Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 13
  • Print publication year: 2007
  • Online publication date: August 2010

2 - Morphology, performance, and foraging mode



The feeding behavior of an animal is a fundamental attribute that has major fitness implications. Individual variation in the success with which prey is acquired ultimately affects growth rate, survivorship and reproductive success. Foraging success is linked to search behavior, which profoundly influences the variety and number of prey encountered (Pianka, 1966, 1973; Pietruszka, 1986). The ability to find prey therefore affects food intake and ultimately an individual's energy budget. The importance of foraging success is manifest in the myriad of behaviors animals display for the searching, pursuit, and capture of prey. Different modes of search behavior also entail costs. The duration of time spent foraging and the type of habitat an animal searches for food affects the risk of predation and ability to avoid predators (Huey and Pianka, 1981).

Not surprisingly, the analysis of foraging behavior has been an important topic in ecology and evolutionary biology (Schoener, 1971; Gerritsen and Strickler, 1977; Stephens and Krebs, 1986; Perry and Pianka, 1997). Past investigations proposed a dichotomy in foraging patterns based on observations of consistent and prominent differences in behaviors among species in how prey are pursued and captured (see McLaughlin, 1989; Vitt and Pianka, this volume, Chapter 5; Perry, this volume, Chapter 1). Most species have been classified as either “ambush” (“sit-and-wait”) predators or widely (active) foraging predators (Pianka, 1966; Regal, 1978; Huey and Pianka, 1981) based on qualitative examination of activity patterns in the field.

Aerts, P. R., Damme, R., Vanhooydonck, B., Zaaf, A. and Herrel, A. (2000). Lizard locomotion: how morphology meets ecology. Netherl. J. Zool. 50, 261–77.
Arnold, E. N. (1989). Towards a phylogeny and biogeography of the Lacertidae: relationships within an old-world family of lizards derived from morphology. Bull. Brit. Mus. (Nat. Hist.) Zool. 55, 209–57.
Anderson, R. A. and Karasov, W. H. (1981). Contrast in energy intake and expenditure in sit and wait and widely foraging lizards. Oecologia 49, 67–72.
Breiman, J. H., Fridman, J. H., Olshen, R. A. and Stone, C. J. (1983). Classification and Regression Trees. Belmont, CA: Wadsworth.
Butler, M. A. (2005). Foraging mode of the chameleon, Bradypodion pumilum: a challenge to the sit-and-wait versus active forager paradigm? Biol. J. Linn. Soc. 84, 797–808.
Clark, L. and Pregibon, D. (1992). Tree-based models. In Statistical Models, ed. Chambers, J. M. and Hastie, T. J., pp. 377–419. Pacific Grove, CA: Wadsworth.
Cooper, W. E. Jr. (1995). Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50, 973–85.
Cooper, W. E. Jr. (1997). Correlated evolution of prey chemical discrimination with foraging, lingual morphology, and vomeronasal chemoreceptor abundance in lizards. Behav. Ecol. Sociobiol. 41, 257–65.
Cooper, W. E. Jr. and Whiting, M. J. (2000). Ambush and active foraging modes both occur in the scincid genus Mabuya. Copeia 2000, 112–18.
Cooper, W. E. Jr., Whiting, M. J., Wyk, J. H. and Mouton, P., F. N. (1999). Movement- and attack-based indices of foraging mode and ambush foraging in some gekkonid and agamine lizards from southern Africa. Amph.-Rept. 20, 391–9.
Cooper, W. E. Jr., Vitt, L. J., Caldwell, J. P. and Fox, S. F. (2001). Foraging modes of some American lizards: relationships among measurement variables and discreteness of modes. Herpetologica 57, 65–76.
Cooper, W. E. Jr., Vitt, L. J., Caldwell, J. P. and Fox, S. F. (2005). Relationships among foraging variables, phylogeny, and foraging modes, with new data for nine North American lizard species. Herpetologica 61, 250–9.
Diaz-Uriarte, R. and Garland, T. Jr. (1998). Effects of branch length errors on the performance of phylogenetic independent contrasts. Syst. Biol. 47, 654–72.
Dunham, A. E., Miles, D. B. and Reznick, D. N. (1988). Life history patterns in squamate reptiles. In Biology of the Reptilia, vol. 16, ed. Gans, C. and Huey, R. B., pp. 331–86. New York: A. R. Liss.
