Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T06:01:54.597Z Has data issue: false hasContentIssue false

2 - Morphology, performance, and foraging mode

Published online by Cambridge University Press:  04 August 2010

Donald B. Miles
Affiliation:
Department of Biological Sciences Ohio University
Jonathan B. Losos
Affiliation:
Department of Biology Washington University
Duncan J. Irschick
Affiliation:
Department of Ecology and Evolutionary Biology Tulane University
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

Introduction

The feeding behavior of an animal is a fundamental attribute that has major fitness implications. Individual variation in the success with which prey is acquired ultimately affects growth rate, survivorship and reproductive success. Foraging success is linked to search behavior, which profoundly influences the variety and number of prey encountered (Pianka, 1966, 1973; Pietruszka, 1986). The ability to find prey therefore affects food intake and ultimately an individual's energy budget. The importance of foraging success is manifest in the myriad of behaviors animals display for the searching, pursuit, and capture of prey. Different modes of search behavior also entail costs. The duration of time spent foraging and the type of habitat an animal searches for food affects the risk of predation and ability to avoid predators (Huey and Pianka, 1981).

Not surprisingly, the analysis of foraging behavior has been an important topic in ecology and evolutionary biology (Schoener, 1971; Gerritsen and Strickler, 1977; Stephens and Krebs, 1986; Perry and Pianka, 1997). Past investigations proposed a dichotomy in foraging patterns based on observations of consistent and prominent differences in behaviors among species in how prey are pursued and captured (see McLaughlin, 1989; Vitt and Pianka, this volume, Chapter 5; Perry, this volume, Chapter 1). Most species have been classified as either “ambush” (“sit-and-wait”) predators or widely (active) foraging predators (Pianka, 1966; Regal, 1978; Huey and Pianka, 1981) based on qualitative examination of activity patterns in the field.

Type
Chapter
Information
Lizard Ecology , pp. 49 - 93
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts, P. R., Damme, R., Vanhooydonck, B., Zaaf, A. and Herrel, A. (2000). Lizard locomotion: how morphology meets ecology. Netherl. J. Zool. 50, 261–77.CrossRefGoogle Scholar
Arnold, E. N. (1989). Towards a phylogeny and biogeography of the Lacertidae: relationships within an old-world family of lizards derived from morphology. Bull. Brit. Mus. (Nat. Hist.) Zool. 55, 209–57.Google Scholar
Anderson, R. A. and Karasov, W. H. (1981). Contrast in energy intake and expenditure in sit and wait and widely foraging lizards. Oecologia 49, 67–72.CrossRefGoogle Scholar
Breiman, J. H., Fridman, J. H., Olshen, R. A. and Stone, C. J. (1983). Classification and Regression Trees. Belmont, CA: Wadsworth.Google Scholar
Butler, M. A. (2005). Foraging mode of the chameleon, Bradypodion pumilum: a challenge to the sit-and-wait versus active forager paradigm? Biol. J. Linn. Soc. 84, 797–808.CrossRefGoogle Scholar
Clark, L. and Pregibon, D. (1992). Tree-based models. In Statistical Models, ed. Chambers, J. M. and Hastie, T. J., pp. 377–419. Pacific Grove, CA: Wadsworth.Google Scholar
Cooper, W. E. Jr. (1995). Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50, 973–85.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1997). Correlated evolution of prey chemical discrimination with foraging, lingual morphology, and vomeronasal chemoreceptor abundance in lizards. Behav. Ecol. Sociobiol. 41, 257–65.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Whiting, M. J. (2000). Ambush and active foraging modes both occur in the scincid genus Mabuya. Copeia 2000, 112–18.CrossRefGoogle Scholar
