Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T02:27:11.168Z Has data issue: false hasContentIssue false

Chapter 25 - α1-Antitrypsin Deficiency

from Section IV - Metabolic Liver Disease

Published online by Cambridge University Press:  19 January 2021

Frederick J. Suchy
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Ronald J. Sokol
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
William F. Balistreri
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Jorge A. Bezerra
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Cara L. Mack
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Benjamin L. Shneider
Affiliation:
Texas Children’s Hospital, Houston
Get access

Summary

Homozygous (PiZZ phenotype1) α1-antitrypsin (α1-AT) deficiency is a relatively common autosomal codominant genetic disorder, affecting 1 in 1,600–3,000 live births in most populations of Northern European ancestry [1, 2]. Although α1-AT deficiency liver disease develops in only a subset of PiZZ individuals, this condition represents the most common metabolic cause of liver disease and liver transplantation in children [3]. It can also cause chronic liver disease, hepatocellular carcinoma, and premature pulmonary emphysema in adults [3, 4].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sveger, T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 1976;294:1316–21.CrossRefGoogle Scholar
Silverman, EK, Sandhaus, RA. Clinical practice. Alpha1-antitrypsin deficiency. N Engl J Med 2009;360: 2749–57.Google Scholar
Perlmutter, DH. (2011). Alpha-1-antitrypsin deficiency. In Schiff, ER SM, Maddrey, WC (Eds.), Schiff’s Diseases of the Liver, 11th edn., (pp. 835–67). Oxford: Wiley-Blackwell.Google Scholar
Crystal, RG. Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest 1990;85:1343–52.Google ScholarPubMed
Carlson, JA, Rogers, BB, Sifers, RN, Finegold, MJ, Clift, SM, DeMayo, FJ, Bullock, DW, et al. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 1989;83:1183–90.Google Scholar
Dycaico, MJ, Grant, SG, Felts, K, Nichols, WS, Geller, SA, Hager, JH, Pollard, AJ, et al. Neonatal hepatitis induced by alpha 1-antitrypsin: a transgenic mouse model. Science 1988;242:1409–12.Google Scholar
Hidvegi, T, Ewing, M, Hale, P, Dippold, C, Beckett, C, Kemp, C, Maurice, N, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science 2010;329:229–32.Google Scholar
Marcus, NY, Brunt, EM, Blomenkamp, K, Ali, F, Rudnick, DA, Ahmad, M, Teckman, JH. Characteristics of hepatocellular carcinoma in a murine model of alpha-1-antitrypsin deficiency. Hepatol Res 2010;40:641–53.Google Scholar
Janus, ED, Phillips, NT, Carrell, RW. Smoking, lung function, and alpha 1-antitrypsin deficiency. Lancet 1985;1:152–4.Google Scholar
Silverman, EK, Province, MA, Rao, DC, Pierce, JA, Campbell, EJ. A family study of the variability of pulmonary function in alpha 1-antitrypsin deficiency. Quantitative phenotypes. Am Rev Respir Dis 1990;142:1015–21.Google Scholar
Crystal, RG. Augmentation treatment for alpha1 antitrypsin deficiency. Lancet 2015;386:318–20.Google Scholar
McElvaney, NG, Burdon, J, Holmes, M, Glanville, A, Wark, PA, Thompson, PJ, Hernandez, P, et al. Long-term efficacy and safety of alpha1 proteinase inhibitor treatment for emphysema caused by severe alpha1 antitrypsin deficiency: an open-label extension trial (RAPID-OLE). Lancet Respir Med 2017;5:5160.CrossRefGoogle ScholarPubMed
Wang, Y, Perlmutter, DH. Targeting intracellular degradation pathways for treatment of liver disease caused by alpha1-antitrypsin deficiency. Pediatr Res 2014;75:133–9.Google Scholar
Teckman, JH, Qu, D, Perlmutter, DH. Molecular pathogenesis of liver disease in alpha1-antitrypsin deficiency.Hepatology 1996;24:1504–16.Google Scholar
