Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Print publication year: 2007
  • Online publication date: August 2010

4 - Lizard energetics and the sit-and-wait vs. wide-foraging paradigm



The acquisition and allocation of energy can be two of the most critical processes in an organism's life. The amount of energy an individual obtains from the environment can determine not only its survival, but also whether it can engage in reproduction, a very evolutionarily important activity. Among vertebrates, there exists a fairly definitive dichotomy between the high-energy requirements of endotherms and the more energetically “conservative” ectotherms. Within the ectothermic reptiles, the possibility of a similarly clear-cut dichotomy, that between ambushing and actively foraging modes, has been repeatedly discussed, and is the focus of this volume.

Over twenty years ago, Huey and Pianka (1981) asked the question “what are the extra energetic costs of foraging widely?” The observation that wide-foragers travel longer distances through their environment creates the expectation of higher overall daily energy needs (Huey and Pianka, 1981). At the time, Huey and Pianka (1981) estimated that daily maintenance costs could be up to 1.5 times higher in an actively foraging species, a value validated subsequently by Nagy et al. (1984).

The validity and demonstrability of the sit-and-wait (SW) and widely foraging (WF) dichotomy has drawn much scientific attention. A quick perusal of the table of contents of this book can attest to the body of knowledge resulting from such research efforts. While many foraging studies focus on the physiological, morphological or behavioral correlates of foraging mode, here we examine a metric that encompasses all of these aspects at the whole-organism level: field metabolic rate.

Anderson, R. A. and Karasov, W. H. (1981). Contrasts in energy intake and expenditure in sit-and-wait and widely foraging lizards. Oecologia 49, 67–72.
Anderson, R. A. and Karasov, W. H. (1988). Energetics of the lizard Cnemidophorus tigris and life history consequences of food-acquisition mode. Ecol. Monogr. 58, 79–110.
Andrews, R. M. and Pough, F. H. (1985). Metabolism of squamate reptiles: allometric and ecological relationships. Physiol. Zool. 58, 214–31.
Arnold, E. N. (1989). Towards a phylogeny and biogeography of the Lacertidae: relationships within an Old-World family of lizards derived from morphology. Bull. Br. Mus. Nat. Hist. (Zool.) 55, 209–57.
Ast, J. C. (2001). Mitochondrial DNA evidence and evolution in Varanoidea (Squamata). Cladistics 17, 211–26.
Beck, D. D. and Lowe, C H. (1994). Resting metabolism of helodermatid lizards: allometric and ecological relationships. J. Comp. Physiol. B164, 124–9.
Benabib, M. and Congdon, J. D. (1992). Metabolic and water-flux rates of free-ranging tropical lizards. Sceloporus variabilis. Physiol. Zool. 65, 788–802.
Bennett, A. F. and Dawson, W. R. (1976). Metabolism. In Biology of the Reptilia, vol. 5, ed. Gans, C. and Dawson, W. R., pp. 127–223. London: Academic Press.
Bennett, A. F. and Nagy, K. A. (1977). Energy expenditure in free-ranging lizards. Ecology 58, 697–700.
Bennett, A. F., Huey, R. B. and John-Alder, H. (1984). Physiological correlates of natural activity and locomotor capacity in two species of lacertid lizards. J. Comp. Physiol. B154, 113–18.
Bickler, P. E. and Nagy, K. A. (1980). Effect of parietalectomy on energy expenditure in free-ranging lizards. Copeia 1980, 923–5.
Blomberg, S. P., Garland, T. Jr. and Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more liable. Evolution 57, 717–45.
Bradshaw, S. D., Saint Girons, H., Naulleau, G. and Nagy, K. A. (1987). Material and energy balance of some captive and free-ranging reptiles in western France. Amph.-Rept. 8, 129–42.
Brown, R. P. and Perez-Mellado, V. (1994). Ecological energetics and food acquisition in dense Menorcan islet populations of the lizard Podarcis lilfordi. Funct. Ecol. 8, 427–34.