Cooper, W. E. Jr., Whiting, M. J., Wyk, J. H. and Mouton, P., F. N. (1999). Movement- and attack-based indices of foraging mode and ambush foraging in some gekkonid and agamine lizards from southern Africa. Amph.-Rept. 20, 391–9.CrossRefGoogle Scholar
Cooper, W. E. Jr., Vitt, L. J., Caldwell, J. P. and Fox, S. F. (2001). Foraging modes of some American lizards: relationships among measurement variables and discreteness of modes. Herpetologica 57, 65–76.Google Scholar
Cooper, W. E. Jr., Vitt, L. J., Caldwell, J. P. and Fox, S. F. (2005). Relationships among foraging variables, phylogeny, and foraging modes, with new data for nine North American lizard species. Herpetologica 61, 250–9.CrossRefGoogle Scholar
Diaz-Uriarte, R. and Garland, T. Jr. (1998). Effects of branch length errors on the performance of phylogenetic independent contrasts. Syst. Biol. 47, 654–72.CrossRefGoogle Scholar
Dunham, A. E., Miles, D. B. and Reznick, D. N. (1988). Life history patterns in squamate reptiles. In Biology of the Reptilia, vol. 16, ed. Gans, C. and Huey, R. B., pp. 331–86. New York: A. R. Liss.Google Scholar
Estes, R., de Queiroz, K. and Gauthier, J. (1988). Phylogenetic relationships within Squamata. In Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L. Camp, ed. Estes, R. and Pregill, G., pp. 119–281. Stanford, CA: Stanford University Press.Google Scholar
Evans, S. E. (2003). At the feet of dinosaurs: the early history and radiation of lizards. Biological Reviews 78, 513–51.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985). Phylogenies and the comparative method. Amer. Nat. 125, 1–15.CrossRefGoogle Scholar
Felsenstein, J. (1988). Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 19, 445–71.CrossRefGoogle Scholar
Frost, D. R. and Etheridge, R. (1989). A phylogenetic analysis and taxonomy of iguanian lizards. Misc. Publ. Mus. Nat. Hist. Univ. Kansas 81, 1–65.Google Scholar
Fu, J. (2000). Towards the phylogeny of the family Lacertidae: why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol. J. Linn. Soc. 71, 203–17.Google Scholar
Garland, T. Jr. (1993). Locomotor performance and activity metabolism of Cnemidophorus tigris in relation to natural behaviors. In Biology of Whiptail Lizards (Genus Cnemidophorus), ed. Wright, J. W. and Vitt, L. J., pp. 163–210. Norman, OK: Oklahoma Museum of Natural History.Google Scholar
Garland, T. Jr. (1994). Phylogenetic analyses of lizard endurance capacity in relation to body size and temperature. In Lizard Ecology: Historical and Evolutionary Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 207–36. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Garland, T. Jr. (1999). Laboratory endurance predicts variation in field locomotor behaviour among lizard species. Anim. Behav. 57, 77–83.CrossRefGoogle Scholar
Garland, T. Jr. and Adolph, S. C. (1994). Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol. Zool. 67, 797–828.CrossRefGoogle Scholar
Garland, T. Jr. and Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In Ecological Morphology: Integrative Organismal Biology, ed. Wainwright, P. C. and Reilly, S. M., pp. 240–302. Chicago, IL: University of Chicago Press.Google Scholar
Garland, T. Jr., Dickerman, A. W., Janis, C. M. and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265–92.CrossRefGoogle Scholar
Garland, T. Jr., Harvey, P. H. and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.CrossRefGoogle Scholar
Gerritsen, J. and Strickler, J. R. (1977). Encounter probabilities and community structure in zooplankton: a mathematical model. J. Fish. Res. Board Can. 34, 73–82.CrossRefGoogle Scholar
Giannini, N. P. (2003). Canonical phylogenetic ordination. Syst. Biol. 52, 684–95.CrossRefGoogle ScholarPubMed
Han, D., Zhou, K. and Bauer, A. M. (2004). Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota. Biol. J. Linn. Soc. 83, 353–68.CrossRefGoogle Scholar
