Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T22:07:59.395Z Has data issue: false hasContentIssue false

33 - Mitochondrial Hepatopathies

from SECTION IV - METABOLIC LIVER DISEASE

Published online by Cambridge University Press:  18 December 2009

Ronald J. Sokol M.D.
Affiliation:
Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

Structural and functional alterations of mitochondria are now recognized as the etiology of a growing and wide variety of pathologic disorders. Genetic defects and secondary abnormalities in the synthesis of mitochondrial proteins and enzymes are the underlying cause of diseases affecting the nervous system [1], skeletal and cardiac muscle [1], the liver [2], bone marrow [3], the endocrine and exocrine pancreas [3, 4], kidney, inner ear, and small and large intestines [5] (Table 33.1). Resultant perturbations in mitochondrial function yield defective oxidative phosphorylation (OXPHOS), increased generation of reactive oxygen species (ROS), accumulation of hepatocytic lipids, impairment of other mitochondrial-based metabolic processes, and activation of both apoptotic and necrotic cell death pathways. The spectrum of inherited mitochondrial hepatic and gastrointestinal disorders continues to expand. In addition, mitochondrial dysfunction may be one of the key targets and determinants for hepatocyte survival in other disorders not directly related to the mitochondrion. Thus, the concept of primary (or genetic) and secondary (or acquired) mitochondrial hepatopathies has developed. Because mitochondria possess a distinct and unique extranuclear genome, a new class of maternally inherited mitochondrial diseases has emerged as well. The tissue-specific accumulation over time of new somatic (noninherited) mutations of mitochondrial genes may also be involved in several neurodegenerative diseases [6], hepatopathies, and the process of aging itself [7]. In this chapter, recent advances are reviewed in our understanding of the genetics, the structure and the function of the mitochondrion, a classification for hepatic disorders involving mitochondrial dysfunction is proposed, and the current diagnostic armamentarium and treatment modalities for these disorders are discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Johns, D R. Seminars in medicine of the Beth Israel Hospital, Boston. Mitochondrial DNA and disease. N Engl J Med 1995;333:638–44.CrossRefGoogle ScholarPubMed
Treem, W R, Sokol, R J. Disorders of the mitochondria. Semin Liver Dis 1998;18:237–53.CrossRefGoogle ScholarPubMed
Bernes, S M, Bacino, C, Prezant, T R. Identical mitochondrial DNA deletion in mother with progressive external ophthalmoplegia and son with Pearson marrow-pancreas syndrome. J Pediatr 1993;123:598–602.CrossRefGoogle ScholarPubMed
Ballinger, S W, Shoffner, J M, Gebhart, S. Mitochondrial diabetes revisited. Nat Genet 1994;7:458–9.CrossRefGoogle ScholarPubMed
Hirano, M, Silvestri, G, Blake, D M. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical, biochemical, and genetic features of an autosomal recessive mitochondrial disorder. Neurology 1994;44:721–7.CrossRefGoogle ScholarPubMed
Beal, M F, Hyman, B T, Koroshetz, W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases?Trends Neurosci 1993;16:125–31.CrossRefGoogle ScholarPubMed
Wallace, D C. Mitochondrial genetics: a paradigm for aging and degenerative diseases?Science 1992;256:628–32.CrossRefGoogle ScholarPubMed
Lightowlers, R N, Chinnery, P F, Turnbull, D M, Howell, N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 1997;13:450–5.CrossRefGoogle ScholarPubMed
Poulton, J, Macaulay, V, Marchington, D R. Mitochondrial genetics '98 is the bottleneck cracked?Am J Hum Genet 1998;62:752–7.CrossRefGoogle ScholarPubMed
