annals of Mathematical Logic 13 (1978) 73–116.
Sommer, R.: Ordinal arithmetic in I∆0- In: Clote, P. and Krajicek, J. (eds.): Arithmetic, proof theory, and computational complexity (Clarendon Press, Oxford, 1993) 320–363.
Sommer, R.: Ordinal functions in fragments of arithmetic, Preprint (1992) 28 pages.
Takeuti, G.: Proof theory, second edition (North Holland, Amsterdam, 1987).
Veblen, O.: Continous increasing functions of finite and transfinite ordinals, Trans. Amer. Math. Soc. 9 (1908) 280–292.