Harris, D. J. and Arnold, E. N. (1999). Relationships of wall lizards, Podarcis (Reptilia: Lacertidae) based on mitochondrial DNA sequences. Copeia 1999, 749–54.CrossRefGoogle Scholar
Harris, D. J. and Arnold, E. N. (2000). Elucidation of the relationships of the spiny-footed lizards, Acanthothdactylus spp. (Reptilia: Lacertidae) using mitochondrial DNA sequence, with comments on their biogeography and evolution. J. Zool. 252, 351–62.CrossRefGoogle Scholar
Harris, D. J., Arnold, E. N. and Thomas, R. H. (1998). Relationships of lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. R. Soc. Lond. B265, 1939–48.CrossRefGoogle Scholar
Hedges, S. B., Bezy, R. L. and Maxson, L. R. (1991). Phylogenetic relationships and biogeography of Xantusiid lizards, inferred from mitochondrial DNA sequences. Molec. Biol. Evol. 8, 767–80.Google ScholarPubMed
Herrel, A., Meyers, J. J. and Vanhooydonck, B. (2002). Relations between microhabitat use and limb shape in phrynosomatid lizards. Biol. J. Linn. Soc. 77, 149–63.CrossRefGoogle Scholar
Hertz, P. E., Huey, R. B. and Garland, T. Jr. (1988). Time budgets, thermoregulation, and maximal locomotor performance: are ectotherms Olympians or boy scouts? Amer. Zool. 28, 927–38.CrossRefGoogle Scholar
Hicks, R. A. and Trivers, R. L. (1983). The social behavior of Anolis valencienni. In Advances in Herpetology and Evolutionary Biology: Essays in Honor of Ernest E. Williams, ed. Rhodin, A. G. J. and Miyata, K. I., pp. 570–95. Cambridge, MA: Museum of Comparative Zoology, Harvard University.Google Scholar
Honda, M., Ota, H., Kobayashi, M.et al. (1999). Evolution of Asian and African lygosomine skinks of the Mabuya group (Reptilia: Scincidae): A molecular perspective. Zool. Sci. 16, 979–84.CrossRefGoogle Scholar
Honda, M., Ota, H., Köhler, G.et al. (2003). Phylogeny of the lizard subfamily Lygosominae (Reptilia: Scincidae), with special reference to the origin of the New World taxa. Genes Gen. Syst. 78, 71–80.CrossRefGoogle Scholar
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Huey, R. B. and Bennett, A. F. (1986). A comparative approach to field and laboratory studies in evolutionary biology. In. Predator-Prey Relationships: Perspectives and Approaches From the Study of Lower Vertebrates, ed. Feder, M. E. and Lauder, G. V., pp. 82–98. Chicago, IL: University of Chicago Press.Google Scholar
Huey, R. B., Bennett, A. F., John-Alder, H. B. and Nagy, K. A. (1984). Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim. Behav. 32, 41–50.CrossRefGoogle Scholar
Irschick, D. J. (2000). Comparative and behavioral analyses of preferred speed: Anolis lizards as a model system. Physiol. Biochem. Zool. 73, 428–37.CrossRefGoogle ScholarPubMed
Irschick, D. J. and Losos, J. B. (1996). Morphology, ecology, and behavior of the twig anole Anolis angusticeps. In Contributions to West Indian Herpetology: a Tribute to Albert Schwartz, ed. Powell, R. and Henderson, R. W., pp. 291–301. Contributions in Herpetology, vol. 12. Ithaca, NY: Society for the study of Amphibians and Reptiles (SSAR).Google Scholar
Irschick, D. J. and Losos, J. B. (1998). A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution 52, 219–26.CrossRefGoogle ScholarPubMed
Irschick, D. J., and Losos, J. B. (1999). Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles. Amer. Nat. 154, 293–305.CrossRefGoogle ScholarPubMed
Irschick, D. J., Vitt, L. J., Zani, P. A. and Losos, J. B. (1997). A comparison of evolutionary radiations in mainland and Caribbean Anolis lizards. Ecology 78, 2191–203.CrossRefGoogle Scholar
Jackman, T. R., Irschick, D. J., Queiroz, K., Losos, J. B. and Larson, A. (2002). Molecular phylogenetic perspective on evolution of lizards of the Anolis grahami series. J. Exp. Zool. 294, 1–16.CrossRefGoogle ScholarPubMed