Taanman, J W. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999;1410:103–23.CrossRefGoogle Scholar
Leonard, J V, Schapira, A H. Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 2000;355:389–94.CrossRefGoogle ScholarPubMed
Susin, S A, Zamzami, N, Kroemer, G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1998;1366:151–65.CrossRefGoogle ScholarPubMed
Chinnery, P F, Turnbull, D M. Mitochondrial DNA and disease. Lancet 1999;354 Suppl 1:SI17–21.CrossRefGoogle ScholarPubMed
Aprille, J R. Mitochondrial cytopathies and mitochondrial DNA mutations. Curr Opinion Pediatr 1991;3:1045–54.CrossRefGoogle Scholar
Munnich A. The respiratory chain. In: Fernandes, J, Saudurray, J M. Inborn metabolic diseases: diagnosis and treatment. Berlin: Springer-Verlag, 1995:121–31.CrossRefGoogle Scholar
Wallace, D C. Mitochondrial DNA mutations in diseases of energy metabolism. J Bioenerg Biomembr 1994;26:241–50.CrossRefGoogle ScholarPubMed
Holt, I J, Harding, A E, Morgan-Hughes, J A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988;331:717–19.CrossRefGoogle ScholarPubMed
Wallace, D C, Singh, G, Lott, M T. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 1988;242:1427–30.CrossRefGoogle ScholarPubMed
Chinnery, P F, Howell, N, Andrews, R M, Turnbull, D M. Mitochondrial DNA analysis: polymorphisms and pathogenicity. J Med Genet 1999;36:505–10.Google ScholarPubMed
Chinnery, P F, Johnson, M A, Wardell, T M. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 2000;48:188–93.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Darin, N, Oldfors, A, Moslemi, A R. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA anbormalities. Ann Neurol 2001;49:377–83.CrossRefGoogle Scholar
Majamaa, K, Moilanen, J S, Uimonen, S. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 1998;63:447–54.CrossRefGoogle Scholar
Uusimaa, J, Remes, A M, Rantala, H. Childhood encephalopathies and myopathies: a prospective study in a defined population to assess the frequency of mitochondrial disorders. Pediatrics 2000;105:598–603.CrossRefGoogle Scholar
Chinnery, P F, Turnbull, D M. Epidemiology and treatment of mitochondrial disorders. Am J Med Genet 2001;106:94–101.CrossRefGoogle ScholarPubMed
Heuvel, L, Ruitenbeek, W, Smeets, R. Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 1998;62:262–8.CrossRefGoogle ScholarPubMed
Schuelke, M, Smeitink, J, Mariman, E. Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet 1999;21:260–1.CrossRefGoogle ScholarPubMed
Briones, P, Vilaseca, M A, Ribes, A. A new case of multiple mitochondrial enzyme deficiencies with decreased amount of heat shock protein 60. J Inherit Metab Dis 1997;20(4):569–577.CrossRefGoogle Scholar
Koehler, C M, Leuenberger, D, Merchant, S. Human deafness dystonia syndrome is a mitochondrial disease. Proc Natl Acad Sci U S A 1999;96:2141–6.CrossRefGoogle ScholarPubMed
Zhu, Z, Yao, J, Johns, T. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 1998;20:337–43.CrossRefGoogle ScholarPubMed
Bakker, H D, Scholte, H R, Dingemans, K P. Depletion of mitochondrial deoxyribonucleic acid in a family with fatal neonatal liver disease. J Pediatr 1996;128:683–7.CrossRefGoogle Scholar
Bioulac-Sage, P, Parrot-Roulaud, F, Mazat, J P. Fatal neonatal liver failure and mitochondrial cytopathy (oxidative phosphorylation deficiency): a light and electron microscopic study of the liver. Hepatology 1993;18:839–46.CrossRefGoogle ScholarPubMed
Cormier, V, Rustin, P, Bonnefont, J P. Hepatic failure in disorders of oxidative phosphorylation with neonatal onset. J Pediatr 1991;119:951–4.CrossRefGoogle ScholarPubMed
Cormier-Daire, V, Chretien, D, Rustin, P. Neonatal and delayed-onset liver involvement in disorders of oxidative phosphorylation. J Pediatr 1997;130:817–22.CrossRefGoogle ScholarPubMed