Eriksson, S, Carlson, J, Velez, R. Risk of cirrhosis and primary liver cancer in alpha 1-antitrypsin deficiency. N Engl J Med 1986;314:736–9.Google Scholar
Zhou, H, Fischer, HP. Liver carcinoma in PiZ alpha-1-antitrypsin deficiency. Am J Surg Pathol 1998;22:742–8.CrossRefGoogle ScholarPubMed
Mostafavi, B, Diaz, S, Tanash, HA, Piitulainen, E. Liver function in alpha-1-antitrypsin deficient individuals at 37 to 40 years of age. Medicine 2017;96:e6180.Google Scholar
Sveger, T. The natural history of liver disease in alpha 1-antitrypsin deficient children. Acta Paediatr Scand 1988;77:847–51.Google Scholar
Chu, AS, Chopra, KB, Perlmutter, DH. Is severe progressive liver disease caused by alpha-1-antitrypsin deficiency more common in children or adults? Liver Transpl 2016;22:886–94.Google Scholar
Volpert, D, Molleston, JP, Perlmutter, DH. Alpha1-antitrypsin deficiency-associated liver disease progresses slowly in some children. J Pediatr Gastroenterol Nutr 2000;31:258–63.Google Scholar
Schaefer, B, Mandorfer, M, Viveiros, A, Finkenstedt, A, Ferenci, P, Schneeberger, S, Tilg, H, et al. Heterozygosity for the alpha-1-antitrypsin Z allele in cirrhosis is associated with more advanced disease. Liver Transpl 2018;24:744–51.CrossRefGoogle ScholarPubMed
Piitulainen, E, Carlson, J, Ohlsson, K, Alpha, Sveger T. 1-antitrypsin deficiency in 26-year-old subjects: lung, liver, and protease/protease inhibitor studies. Chest 2005;128:2076–81.Google Scholar
Teckman, JH, Perlmutter, DH. Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol 2000;279:G961–74.CrossRefGoogle ScholarPubMed
von Schonfeld, J, Breuer, N, Zotz, R, Liedmann, H, Wencker, M, Beste, M, Konietzko, N, et al. Liver function in patients with pulmonary emphysema due to severe alpha-1-antitrypsin deficiency (Pi ZZ). Digestion 1996;57:165–9.Google Scholar
Tomashefski, JF Jr., Crystal, RG, Wiedemann, HP, Mascha, E, Stoller, JK. Alpha 1-Antitrypsin Deficiency Registry Study Group. The bronchopulmonary pathology of alpha-1 antitrypsin (AAT) deficiency: findings of the Death Review Committee of the National Registry for Individuals with Severe Deficiency of Alpha-1 Antitrypsin. Hum Pathol 2004;35:1452–61.CrossRefGoogle Scholar
Corley, M, Solem, A, Phillips, G, Lackey, L, Ziehr, B, Vincent, HA, Mustoe, AM, et al. An RNA structure-mediated, posttranscriptional model of human alpha-1-antitrypsin expression. Proc Natl Acad Sci U S A 2017;114:E10244E10253.Google Scholar
Owen, MC, Brennan, SO, Lewis, JH, Carrell, RW. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 1983;309:694–8.Google Scholar
Mast, AE, Enghild, JJ, Nagase, H, Suzuki, K, Pizzo, SV, Salvesen, G. Kinetics and physiologic relevance of the inactivation of alpha 1-proteinase inhibitor, alpha 1-antichymotrypsin, and antithrombin III by matrix metalloproteinases-1 (tissue collagenase), -2 (72-kDa gelatinase/type IV collagenase), and -3 (stromelysin). J Biol Chem 1991;266:15810–16.Google Scholar
Janoff, A. Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis 1985;132:417–33.Google ScholarPubMed
Ni, K, Serban, KA, Batra, C, Petrache, I. Alpha-1 antitrypsin investigations using animal models of emphysema. Ann Am Thorac Soc 2016;13(Suppl4):S311–16.Google Scholar
Borel, F, Sun, H, Zieger, M, Cox, A, Cardozo, B, Li, W, Oliveira, G, et al. Editing out five Serpina1 paralogs to create a mouse model of genetic emphysema. Proc Natl Acad Sci U S A 2018;115:2788–93.Google Scholar
Munch, J, Standker, L, Adermann, K, Schulz, A, Schindler, M, Chinnadurai, R, Pohlmann, S, et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 2007;129:263–75.Google Scholar
Forssmann, WG, The, YH, Stoll, M, Adermann, K, Albrecht, U, Tillmann, HC, Barlos, K, et al. Short-term monotherapy in HIV-infected patients with a virus entry inhibitor against the gp41 fusion peptide. Sci Transl Med 2010;2:63.Google Scholar