Jackman, T. R., Larson, A., Queiroz, K. and Losos, J. B. (1999). Phylogenetic relationships and tempo of early diversification in Anolis lizards. Syst. Biol. 48, 254–85.CrossRefGoogle Scholar
Jayne, B. C. and Irschick, D. J. (2000). A field study of incline use and preferred speeds for the locomotion of lizards. Ecology 81, 2969–83.CrossRefGoogle Scholar
Kluge, A. G. (1987). Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Mich. 173, 1–54.Google Scholar
Lamb, T. and Bauer, A. M. (2003). Meroles revisted: complementary systematic inference from additional mitochondrial genes and a complete taxon sampling of southern Africa's desert lizards. Molec. Phylogenet. Evol. 29, 360–4.CrossRefGoogle Scholar
Lapointe, F.-J. and Garland, T. Jr. (2001). A generalized permutation test for the analysis of cross-species data. J. Classif. 18, 109–27.CrossRefGoogle Scholar
Losos, J. B. (1990a). The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44, 1189–203.CrossRefGoogle Scholar
Losos, J. B. (1990b). Concordant evolution of locomotor behavior, display rate, and morphology in Anolis lizards. Anim. Behav. 39, 879–90.CrossRefGoogle Scholar
Losos, J. B. (1994). Integrative approaches to evolutionary ecology: Anolis lizards as model systems. Ann. Rev. Ecol. Syst. 25, 467–93.CrossRefGoogle Scholar
Losos, J. B. and Miles, D. B. (1994). Adaptation, constraint and the comparative method: phylogenetic issues and methods. In Ecological Morphology: Integrative Organismal Biology, ed. Wainwright, P. C. and Reilly, S. M., pp. 60–98. Chicago, IL: The University of Chicago Press.Google Scholar
Losos, J. B. and Miles, D. B. (2002). Testing the hypothesis that a clade has adaptively radiated: iguanid lizard clades as a case study. Am. Nat. 160, 147–57.CrossRefGoogle ScholarPubMed
Losos, J. B. and Sinervo, B. (1989). The effects of morphology and perch diameter on sprint performance of Anolis lizards. J. Exp. Biol. 145, 23–30.Google Scholar
Losos, J. B., Butler, M. and Schoener, T. W. (2003). Sexual dimorphism in body size and shape in relation to habitat use among species of Caribbean Anolis lizards. In Lizard Social Behavior, ed. Fox, S. F., McCoy, J. K. and Baird, T. A., pp. 356–80. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Losos, J. B.Jackman, T. R., Larson, A., Queiroz, K. and Rodriquez-Schettino, L. (1998). Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–18.CrossRefGoogle ScholarPubMed
McBrayer, L. D. (2004). The relationship between skull morphology, biting performance and foraging mode in Kalahari lacertid lizards. Zool. J. Linn. Soc. 140, 403–16.CrossRefGoogle Scholar
McBrayer, L. D. and Reilly, S. M. (2002). Prey processing in lizards: Behavioral variation in sit-and-wait and widely foraging taxa. Can. J. Zool. 80, 882–92.CrossRefGoogle Scholar
McLaughlin, R. L. (1989). Search modes of birds and lizards: evidence for alternative movement patterns. Amer. Nat. 133, 654–70.CrossRefGoogle Scholar
Maddison, W. P. and Maddison, D. R. (2004). Mesquite: A modular system for evolutionary analysis. Ver 1.06. http://mesquiteproject.org.
Mausfeld, P., Vences, M., Schmitz, A. and Veith, M. (2000). First data on the molecular phylogeography of Scincid lizards of the genus Mabuya. Molec. Phylogenet. Evol. 17, 11–14.CrossRefGoogle ScholarPubMed
Melville, J. and Swain, R. (2000a). Mitochondrial DNA-sequence based phylogeny and biogeography of the snow skinks (Squamata: Scincidae: Niveoscincus) of Tasmania. Herpetologica 56, 196–208.Google Scholar
Melville, J. and Swain, R. (2000b). Evolutionary relationships between morphology, performance, and habitat openness in the lizard genus Niveoscincus (Scincidae: Lygosominae). Biol. J. Linn. Soc. 70, 667–83.Google Scholar
Midford, P. E., Garland, T. Jr. and Maddison, W. P. (2003). PDAP Package for Mesquite Ver. 1.05. http://mesquiteproject.org.