Fayon, M, Lamireau, T, Bioulac-Sage, P. Fatal neonatal liver failure and mitochondrial cytopathy: an observation with antenatal ascites. Gastroenterology 1992;103:1332–5.CrossRefGoogle ScholarPubMed
Mazzella, M, Cerone, R, Bonacci, W. Severe complex I deficiency in a case of neonatal-onset lactic acidosis and fatal liver failure. Acta Paediatr 1997;86:326–9.CrossRefGoogle Scholar
Munnich, A, Rotig, A, Chretien, D. Clinical presentation of mitochondrial disorders in childhood. J Inherit Metab Dis 1996;19:521–7.CrossRefGoogle ScholarPubMed
Vilaseca, M A, Briones, P, Ribes, A. Fatal hepatic failure with lactic acidaemia, Fanconi syndrome and defective activity of succinate:cytochrome c reductase. J Inherit Metab Dis 1991;14:285–8.CrossRefGoogle ScholarPubMed
Kleist-Retzow, J C, Cormier-Daire, V, Viot, G. Antenatal manifestations of mitochondrial respiratory chain deficiency. J Pediatr 2003;143:208–12.CrossRefGoogle Scholar
Thomson, M, McKiernan, P, Buckels, J. Generalised mitochondrial cytopathy is an absolute contraindication to orthotopic liver transplant in childhood. J Pediatr Gastroenterol Nutr 1998;26:478–81.CrossRefGoogle ScholarPubMed
Sokal, E M, Sokol, R, Cormier, V. Liver transplantation in mitochondrial respiratory chain disorders. Eur J Pediatr 1999;158 Suppl 2:S81–4.CrossRefGoogle ScholarPubMed
Goncalves, I, Hermans, D, Chretien, D. Mitochondrial respiratory chain defect: a new etiology for neonatal cholestasis and early liver insufficiency. J Hepatol 1995;23:290–4.Google ScholarPubMed
Valnot, I, Osmond, S, Gigarel, N. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 2000;67:1104–9.Google ScholarPubMed
Chabrol, B, Mancini, J, Chretien, D. Valproate-induced hepatic failure in a case of cytochrome c oxidase deficiency. Eur J Pediatr 1994;153:133–5.Google Scholar
Lonlay, P, Valnot, I, Barrientos, A. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 2001;29:57–60.CrossRefGoogle ScholarPubMed
Meirleir, L, Seneca, S, Damis, E. Clinical and diagnostic characteristics of complex III deficiency due to mutations in the BCS1L gene. Am J Med Genet A 2003;121:126–31.CrossRefGoogle Scholar
Ducluzeau, P H, Lachaux, A, BouvierR, et al R, et al. Depletion of mitochondrial DNA associated with infantile cholestasis and progressive liver fibrosis. J Hepatol 1999;30:149–55.CrossRefGoogle ScholarPubMed
Maaswinkel-Mooij, P D, Bogert, C, Scholte, H R. Depletion of mitochondrial DNA in the liver of a patient with lactic acidemia and hypoketotic hypoglycemia. J Pediatr 1996;128:679–83.CrossRefGoogle ScholarPubMed
Mazziotta, M R, Ricci, E, Bertini, E. Fatal infantile liver failure associated with mitochondrial DNA depletion. J Pediatr 1992;121:896–901.CrossRefGoogle ScholarPubMed
Muller-Hocker, J, Muntau, A, Schafer, S. Depletion of mitochondrial DNA in the liver of an infant with neonatal giant cell hepatitis. Hum Pathol 2002;33:247–53.CrossRefGoogle ScholarPubMed
Moraes, C T, Shanske, S, Tritschler, H J. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am J Hum Genet 1991;48:492–501.Google ScholarPubMed
Tsao, C Y, Mendell, J R, Luquette, M. Mitochondrial DNA depletion in children. J Child Neurol 2000;15:822–4.CrossRefGoogle ScholarPubMed
Morris, A A, Taanman, J W, Blake, J. Liver failure associated with mitochondrial DNA depletion. J Hepatol 1998;28:556–63.CrossRefGoogle ScholarPubMed
Mandel, H, Hartman, C, Berkowitz, D. The hepatic mitochondrial DNA depletion syndrome: ultrastructural changes in liver biopsies. Hepatology 2001;34:776–84.CrossRefGoogle ScholarPubMed
Durand, P, Debray, D, Mandel, R. Acute liver failure in infancy: a 14-year experience of a pediatric liver transplantation center. J Pediatr 2001;139:871–6.CrossRefGoogle ScholarPubMed
Bodnar, A G, Cooper, J M, Holt, I J. Nuclear complementation restores mtDNA levels in cultured cells from a patient with mtDNA depletion. Am J Hum Genet 1993;53:663–9.Google ScholarPubMed