Estes, R., de Queiroz, K. and Gauthier, J. (1988). Phylogenetic relationships within Squamata. In Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L. Camp, ed. Estes, R. and Pregill, G., pp. 119–281. Stanford, CA: Stanford University Press.
Evans, S. E. (2003). At the feet of dinosaurs: the early history and radiation of lizards. Biological Reviews 78, 513–51.
Felsenstein, J. (1985). Phylogenies and the comparative method. Amer. Nat. 125, 1–15.
Felsenstein, J. (1988). Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 19, 445–71.
Frost, D. R. and Etheridge, R. (1989). A phylogenetic analysis and taxonomy of iguanian lizards. Misc. Publ. Mus. Nat. Hist. Univ. Kansas 81, 1–65.
Fu, J. (2000). Towards the phylogeny of the family Lacertidae: why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol. J. Linn. Soc. 71, 203–17.
Garland, T. Jr. (1993). Locomotor performance and activity metabolism of Cnemidophorus tigris in relation to natural behaviors. In Biology of Whiptail Lizards (Genus Cnemidophorus), ed. Wright, J. W. and Vitt, L. J., pp. 163–210. Norman, OK: Oklahoma Museum of Natural History.
Garland, T. Jr. (1994). Phylogenetic analyses of lizard endurance capacity in relation to body size and temperature. In Lizard Ecology: Historical and Evolutionary Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 207–36. Princeton, NJ: Princeton University Press.
Garland, T. Jr. (1999). Laboratory endurance predicts variation in field locomotor behaviour among lizard species. Anim. Behav. 57, 77–83.
Garland, T. Jr. and Adolph, S. C. (1994). Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol. Zool. 67, 797–828.
Garland, T. Jr. and Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In Ecological Morphology: Integrative Organismal Biology, ed. Wainwright, P. C. and Reilly, S. M., pp. 240–302. Chicago, IL: University of Chicago Press.
Garland, T. Jr., Dickerman, A. W., Janis, C. M. and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265–92.
Garland, T. Jr., Harvey, P. H. and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.
Gerritsen, J. and Strickler, J. R. (1977). Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish. Res. Board Can. 34, 73–82.
Giannini, N. P. (2003). Canonical phylogenetic ordination. Syst. Biol. 52, 684–95.
Han, D., Zhou, K. and Bauer, A. M. (2004). Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota. Biol. J. Linn. Soc. 83, 353–68.
Harris, D. J. and Arnold, E. N. (1999). Relationships of wall lizards, Podarcis (Reptilia: Lacertidae) based on mitochondrial DNA sequences. Copeia 1999, 749–54.
Harris, D. J. and Arnold, E. N. (2000). Elucidation of the relationships of the spiny-footed lizards, Acanthothdactylus spp. (Reptilia: Lacertidae) using mitochondrial DNA sequence, with comments on their biogeography and evolution. J. Zool. 252, 351–62.
Harris, D. J., Arnold, E. N. and Thomas, R. H. (1998). Relationships of lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. R. Soc. Lond. B265, 1939–48.
Hedges, S. B., Bezy, R. L. and Maxson, L. R. (1991). Phylogenetic relationships and biogeography of Xantusiid lizards, inferred from mitochondrial DNA sequences. Molec. Biol. Evol. 8, 767–80.
Herrel, A., Meyers, J. J. and Vanhooydonck, B. (2002). Relations between microhabitat use and limb shape in phrynosomatid lizards. Biol. J. Linn. Soc. 77, 149–63.
Hertz, P. E., Huey, R. B. and Garland, T. Jr. (1988). Time budgets, thermoregulation, and maximal locomotor performance: are ectotherms Olympians or boy scouts? Amer. Zool. 28, 927–38.
Hicks, R. A. and Trivers, R. L. (1983). The social behavior of Anolis valencienni. In Advances in Herpetology and Evolutionary Biology: Essays in Honor of Ernest E. Williams, ed. Rhodin, A. G. J. and Miyata, K. I., pp. 570–95. Cambridge, MA: Museum of Comparative Zoology, Harvard University.
Honda, M., Ota, H., Kobayashi, al. (1999). Evolution of Asian and African lygosomine skinks of the Mabuya group (Reptilia: Scincidae): A molecular perspective. Zool. Sci. 16, 979–84.