Miles, D. B. (1994). Covariation between morphology and locomotory performance in Sceloporine lizards. In Lizard Ecology: Historical and Evolutionary Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 207–36. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Miles, D. B., Snell, H. L. and Snell, H. M. (2001). Interpopulation variation in endurance of Galapagos lava lizards Microlophus albemarlensis: evidence for an interaction between natural and sexual selection. Evol. Ecol. Res. 3, 795–804.Google Scholar
Moller, A. P. and Birkhead, T. R. (1992). A pairwise comparative method as illustrated by copulation frequency in birds. Amer. Nat. 139, 644–56.CrossRefGoogle Scholar
Mosimann, J. E. (1970). Size allometry: size and shape variables with characterizations of the lognormal and generalized gamma distributions. J. Amer. Stat. Assoc. 65, 930–45.CrossRefGoogle Scholar
Nagy, K. A., Huey, R. B. and Bennett, A. F. (1984). Field energetics and foraging mode of Kalahari lacertid lizards. Ecology 65, 588–96.CrossRefGoogle Scholar
Ota, H., Honda, M., Chen, S.-L.et al. (2002). Phylogenetic relationships, taxonomy, character evolution and biogeography of the lacertid lizards of the genus Takydromus (Reptilia: Squamata): a molecular perspective. Biol. J. Linn. Soc. 76, 493–509.CrossRefGoogle Scholar
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Amer. Nat. 153, 98–109.CrossRefGoogle ScholarPubMed
Perry, G. and Pianka, E. R. (1997). Animal foraging: past, present and future. Trends Ecol. Evol. 12, 360–4.CrossRefGoogle ScholarPubMed
Pianka, E. R. (1966). Convexity, desert lizards and spatial heterogeneity. Ecology 47, 1055–9.CrossRefGoogle Scholar
Pianka, E. R. (1973). The structure of lizard communities. Ann. Rev. Ecol. Syst. 4, 53–74.CrossRefGoogle Scholar
Pianka, E. R. (1986). Ecology and Natural History of Desert Lizards. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Pietruszka, R. D. (1986). Search tactics of desert lizards: how polarized are they? Anim. Behav. 34, 1742–58.CrossRefGoogle Scholar
Reeder, T. W. (2003). A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships. Molec. Phylog. Evol. 27, 384–97.CrossRefGoogle ScholarPubMed
Reeder, T. W., Cole, C. J. and Dessauer, H. C. (2002). Phylogenetic relationships of Whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Amer. Mus. Nov. 3365, 1–61.2.0.CO;2>CrossRefGoogle Scholar
Reeder, T. W. and Wiens, J. J. (1996). Evolution of the lizard family Phrynosomatidae as inferred from diverse types of data. Herpetol. Monogr. 10, 43–84.CrossRefGoogle Scholar
Regal, P. J. (1978). Behavioral differences between reptiles and mammals: an analysis of activity and mental capacities. In Behavior and Neurology of Lizards ed. Greenberg, N. and Maclean, P. D., pp. 183–202. Washington, D.C.: Department of Health, Education, and Welfare.Google Scholar
Rest, J. S., Ast, J. C., Austin, C. C.et al. (2003). Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Molec. Phylog. Evol. 29, 289–307.CrossRefGoogle ScholarPubMed
Robson, M. A. and Miles, D. B. (2000). Locomotor performance and dominance in male tree lizards, Urosaurus ornatus. Funct. Ecol. 14, 338–44.CrossRefGoogle Scholar
Schluter, D., Price, T., Mooers, A. Ø. and Ludwig, D. (1997). Likelihood of ancestor character states in adaptive radiation. Evolution 51, 1699–711.CrossRefGoogle ScholarPubMed
Schoener, T. W. (1968). The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–26.CrossRefGoogle Scholar
Schoener, T. W. (1971). Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404.CrossRefGoogle Scholar
Schwenk, K. (2000). An introduction to tetrapod feeding. In Feeding: Form, Function and Evolution in Tetrapod Vertebrates, ed. Schwenk, Kurt, pp. 21–61. San Diego, CA: Academic Press.Google Scholar
Sinervo, B., Miles, D. B., DeNardo, D., Frankino, T. and Klukowski, M. (2000). Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm. Behav. 38, 222–33.CrossRefGoogle ScholarPubMed