Taanman, J W, Bodnar, A G, Cooper, J M. Molecular mechanisms in mitochondrial DNA depletion syndrome. Hum Mol Genet 1997;6:935–42.CrossRefGoogle ScholarPubMed
Jullig, M, Eriksson, S. Mitochondrial and submitochondrial localization of human deoxyguanosine kinase. Eur J Biochem 2000;267:5466–72.CrossRefGoogle ScholarPubMed
Wang, L, Munch-Petersen, B, Herrstrom Sjoberg, A. Human thymidine kinase 2: molecular cloning and characterisation of the enzyme activity with antiviral and cytostatic nucleoside substrates. FEBS Lett 1999;443:170–4.CrossRefGoogle ScholarPubMed
Mandel, H, Szargel, R, Labay, V. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 2001;29:337–41.CrossRefGoogle ScholarPubMed
Saada, A, Shaag, A, Mandel, H. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 2001;29:342–4.CrossRefGoogle ScholarPubMed
Salviati, L, Sacconi, S, Mancuso, M. Mitochondrial DNA depletion and dGK gene mutations. Ann Neurol 2002;52:311–17.CrossRefGoogle ScholarPubMed
Ferrari, G, Lamantea, E, Donati, A. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA. Brain 2005;128:723–31.CrossRefGoogle ScholarPubMed
Horvath, R, Hudson, G, Ferrari, G. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 2006;129:1674–84.CrossRefGoogle ScholarPubMed
Naviaux, R K, Nguyen, K V. POLG mutations associated with Alpers' syndrome and mitochondrial DNA depletion. Ann Neurol 2004;55:706–12.CrossRefGoogle ScholarPubMed
Spinazzola, A, Viscomi, C, Fernandez-Vizarra, E. MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet 2006;38:570–5.CrossRefGoogle ScholarPubMed
Alpers, B J. Diffuse progressive degeneration of the gray matter of the cerebrum. Arch Neurol Psychiatr 1931;25:469–505.CrossRefGoogle Scholar
Boyd, S G, Harden, A, Egger, J, Pampiglione, G. Progressive neuronal degeneration of childhood with liver disease (“Alpers' disease”): characteristic neurophysiological features. Neuropediatrics 1986;17:75–80.CrossRefGoogle ScholarPubMed
Egger, J, Harding, B N, Boyd, S G. Progressive neuronal degeneration of childhood (PNDC) with liver disease. Clin Pediatr 1987;26:167–73.CrossRefGoogle ScholarPubMed
Harding, B N. Progressive neuronal degeneration of childhood with liver disease (Alpers–Huttenlocher syndrome): a personal review. J Child Neurol 1990;5:273–87.CrossRefGoogle ScholarPubMed
Harding, B N, Egger, J, Portmann, B, Erdohazi, M. Progressive neuronal degeneration of childhood with liver disease. A pathological study. Brain 1986;109:181–206.CrossRefGoogle ScholarPubMed
Hattenlocher, P R, Solitare, G B, Adams, G. Infantile diffuse cerebral degeneration with hepatic cirrhosis. Arch Neurol 1976;33:186–92.CrossRefGoogle Scholar
Tulinius, M H, Holme, E, Kristiansson, B. Mitochondrial encephalomyopathies in childhood. I. Biochemical and morphologic investigations. J Pediatr 1991;119:242–50.CrossRefGoogle ScholarPubMed
Nguyen, K V, Sharief, F S, Chan, S S. Molecular diagnosis of Alpers syndrome. J Hepatol 2006;45:108–16.CrossRefGoogle ScholarPubMed
Narkewicz, M R, Sokol, R J, Beckwith, B. Liver involvement in Alpers disease. J Pediatr 1991;119:260–7.CrossRefGoogle ScholarPubMed
Wilson, D C, McGibben, D, Hicks, E M, Allen, I V. Progressive neuronal degeneration of childhood (Alpers syndrome) with hepatic cirrhosis. Eur J Pediatr 1993;152:260–2.CrossRefGoogle ScholarPubMed
Bicknese, A R, May, W, Hickey, W F, Dodson, W E. Early childhood hepatocerebral degeneration misdiagnosed as valproate hepatotoxicity. Ann Neurol 1992;32:767–75.CrossRefGoogle ScholarPubMed
Davidzon, G, Mancuso, M, Ferraris, S. POLG mutations and Alpers syndrome. Ann Neurol 2005;57:921–3.CrossRefGoogle ScholarPubMed
Pearson, H A, Lobel, J S, Kocoshis, S A. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr 1979;95:976–84.CrossRefGoogle ScholarPubMed