Honda, M., Ota, H., Köhler, al. (2003). Phylogeny of the lizard subfamily Lygosominae (Reptilia: Scincidae), with special reference to the origin of the New World taxa. Genes Gen. Syst. 78, 71–80.
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.
Huey, R. B. and Bennett, A. F. (1986). A comparative approach to field and laboratory studies in evolutionary biology. In. Predator-Prey Relationships: Perspectives and Approaches From the Study of Lower Vertebrates, ed. Feder, M. E. and Lauder, G. V., pp. 82–98. Chicago, IL: University of Chicago Press.
Huey, R. B., Bennett, A. F., John-Alder, H. B. and Nagy, K. A. (1984). Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim. Behav. 32, 41–50.
Irschick, D. J. (2000). Comparative and behavioral analyses of preferred speed: Anolis lizards as a model system. Physiol. Biochem. Zool. 73, 428–37.
Irschick, D. J. and Losos, J. B. (1996). Morphology, ecology, and behavior of the twig anole Anolis angusticeps. In Contributions to West Indian Herpetology: a Tribute to Albert Schwartz, ed. Powell, R. and Henderson, R. W., pp. 291–301. Contributions in Herpetology, vol. 12. Ithaca, NY: Society for the study of Amphibians and Reptiles (SSAR).
Irschick, D. J. and Losos, J. B. (1998). A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution 52, 219–26.
Irschick, D. J., and Losos, J. B. (1999). Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles. Amer. Nat. 154, 293–305.
Irschick, D. J., Vitt, L. J., Zani, P. A. and Losos, J. B. (1997). A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards. Ecology 78, 2191–203.
Jackman, T. R., Irschick, D. J., Queiroz, K., Losos, J. B. and Larson, A. (2002). Molecular phylogenetic perspective on evolution of lizards of the Anolis grahami series. J. Exp. Zool. 294, 1–16.
Jackman, T. R., Larson, A., Queiroz, K. and Losos, J. B. (1999). Phylogenetic relationships and tempo of early diversification in Anolis lizards. Syst. Biol. 48, 254–85.
Jayne, B. C. and Irschick, D. J. (2000). A field study of incline use and preferred speeds for the locomotion of lizards. Ecology 81, 2969–83.
Kluge, A. G. (1987). Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Mich. 173, 1–54.
Lamb, T. and Bauer, A. M. (2003). Meroles revisted: complementary systematic inference from additional mitochondrial genes and a complete taxon sampling of southern Africa's desert lizards. Molec. Phylogenet. Evol. 29, 360–4.
Lapointe, F.-J. and Garland, T. Jr. (2001). A generalized permutation test for the analysis of cross-species data. J. Classif. 18, 109–27.
Losos, J. B. (1990a). The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44, 1189–203.
Losos, J. B. (1990b). Concordant evolution of locomotor behavior, display rate, and morphology in Anolis lizards. Anim. Behav. 39, 879–90.
Losos, J. B. (1994). Integrative approaches to evolutionary ecology: Anolis lizards as model systems. Ann. Rev. Ecol. Syst. 25, 467–93.
Losos, J. B. and Miles, D. B. (1994). Adaptation, constraint and the comparative method: phylogenetic issues and methods. In Ecological Morphology: Integrative Organismal Biology, ed. Wainwright, P. C. and Reilly, S. M., pp. 60–98. Chicago, IL: The University of Chicago Press.
Losos, J. B. and Miles, D. B. (2002). Testing the hypothesis that a clade has adaptively radiated: iguanid lizard clades as a case study. Am. Nat. 160, 147–57.
Losos, J. B. and Sinervo, B. (1989). The effects of morphology and perch diameter on sprint performance of Anolis lizards. J. Exp. Biol. 145, 23–30.
Losos, J. B., Butler, M. and Schoener, T. W. (2003). Sexual dimorphism in body size and shape in relation to habitat use among species of Caribbean Anolis lizards. In Lizard Social Behavior, ed. Fox, S. F., McCoy, J. K. and Baird, T. A., pp. 356–80. Baltimore, MD: Johns Hopkins University Press.
Losos, J. B.Jackman, T. R., Larson, A., Queiroz, K. and Rodriquez-Schettino, L. (1998). Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–18.