Stephens, D. W. and Krebs, J. R. (1986). Foraging Theory. Princeton, NJ: Princeton University Press.Google Scholar
Thompson, G. G. and Withers, P. C. (1997). Comparative morphology of western Australia monitor lizards (Squamata: Varanidae). J. Morphol. 233, 127–52.3.0.CO;2-3>CrossRefGoogle Scholar
Townsend, T., Larson, A., Louis, E. and Macey, R. J. (2004). Molecular phylogenetics of Squamata: the position of snakes, Amphisbaenians, and Dibamids and the root of the Squamate tree. Syst. Biol. 53, 735–57.CrossRefGoogle ScholarPubMed
Damme, R. and Vanhooydonck, B. (2001). Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202.CrossRefGoogle Scholar
Van Damme, R. B., Vanhooydonck, B., Aerts, P. and De Vree, F. (2003). Evolution of lizard locomotion: context and constraint. In Vertebrate Biomechanics and Evolution, ed. Bels, V. L., Gasc, J.-P. and Casinos, A., pp. 267–83. Oxford: BIOS Scientific Publishers.Google Scholar
Vanhooydonck, B. and Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1, 785–805.Google Scholar
Vanhooydonck, B. and Damme, R. (2001). Evolutionary trade-offs in locomotor capacities in lacertid lizards: are splendid sprinters clumsy climbers? J. Evol. Biol. 14, 46–54.CrossRefGoogle ScholarPubMed
Vanhooydonck, B., Damme, R. and Aerts, P. (2001). Speed and stamina trade-off in Lacertid lizards. Evolution 55, 1040–8.CrossRefGoogle ScholarPubMed
Venables, W. N. and Ripley, B. D. (1994). Modern Applied Statistics in S-Plus. New York: Springer-Verlag.CrossRefGoogle Scholar
Vitt, L. J. (1983). Tail loss in lizards: the significance of foraging and predator escape modes. Herpetologica 39, 151–62.Google Scholar
Vitt, L. J. and Congdon, J. D. (1978). Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. Amer. Nat. 112, 595–608.CrossRefGoogle Scholar
Vitt, L. J. and Pianka, E. R. (2005). Deep history impacts present-day ecology and biodiversity. Proc. Nat. Acad. Sci. USA 102, 7877–81.CrossRefGoogle ScholarPubMed
Vitt, L. J., Pianka, E. R., Cooper, W. E. and Schwenk, K. (2003). History and the global ecology of squamate reptiles. Amer. Nat. 162, 44–60.CrossRefGoogle ScholarPubMed
Vitt, L. J. and Price, H. J. (1982). Ecological and evolutionary determinants of relative clutch mass in lizards. Herpetologica 38, 237–55.Google Scholar
Webb, J. K., Brook, B. W. and Shine, R. (2003). Does foraging mode influence life history traits? A comparative study of growth, maturation, and survival of two species of sympatric snakes from south-eastern Australia. Aust. Ecol. 28, 601–10.CrossRefGoogle Scholar
Whiting, A. S., Bauer, A. M. and Sites, J. W. Jr. (2003). Phylogenetic relationships and limb loss in sub-Saharan African scincine lizards (Squamata: Scincidae). Molec. Phylogen. Evol. 29, 582–98.CrossRefGoogle Scholar
Wiens, J. J. and Reeder, T. W. (1997). Phylogeny of the spiny lizards (Sceloporus) based on molecular and morphological evidence. Herpetol. Monogr. 11, 1–101.CrossRefGoogle Scholar
Wiens, J. J. and Slingluff, J. L. (2001). How lizards turn into snakes: A phylogenetic analysis of body form evolution in Anguid lizards. Evolution 55, 2303–18.CrossRefGoogle ScholarPubMed
Williams, E. E. (1983). Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis. In Lizard Ecology: Studies of a Model Organism, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 326–70. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Zaaf, A. and Damme, R. (2001). Limb proportions in climbing and ground-dwelling geckos (Lepidosauria, Gekkonidae): a phylogenetically informed analysis. Zoomorphology 121, 45–53.CrossRefGoogle Scholar
Zani, P. A. (1996). Patterns of caudal autotomy evolution in lizards. J. Zool. Lond. 240, 201–20.CrossRefGoogle Scholar
Zani, P. A. (2000). The comparative evolution of lizard claw and toe morphology and clinging performance. J. Evol. Biol. 13, 316–25.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×