Morikawa, Y, Matsuura, N, Kakudo, K. Pearson's marrow/pancreas syndrome: a histological and genetic study. Virchows Arch A Pathol Anat Histopathol 1993;423:227–31.CrossRefGoogle ScholarPubMed
Rotig, A, Cormier, V, Blanche, S. Pearson's marrow–pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest 1990;86:1601–8.CrossRefGoogle ScholarPubMed
Sano, T, Ban, K, Ichiki, T. Molecular and genetic analyses of two patients with Pearson's marrow-pancreas syndrome. Pediatr Res 1993;34:105–10.CrossRefGoogle ScholarPubMed
Tulinius, M H, Holme, E, Kristiansson, B. Mitochondrial encephalomyopathies in childhood. II. Clinical manifestations and syndromes. J Pediatr 1991;119:251–9.CrossRefGoogle ScholarPubMed
McShane, M A, Hammans, S R, Sweeney, M. Pearson syndrome and mitochondrial encephalomyopathy in a patient with a deletion of mtDNA. Am J Hum Genet 1991;48:39–42.Google Scholar
Cormier-Daire, V, Bonnefont, J P, Rustin, P. Mitochondrial DNA rearrangements with onset as chronic diarrhea with villous atrophy. J Pediatr 1994;124:63–70.CrossRefGoogle ScholarPubMed
Ionasescu, V, Thompson, S H, Ionasescu, R. Inherited ophthalmoplegia with intestinal pseudo-obstruction. J Neurol Sci 1983;59:215–28.CrossRefGoogle ScholarPubMed
Hirano, M, Vu, T H. Defects of intergenomic communication: where do we stand?Brain Pathol 2000;10:451–61.CrossRefGoogle ScholarPubMed
Cervera, R, Bruix, J, Bayes, A. Chronic intestinal pseudoobstruction and ophthalmoplegia in a patient with mitochondrial myopathy. Gut 1988;29:544–7.CrossRefGoogle Scholar
Li, V, Hostein, J, Romero, N B. Chronic intestinal pseudoobstruction with myopathy and ophthalmoplegia. A muscular biochemical study of a mitochondrial disorder. Dig Dis Sci 1992;37:456–63.CrossRefGoogle ScholarPubMed
Teitelbaum, J E, Berde, C B, Nurko, S. Diagnosis and management of MNGIE syndrome in children: case report and review of the literature. J Pediatr Gastroenterol Nutr 2002;35:377–83.CrossRefGoogle ScholarPubMed
Hirano, M, Garcia-de-Yebenes, J, Jones, A C. Mitochondrial neurogastrointestinal encephalomyopathy syndrome maps to chromosome 22q13.32-qter. Am J Hum Genet 1998;63:526–33.CrossRefGoogle ScholarPubMed
Nishino, I, Spinazzola, A, Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 1999;283:689–92.CrossRefGoogle ScholarPubMed
Nishino, I, Spinazzola, A, Papadimitriou, A. Mitochondrial neurogastrointestinal encephalomyopathy: an autosomal recessive disorder due to thymidine phosphorylase mutations. Ann Neurol 2000;47:792–800.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Brown, N S, Bicknell, R. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis. Biochem J 1998;334:1–8.CrossRefGoogle ScholarPubMed
Spinazzola, A, Marti, R, Nishino, I. Altered thymidine metabolism due to defects of thymidine phosphorylase. J Biol Chem 2002;277:4128–33.CrossRefGoogle ScholarPubMed
Giordano, C, Sebastiani, M, Plazzi, G. Mitochondrial neurogastrointestinal encephalomyopathy: evidence of mitochondrial DNA depletion in the small intestine. Gastroenterology 2006;130:893–901.CrossRefGoogle ScholarPubMed
Appenzeller, O, Kornfeld, M, Snyder, R. Acromutilating, paralyzing neuropathy with corneal ulceration in Navajo children. Arch Neurol 1976;33:733–8.CrossRefGoogle ScholarPubMed
Singleton, R, Helgerson, S D, Snyder, R D. Neuropathy in Navajo children: clinical and epidemiologic features. Neurology 1990;40:363–7.CrossRefGoogle ScholarPubMed
Holve, S, Hu, D, Shub, M. Liver disease in Navajo neuropathy. J Pediatr 1999;135:482–93.CrossRefGoogle ScholarPubMed
Vu, T H, Tanji, K, Holve, S A. Navajo neurohepatopathy: a mitochondrial DNA depletion syndrome?Hepatology 2001;34:116–20.CrossRefGoogle ScholarPubMed
Karadimas, C L, Vu, T H, Holve, S A. Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am J Hum Genet 2006;79:544–8.CrossRefGoogle ScholarPubMed