McBrayer, L. D. (2004). The relationship between skull morphology, biting performance and foraging mode in Kalahari lacertid lizards. Zool. J. Linn. Soc. 140, 403–16.
McBrayer, L. D. and Reilly, S. M. (2002). Prey processing in lizards: Behavioral variation in sit-and-wait and widely foraging taxa. Can. J. Zool. 80, 882–92.
McLaughlin, R. L. (1989). Search modes of birds and lizards: evidence for alternative movement patterns. Amer. Nat. 133, 654–70.
Maddison, W. P. and Maddison, D. R. (2004). Mesquite: A modular system for evolutionary analysis. Ver 1.06.
Mausfeld, P., Vences, M., Schmitz, A. and Veith, M. (2000). First data on the molecular phylogeography of Scincid lizards of the genus Mabuya. Molec. Phylogenet. Evol. 17, 11–14.
Melville, J. and Swain, R. (2000a). Mitochondrial DNA-sequence based phylogeny and biogeography of the snow skinks (Squamata: Scincidae: Niveoscincus) of Tasmania. Herpetologica 56, 196–208.
Melville, J. and Swain, R. (2000b). Evolutionary relationships between morphology, performance, and habitat openness in the lizard genus Niveoscincus (Scincidae: Lygosominae). Biol. J. Linn. Soc. 70, 667–83.
Midford, P. E., Garland, T. Jr. and Maddison, W. P. (2003). PDAP Package for Mesquite Ver. 1.05.
Miles, D. B. (1994). Covariation between morphology and locomotory performance in Sceloporine lizards. In Lizard Ecology: Historical and Evolutionary Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 207–36. Princeton, NJ: Princeton University Press.
Miles, D. B., Snell, H. L. and Snell, H. M. (2001). Interpopulation variation in endurance of Galapagos lava lizards Microlophus albemarlensis: evidence for an interaction between natural and sexual selection. Evol. Ecol. Res. 3, 795–804.
Moller, A. P. and Birkhead, T. R. (1992). A pairwise comparative method as illustrated by copulation frequency in birds. Amer. Nat. 139, 644–56.
Mosimann, J. E. (1970). Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J. Amer. Stat. Assoc. 65, 930–45.
Nagy, K. A., Huey, R. B. and Bennett, A. F. (1984). Field energetics and foraging mode of Kalahari lacertid lizards. Ecology 65, 588–96.
Ota, H., Honda, M., Chen, al. (2002). Phylogenetic relationships, taxonomy, character evolution and biogeography of the lacertid lizards of the genus Takydromus (Reptilia: Squamata): a molecular perspective. Biol. J. Linn. Soc. 76, 493–509.
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Amer. Nat. 153, 98–109.
Perry, G. and Pianka, E. R. (1997). Animal foraging: past, present and future. Trends Ecol. Evol. 12, 360–4.
Pianka, E. R. (1966). Convexity, desert lizards and spatial heterogeneity. Ecology 47, 1055–9.
Pianka, E. R. (1973). The structure of lizard communities. Ann. Rev. Ecol. Syst. 4, 53–74.
Pianka, E. R. (1986). Ecology and Natural History of Desert Lizards. Princeton, NJ: Princeton University Press.
Pietruszka, R. D. (1986). Search tactics of desert lizards: how polarized are they? Anim. Behav. 34, 1742–58.
Reeder, T. W. (2003). A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships. Molec. Phylog. Evol. 27, 384–97.
Reeder, T. W., Cole, C. J. and Dessauer, H. C. (2002). Phylogenetic relationships of Whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Amer. Mus. Nov. 3365, 1–61.
Reeder, T. W. and Wiens, J. J. (1996). Evolution of the lizard family Phrynosomatidae as inferred from diverse types of data. Herpetol. Monogr. 10, 43–84.
Regal, P. J. (1978). Behavioral differences between reptiles and mammals: an analysis of activity and mental capacities. In Behavior and Neurology of Lizards ed. Greenberg, N. and Maclean, P. D., pp. 183–202. Washington, D.C.: Department of Health, Education, and Welfare.
Rest, J. S., Ast, J. C., Austin, C. al. (2003). Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Molec. Phylog. Evol. 29, 289–307.
Robson, M. A. and Miles, D. B. (2000). Locomotor performance and dominance in male tree lizards, Urosaurus ornatus. Funct. Ecol. 14, 338–44.