Brown, R. P., Thorpe, R. S. and Speakman, J. R. (1992). Comparisons of body size, field energetics, and water flux among populations of the skink Chalcides sexlineatus. Can. J. Zool. 70, 1001–6.
Christian, K. and Green, B. (1994). Seasonal energetics and water turnover of the frillneck lizard, Chlamydosaurus kingii, in the wet-dry tropics of Australia. Herpetologica 50, 274–81.
Christian, K. A., Baudinette, R. V. and Pamula, Y. (1997). Energetic costs of activity by lizards in the field. Funct. Ecol. 11, 392–7.
Christian, K., Bedford, G., Green, al. (1999). Physiological ecology of a tropical dragon, Lophognathus temporalis. Aust. J. Ecol. 24, 171–81.
Christian, K. A., Bedford, G., Green, B., Schultz, T. and Newgrain, K. (1998). Energetics and water flux of the marbled velvet gecko (Oedura marmorata) in tropical and temperate habitats. Oecologia 116, 336–42.
Christian, K. A., Corbett, L. K., Green, B. and Weavers, B. W. (1995). Seasonal activity and energetics of two species of varanid lizards in tropical Australia. Oecologia 103, 349–57.
Christian, K., Green, B., Bedford, G. and Newgrain, K. (1996a). Seasonal metabolism of a small, arboreal monitor lizard, Varanus scalaris, in tropical Australia. Aust. J. Zool. 240, 383–96.
Christian, K. A., Weavers, B. W., Green, B. and Bedford, G. S. (1996b). Energetics and water flux in a semiaquatic lizard, Varanus mertensi. Copeia 1996, 354–62.
Clobert, J., Garland, T. Jr. and Barbault, R. (1998). The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution. J. Evol. Biol. 11, 329–64.
Congdon, J. D. and Tinkle, D. W. (1982). Energy expenditure in free-ranging sagebrush lizards (Sceloporus graciosus). Can. J. Zool. 60, 1412–16.
Cooper, W. E. Jr. (1994). Prey chemical discrimination, foraging mode, and phylogeny. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Piank, E. R., pp. 95–116. Princeton, NJ: Princeton University Press.
Cooper, W. E. Jr. and Whiting, M. J. (2000). Ambush and active foraging modes both occur in the Scincid genus Mabuya. Copeia 2000, 112–18.
Dryden, G., Green, B., King, D. and Losos, J. (1990). Water and energy turnover in a small monitor lizard, Varanus acanthurus. Aust. Wild. Res. 17, 641–6.
Dryden, G. L., Green, B., Wikramanayake, E. D. and Drysen, K. G. (1992). Energy and water turnover in two tropical varanid lizards, Varanus bengalensis and V. salvator. Copeia 1992, 102–7.
Duvdevani, I. and Borut, A. (1974). Oxygen consumption and evaporative water loss in four species of Acanthodactylus (Lacertidae). Copeia 1974, 155–64.
Estes, R. and Pregill, G. (1988). Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L. Camp. Stanford, CA: Stanford University Press.
Felsenstein, J. (1985). Phylogenies and quantitative characters. Am. Nat. 125, 1–15.
Garland, T. Jr. (1983). Scaling the ecological cost of transport to body mass in terrestrial mammals. Am. Nat. 121, 571–87.
Garland, T. Jr. and Adolph, S. C. (1994). Why not to do two-species comparative studies: limitations on inferring adaptation. Physiol. Biochem. Zool. 67, 797–828.
Garland, T. Jr., Dickerman, A. W., Janis, C. M. and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265–92.
Garland, T. Jr., Harvey, P. H. and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.
Garland, T. Jr., Midford, P. E. and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Amer. Zool. 39, 374–88.
Green, B., Dryden, G. and Dryden, K. (1991a). Field energetics of a large carnivorous lizard, Varanus rosenbergi. Oecologia 88, 547–51.
Green, B., Herrera, E., King, D. and Mooney, N. (1997). Water and energy use in a free-living tropical, carnivorous lizard, Tupinambis teguixin. Copeia 1997, 200–3.