Treem WR. Inborn defects in mitochondrial fatty acid oxidation. In: Suchy, F J. Liver disease in childhood. St. Louis, MO: Mosby, 1994:852–87.Google Scholar
Ventura, F V, Ruiter, J P, Ijlst, L. Inhibitory effect of 3-hydroxyacyl-CoAs and other long-chain fatty acid beta-oxidation intermediates on mitochondrial oxidative phosphorylation. J Inherit Metab Dis 1996;19:161–4.CrossRefGoogle ScholarPubMed
Enns, G M, Bennett, M J, Hoppel, C L. Mitochondrial respiratory chain complex I deficiency with clinical and biochemical features of long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. J Pediatr 2000;136:251–4.CrossRefGoogle ScholarPubMed
Sims, H F, Brackett, J C, Powell, C K. The molecular basis of pediatric long chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci U S A 1995;92:841–5.CrossRefGoogle ScholarPubMed
Treem, W R, Shoup, M E, Hale, D E. Acute fatty liver of pregnancy, hemolysis, elevated liver enzymes, and low platelets syndrome, and long chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Am J Gastroenterol 1996;91:2293–300.Google ScholarPubMed
Glasgow, J F, Middleton, B, Moore, R. The mechanism of inhibition of beta-oxidation by aspirin metabolites in skin fibroblasts from Reye's syndrome patients and controls. Biochim Biophys Acta 1999;1454:115–25.CrossRefGoogle ScholarPubMed
Belay, E D, Bresee, J S, Holman, R C. Reye's syndrome in the United States from 1981 through 1997. N Engl J Med 1999;340:1377–82.CrossRefGoogle ScholarPubMed
Vivo, D C. Reye syndrome: a metabolic response to an acute mitochondrial insult?Neurology 1978;28:105–8.CrossRefGoogle Scholar
Partin J. Reye's Syndrome. In: Suchy, F J. Liver disease in children. St. Louis, MO: Mosby, 1994:653–71.Google Scholar
Heubi, J E, Daugherty, C C, Partin, J S. Grade I Reye's syndrome – outcome and predictors of progression to deeper coma grades. N Engl J Med 1984;311:1539–42.CrossRefGoogle ScholarPubMed
Partin, J C, Schubert, W K, Partin, J S. Mitochondrial ultrastructure in Reye's syndrome (encephalopathy and fatty degeneration of the viscera). N Engl J Med 1971;285:1339–43.CrossRefGoogle Scholar
Hou, J W, Chou, S P, Wang, T R. Metabolic function and liver histopathology in Reye-like illnesses. Acta Paediatr 1996;85:1053–7.CrossRefGoogle ScholarPubMed
Orlowski, J P. Whatever happened to Reye's syndrome? Did it ever really exist?Crit Care Med 1999;27:1582–7.CrossRefGoogle ScholarPubMed
Hall, S M, Lynn, R. Reye's syndrome. N Engl J Med 1999;341:845–6; author reply 846–7.Google ScholarPubMed
Sternlieb, I. Mitochondrial and fatty changes in hepatocytes of patients with Wilson's disease. Gastroenterology 1968;55:354–67.Google ScholarPubMed
Sternlieb, I, Feldmann, G. Effects of anticopper therapy on hepatocellular mitochondria in patients with Wilson's disease: an ultrastructural and stereological study. Gastroenterology 1976;71:457–61.Google ScholarPubMed
Sokol, R J, Devereaux, M W, O'Brien, K. Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with long-term copper overload. Gastroenterology 1993;105:178–87.CrossRefGoogle ScholarPubMed
Sokol, R J, Twedt, D, McKim, J M. Oxidant injury to hepatic mitochondria in patients with Wilson's disease and Bedlington terriers with copper toxicosis. Gastroenterology 1994;107:1788–98.CrossRefGoogle ScholarPubMed
Mansouri, A, Gaou, I, Fromenty, B. Premature oxidative aging of hepatic mitochondrial DNA in Wilson's disease. Gastroenterology 1997;113:599–605.CrossRefGoogle ScholarPubMed
Lutsenko, S, Cooper, M J. Localization of the Wilson's disease protein product to mitochondria. Proc Natl Acad Sci U S A 1998;95:6004–9.CrossRefGoogle Scholar
Mahler, H, Pasi, A, Kramer, J M. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N Engl J Med 1997;336:1142–8.CrossRefGoogle ScholarPubMed