Schluter, D., Price, T., Mooers, A. Ø. and Ludwig, D. (1997). Likelihood of ancestor character states in adaptive radiation. Evolution 51, 1699–711.
Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–26.
Schoener, T. W. (1971). Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404.
Schwenk, K. (2000). An introduction to tetrapod feeding. In Feeding: Form, Function and Evolution in Tetrapod Vertebrates, ed. Schwenk, Kurt, pp. 21–61. San Diego, CA: Academic Press.
Sinervo, B., Miles, D. B., DeNardo, D., Frankino, T. and Klukowski, M. (2000). Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm. Behav. 38, 222–33.
Stephens, D. W. and Krebs, J. R. (1986). Foraging Theory. Princeton, NJ: Princeton University Press.
Thompson, G. G. and Withers, P. C. (1997). Comparative morphology of western Australia monitor lizards (Squamata: Varanidae). J. Morphol. 233, 127–52.
Townsend, T., Larson, A., Louis, E. and Macey, R. J. (2004). Molecular phylogenetics of Squamata: the position of snakes, Amphisbaenians, and Dibamids and the root of the Squamate tree. Syst. Biol. 53, 735–57.
Damme, R. and Vanhooydonck, B. (2001). Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202.
Van Damme, R. B., Vanhooydonck, B., Aerts, P. and De Vree, F. (2003). Evolution of lizard locomotion: context and constraint. In Vertebrate Biomechanics and Evolution, ed. Bels, V. L., Gasc, J.-P. and Casinos, A., pp. 267–83. Oxford: BIOS Scientific Publishers.
Vanhooydonck, B. and Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1, 785–805.
Vanhooydonck, B. and Damme, R. (2001). Evolutionary trade-offs in locomotor capacities in lacertid lizards: are splendid sprinters clumsy climbers? J. Evol. Biol. 14, 46–54.
Vanhooydonck, B., Damme, R. and Aerts, P. (2001). Speed and stamina trade-off in Lacertid lizards. Evolution 55, 1040–8.
Venables, W. N. and Ripley, B. D. (1994). Modern Applied Statistics in S-Plus. New York: Springer-Verlag.
Vitt, L. J. (1983). Tail loss in lizards: the significance of foraging and predator escape modes. Herpetologica 39, 151–62.
Vitt, L. J. and Congdon, J. D. (1978). Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. Amer. Nat. 112, 595–608.
Vitt, L. J. and Pianka, E. R. (2005). Deep history impacts present-day ecology and biodiversity. Proc. Nat. Acad. Sci. USA 102, 7877–81.
Vitt, L. J., Pianka, E. R., Cooper, W. E. and Schwenk, K. (2003). History and the global ecology of squamate reptiles. Amer. Nat. 162, 44–60.
Vitt, L. J. and Price, H. J. (1982). Ecological and evolutionary determinants of relative clutch mass in lizards. Herpetologica 38, 237–55.
Webb, J. K., Brook, B. W. and Shine, R. (2003). Does foraging mode influence life history traits? A comparative study of growth, maturation, and survival of two species of sympatric snakes from south-eastern Australia. Aust. Ecol. 28, 601–10.
Whiting, A. S., Bauer, A. M. and Sites, J. W. Jr. (2003). Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Molec. Phylogen. Evol. 29, 582–98.
Wiens, J. J. and Reeder, T. W. (1997). Phylogeny of the spiny lizards (Sceloporus) based on molecular and morphological evidence. Herpetol. Monogr. 11, 1–101.
Wiens, J. J. and Slingluff, J. L. (2001). How lizards turn into snakes: A phylogenetic analysis of body form evolution in Anguid lizards. Evolution 55, 2303–18.
Williams, E. E. (1983). Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. In Lizard Ecology: Studies of a Model Organism, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 326–70. Cambridge, MA: Harvard University Press.
Zaaf, A. and Damme, R. (2001). Limb proportions in climbing and ground-dwelling geckos (Lepidosauria, Gekkonidae): a phylogenetically informed analysis. Zoomorphology 121, 45–53.
Zani, P. A. (1996). Patterns of caudal autotomy evolution in lizards. J. Zool. Lond. 240, 201–20.
Zani, P. A. (2000). The comparative evolution of lizard claw and toe morphology and clinging performance. J. Evol. Biol. 13, 316–25.