Green, B., King, D. and Butler, H. (1986). Water, sodium and energy turnover in free-living perenties, Varanus giganteus. Aust. Wild. Res. 13, 589–96.
Green, B., King, D., Braysher, M. and Saim, A. (1991b). Thermoregulation, water turnover and energetics of free-living komodo dragons, Varanus komodoensis. Comp. Biochem. Physiol. 99A, 97–102.
Guarino, F., Georges, A. and Green, B. (2002). Variation in energy metabolism and water flux of free-ranging male lace monitors, Varanus varius (Squamata: Varanidae). Physiol. Biochem. Zool. 75, 294–304.
Honda, M., Ota, H., Kobayashi, al. (2000). Phylogenetic relationships of the family Agamidae (Reptilia: Iguania) inferred from mitochondrial DNA sequences. Zool. Sci. 17, 527–37.
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.
Huey, R. B., Bennett, A. F., John-Alder, H. and Nagy, K. A. (1984). Locomotor capacity and foraging behavior of Kalahari lacertid lizards. Anim. Behav. 32, 41–50.
Karasov, W. H. and Anderson, R. A. (1984). Interhabitat differences in energy acquisition and expenditure in a lizard. Ecology 65, 235–47.
Karasov, W. H. and Anderson, R. A. (1998) Correlates of average daily metabolism of field-active zebra-tailed lizards (Callisaurus draconoides). Physiol. Zool. 71, 93–105.
Kingsbury, B. A. (1995). Field metabolic rates of a eurythermic lizard. Herpetologica 51, 155–9.
Kluge, A. G. (1987). Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ., Mus. Zool. Univ. Mich., Ann Arbor No. 173, 54 pp.
Lifson, N. and McClintock, R. (1966). Theory of use of the turnover rates of body water for measuring energy and material balance. J. Theor. Biol. 12, 46–74.
Macey, J. R., Schulte, J. A. II, Larson, al. (2000). Evaluating trans-tethys migration: an example using acrodont lizard phylogenies. Syst. Biol. 49, 233–56.
Marler, C. A., Walsberg, G., White, M. L. and Moore, M. (1995). Increased energy expenditure due to increased territorial defense in male lizards after phenotypic manipulation. Behav. Ecol. Socio biol. 37, 225–31.
Mautz, W. J. and Nagy, K. A. (2000). Xantusiid lizards have low energy, water, and food requirements. Physiol. Biochem. Zool. 73, 480–7.
McLaughlin, R. L. (1989). Search modes of birds and lizards: Evidence for alternative movement patterns. Am. Nat. 133, 654–70.
Merker, G. P. and Nagy, K. A. (1984). Energy utilization by free-ranging Sceloporus virgatus lizards. Ecology 65, 575–81.
Nagy, K. A. (1975). Water and energy budgets of free-living animals: measurement using isotopically labeled water. In Environmental Physiology of Desert Organisms, ed. Hadley, N. F., pp. 227–45. Stroudsburg, PA: Dowden, Hutchinson and Ross.
Nagy, K. A. (1980). CO2 production in animals: analysis of potential errors in the doubly labeled water method. Am. J. Physiol. 238, R466–73.
Nagy, K. A. (1982). Energy requirements of free-living iguanid lizards. In Iguanas of the World: Their Behavior, Ecology and Conservation, ed. Burghardt, G. M. and Rand, A. S., pp. 49–59. Park Ridge, NJ: Noyes Publishers.
Nagy, K. A. (1983a). The Doubly Labeled Water (3HH18O) Method: a Guide to Its Use. Los Angeles, CA: University of California, Publ. No. 12-1417. Available online from:
Nagy, K. A. (1983b). Ecological energetics. In Lizard Ecology: Studies of a Model Organism, 2nd edn, ed. Huey, R. B., Pianka, E. R. and Schoener, T. W., pp. 24–54. Cambridge, MA: Harvard University Press.