Fromenty, B, Grimbert, S, Mansouri, A. Hepatic mitochondrial DNA deletion in alcoholics: association with microvesicular steatosis. Gastroenterology 1995;108:193–200.CrossRefGoogle ScholarPubMed
McKenzie, R, Fried, M W, Sallie, R. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 1995;333:1099–105.CrossRefGoogle Scholar
Cui, L, Yoon, S, Schinazi, R F, Sommadossi, J P. Cellular and molecular events leading to mitochondrial toxicity of 1-(2-deoxy-2-fluoro-1-beta-D-arabinofuranosyl)-5-iodouracil in human liver cells. J Clin Invest 1995;95:555–63.CrossRefGoogle ScholarPubMed
Swartz, M N. Mitochondrial toxicity–new adverse drug effects. N Engl J Med 1995;333:1146–8.CrossRefGoogle ScholarPubMed
Lo, J C, Kazemi, M R, Hsue, P Y. The relationship between nucleoside analogue treatment duration, insulin resistance, and fasting arterialized lactate level in patients with HIV infection. Clin Infect Dis 2005;41:1335–40.CrossRefGoogle ScholarPubMed
Claessens, Y E, Chiche, J D, Mira, J P, Cariou, A. Bench-to-bedside review: severe lactic acidosis in HIV patients treated with nucleoside analogue reverse transcriptase inhibitors. Crit Care 2003;7:226–32.CrossRefGoogle ScholarPubMed
Sokol, R J, Winklhofer-Roob, B M, Devereaux, M W, McKimJM, Jr JM, Jr. Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology 1995;109:1249–56.CrossRefGoogle ScholarPubMed
Krahenbuhl, S, Stucki, J, Reichen, J. Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology 1992;15:1160–6.CrossRefGoogle ScholarPubMed
Krahenbuhl, S, Talos, C, Fischer, S, Reichen, J. Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 1994;19:471–9.Google ScholarPubMed
Sokol, R, Devereaux, M W, Straka, M S. Induction of the permeability transition in hepatic mitochondria by physiologic bile acid concentrations. Hepatology 1997;26:188A.Google Scholar
Sokol, R J, McKimJM, Jr JM, Jr., Goff, M C. Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochenodeoxycholic acid in the rat. Gastroenterology 1998;114:164–74.CrossRefGoogle ScholarPubMed
Day, C P, James, O F. Hepatic steatosis: innocent bystander or guilty party?Hepatology 1998;27:1463–6.CrossRefGoogle ScholarPubMed
Berson, A, Beco, V, Letteron, P. Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology 1998;114:764–74.CrossRefGoogle ScholarPubMed
Lavine, J E. Treatment of obesity-induced steatohepatitis with vitamin E. Gastroenterology 1998;114:A1284.CrossRefGoogle Scholar
Munnich, A, Rotig, A, Chretien, D. Clinical presentations and laboratory investigations in respiratory chain deficiency. Eur J Pediatr 1996;155:262–74.CrossRefGoogle ScholarPubMed
Rustin, P, Chretien, D, Bourgeron, T. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 1994;228:35–51.CrossRefGoogle ScholarPubMed
Verma, A, Piccoli, D A, Bonilla, E. A novel mitochondrial G8313A mutation associated with prominent initial gastrointestinal symptoms and progressive encephaloneuropathy. Pediatr Res 1997;42:448–54.CrossRefGoogle ScholarPubMed
Pitkanen, S, Robinson, B H. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest 1996;98:345–51.CrossRefGoogle ScholarPubMed
Taivassalo, T, Fu, K, Johns, T. Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet 1999;8:1047–52.CrossRefGoogle ScholarPubMed
Clark, K M, Bindoff, L A, Lightowlers, R N. Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat Genet 1997;16:222–4.CrossRefGoogle ScholarPubMed
Taylor, R W, Chinnery, P F, Clark, K M. Treatment of mitochondrial disease. J Bioenerg Biomembr 1997;29:195–205.CrossRefGoogle ScholarPubMed
Frei, B, Kim, M C, Ames, B N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A 1990;87:4879–83.CrossRefGoogle ScholarPubMed
Sugino, K, Dohi, K, Yamada, K, Kawasaki, T. Changes in the levels of endogenous antioxidants in the liver of mice with experimental endotoxemia and the protective effects of the antioxidants. Surgery 1989;105:200–6.Google ScholarPubMed
Imada, I, Fujita, T, Sugiyama, Y. Effects of idebenone and related compounds on respiratory activities of brain mitochondria, and on lipid peroxidation of their membranes. Arch Gerontol Geriatr 1989;8:323–41.CrossRefGoogle ScholarPubMed
Sugiyama, Y, Fujita, T. Stimulation of the respiratory and phosphorylating activities in rat brain mitochondria by idebenone (CV-2619), a new agent improving cerebral metabolism. FEBS Lett 1985;184:48–51.CrossRefGoogle Scholar
Krahenbuhl, S, Talos, C, Lauterburg, B H, Reichen, J. Reduced antioxidative capacity in liver mitochondria from bile duct ligated rats. Hepatology 1995;22:607–12.Google ScholarPubMed
Hirano, M, Quinzii, C M, Dimauro, S. Restoring balance to ataxia with coenzyme Q10 deficiency. J Neurol Sci 2006;246:11–12.CrossRefGoogle ScholarPubMed
Horvath, R, Schneiderat, P, Schoser, B G. Coenzyme Q10 deficiency and isolated myopathy. Neurology 2006;66:253–5.CrossRefGoogle ScholarPubMed
Toth, P P, el-Shanti, H, Eivins, S. Transient improvement of congenital lactic acidosis in a male infant with pyruvate decarboxylase deficiency treated with dichloroacetate. J Pediatr 1993;123:427–30.CrossRefGoogle Scholar
Rake, J P, Spronsen, F J, Visser, G. End-stage liver disease as the only consequence of a complex I and IV deficiency: liver transplantation indicated?J Inherit Metab Dis 1997;20 Suppl 1:65.Google Scholar
Starzl, T E, Demetris, A J, Trucco, M. Chimerism after liver transplantation for type IV glycogen storage disease and type 1 Gaucher's disease. N Engl J Med 1993;328:745–9.CrossRefGoogle ScholarPubMed
Manfredi, G, Gupta, N, Vazquez-Memije, M E. Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 1999;274:9386–91.CrossRefGoogle ScholarPubMed
Seibel, P, Trappe, J, Villani, G. Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 1995;23:10–17.CrossRefGoogle ScholarPubMed
Taylor, R W, Chinnery, P F, Turnbull, D M, Lightowlers, R N. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 1997;15:212–15.CrossRefGoogle ScholarPubMed
Schapira, A H. Mitochondrial disease. Lancet 2006;368:70–82.CrossRefGoogle ScholarPubMed
Ruitenbeek, W, Wendel, U, Hamel, B C, Trijbels, J M. Genetic counselling and prenatal diagnosis in disorders of the mitochondrial energy metabolism. J Inherit Metab Dis 1996;19:581–7.CrossRefGoogle ScholarPubMed
Wanders, R J, Ruiter, J P, Wijburg, F A. Prenatal diagnosis of systemic disorders of the respiratory chain in cultured chorionic villus fibroblasts by study of ATP-synthesis in digitonin-permeabilized cells. J Inherit Metab Dis 1996;19:133–6.CrossRefGoogle ScholarPubMed
Muller-Hocker, J, Aust, D, Rohrbach, H. Defects of the respiratory chain in the normal human liver and in cirrhosis during aging. Hepatology 1997;26:709–19.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Mitochondrial Hepatopathies
    • By Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.035
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Mitochondrial Hepatopathies
    • By Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.035
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Mitochondrial Hepatopathies
    • By Ronald J. Sokol, M.D., Professor and Vice Chair, Department of Pediatrics, Chief of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, Colorado; Chair, Department of Pediatric Gastroenterology and Hepatology, Children's Hospital, Denver, Colorado
  • Edited by Frederick J. Suchy, Mount Sinai School of Medicine, New York, Ronald J. Sokol, University of Colorado, Denver, William F. Balistreri, University of Cincinnati
  • Book: Liver Disease in Children
  • Online publication: 18 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511547409.035
Available formats
×