Nagy, K. A. (1989). Field bioenergetics: accuracy of models and methods. Physiol. Zool. 62, 237–52.
Nagy, K. A. and Bradshaw, S. D. (1995). Energetics, osmoregulation, and food consumption by free-living desert lizards, Ctenophorus (= Amphibolurus) nuchalis. Amph.-Rept. 16, 25–35.
Nagy, K. A. and Degen, A. A. (1988). Do desert geckos conserve energy and water by being nocturnal? Physiol. Zool. 61, 495–9.
Nagy, K. A. and Knight, M. H. (1989). Comparative field energetics of a Kalahari skink (Mabuya striata) and gecko (Pachydactylus bibroni). Copeia 1989, 13–17.
Nagy, K. A., Girard, I. and Brown, T. K. (1999). Energetics of free-ranging mammals, reptiles, and birds. Ann. Rev. Nutr. 19, 247–77.
Nagy, K. A., Huey, R. B. and Bennett, A. F. (1984). Field energetics and foraging mode of Kalahari lacertid lizards. Ecology 65, 588–96.
Nagy, K. A., Seely, M. K. and Buffenstein, R. (1993). Surprisingly low field metabolic rate of a diurnal desert gecko Rhoptropus afer. Copeia 1993, 216–19.
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 98–109.
Pietruszka, R. D. (1986). Search tactics of desert lizards: how polarized are they? Anim. Behav. 34, 1742–58.
Purvis, A. (1995). A composite estimate of primate phylogeny. Phil. Trans. R. Soc. Lond. B348, 405–21.
Robinson, M. D. (1990). Summer field energetics of the Namib desert dune lizard Aporosaura anchietae (Lacertidae), and its relation to reproduction. J. Arid Environ. 18, 207–16.
Secor, S. M. and Nagy, K. A. (1994). Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum. Ecology 75, 1600–14.
Sokal, R. R. and Rohlf, F. J. (1981). Biometry, 2nd edn. New York: W. H. Freeman and Co.
Thompson, G. G. and Withers, P. C. (1994). Standard metabolic rates of two small Australian varanid lizards (Varanus caudolineatus and V. acanthurus). Herpetologica 50, 494–502.
Thompson, G. G. and Withers, P. C. (1997). Standard and maximal metabolic rates of goannas (Squamata: Varanidae). Physiol. Zool. 70, 307–23.
Thompson, G. G., Bradshaw, S. D., and Withers, P. C. (1997). Energy and water turnover rates of a free-living and captive goanna, Varanus caudolineatus (Lacertilia: Varanidae). Comp. Biochem. Physiol. 116A, 105–11.
Tinkle, D. W. and Hadley, N. F. (1975). Lizard reproductive effort, caloric estimates and comments on its evolution. Ecology 56, 427–34.
Tollestrup, K. (1982). Growth and reproduction in two closely related species of leopard lizards, Gambelia silus and Gambelia wislizenii. Amer. Mid. Nat. 108, 1–20.
Vanhooydonck, B. and Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1, 785–805.
Vernet, R., Castanet, J. and Baez, M. (1995). Comparative water flux and daily energy expenditure of lizards of the genus Gallotia (Lacertidae) from the Canary Islands. Amph.-Rept. 16, 55–66.
Vernet, R., Grenot, C. and Nouira, S. (1988). Water flux and energy metabolism in a population of Lacertidae from the Kerkenna islands (Tunisia). Can. J. Zool. 66, 555–61.
Wiens, J. J. and Reeder, T. W. (1997). Phylogeny of the spiny lizards (Sceloporus) based on molecular and morphological evidence. Herp. Monogr. 11, 1–101.
Withers, P. C. and Bradshaw, S. D. (1995). Water and energy balance of the thorny devil Moloch horridus: is the devil a sloth?Amph.-Rept. 16, 47–54.
Znari, M. and Nagy, K. A. (1997). Field metabolic rate and water flux in free-living Bibron's agama (Agama impalearis, Boettger, 1874) in Morocco. Herpetologica 53, 81–8.