Janciauskiene, SM, Bals, R, Koczulla, R, Vogelmeier, C, Kohnlein, T, Welte, T. The discovery of alpha1-antitrypsin and its role in health and disease. Respir Med 2011;105:1129–39.Google Scholar
Perlmutter, DH, Cole, FS, Kilbridge, P, Rossing, TH, Colten, HR. Expression of the alpha 1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci U S A 1985;82:795–9.Google Scholar
Koopman, P, Povey, S, Lovell-Badge, RH. Widespread expression of human alpha 1-antitrypsin in transgenic mice revealed by in situ hybridization. Genes Dev 1989;3:1625.Google Scholar
Carlson, JA, Rogers, BB, Sifers, RN, Hawkins, HK, Finegold, MJ, Woo, SL. Multiple tissues express alpha 1-antitrypsin in transgenic mice and man. J Clin Invest 1988;82:2636.Google Scholar
Sidhar, SK, Lomas, DA, Carrell, RW, Foreman, RC. Mutations which impede loop/sheet polymerization enhance the secretion of human alpha 1-antitrypsin deficiency variants. J Biol Chem 1995;270:8393–6.Google Scholar
Carrell, RW, Lomas, DA. Conformational disease. Lancet 1997;350:134–8.CrossRefGoogle ScholarPubMed
Lomas, DA, Evans, DL, Finch, JT, Carrell, RW. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 1992;357:605–7.Google Scholar
Lomas, DA, Elliott, PR, Sidhar, SK, Foreman, RC, Finch, JT, Cox, DW, Whisstock, JC, et al. alpha 1-Antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo. Evidence for the C sheet mechanism of polymerization. J Biol Chem 1995;270:16864–70.Google Scholar
Lomas, DA, Finch, JT, Seyama, K, Nukiwa, T, Carrell, RW. Alpha 1-antitrypsin Siiyama (Ser53–>Phe). Further evidence for intracellular loop-sheet polymerization. J Biol Chem 1993;268:15333–5.Google Scholar
Curiel, DT, Holmes, MD, Okayama, H, Brantly, ML, Vogelmeier, C, Travis, WD, Stier, LE, et al. Molecular basis of the liver and lung disease associated with the alpha 1-antitrypsin deficiency allele Mmalton. J Biol Chem 1989;264:13938–45.Google Scholar
Mahadeva, R, Chang, WS, Dafforn, TR, Oakley, DJ, Foreman, RC, Calvin, J, Wight, DG, et al. Heteropolymerization of S, I, and Z alpha1-antitrypsin and liver cirrhosis. J Clin Invest 1999;103:9991006.Google Scholar
Dafforn, TR, Mahadeva, R, Elliott, PR, Sivasothy, P, Lomas, DA. A kinetic mechanism for the polymerization of alpha1-antitrypsin. J Biol Chem 1999;274:9548–55.Google Scholar
Yamasaki, M, Li, W, Johnson, DJ, Huntington, JA. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 2008;455:1255–8.Google Scholar
Whisstock, JC, Silverman, GA, Bird, PI, Bottomley, SP, Kaiserman, D, Luke, CJ, Pak, SC, et al. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J Biol Chem 2010;285:24307–12.Google Scholar
Yamasaki, M, Sendall, TJ, Pearce, MC, Whisstock, JC, Huntington, JA. Molecular basis of alpha1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep 2011;12:1011–17.CrossRefGoogle ScholarPubMed
Huang, X, Zheng, Y, Zhang, F, Wei, Z, Wang, Y, Carrell, RW, Read, RJ, et al. Molecular mechanism of Z alpha1-antitrypsin deficiency. J Biol Chem 2016;291:15674–86.Google Scholar
Lin, L, Schmidt, B, Teckman, J, Perlmutter, DH. A naturally occurring nonpolymerogenic mutant of alpha 1-antitrypsin characterized by prolonged retention in the endoplasmic reticulum. J Biol Chem 2001;276:33893–8.Google Scholar
Schmidt, BZ, Perlmutter, DH. Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 2005;289:G444–55.Google Scholar
Kuznetsov, G, Nigam, SK. Folding of secretory and membrane proteins. N Engl J Med 1998;339:1688–95.Google Scholar
Davis, RL, Shrimpton, AE, Holohan, PD, Bradshaw, C, Feiglin, D, Collins, GH, Sonderegger, P, et al. Familial dementia caused by polymerization of mutant neuroserpin. Nature 1999;401:376–9.Google Scholar
Perlmutter DH. Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. Annu Rev Med 2011;62:333–45.Google Scholar
Wu, Y, Whitman, I, Molmenti, E, Moore, K, Hippenmeyer, P, Perlmutter, DH. A lag in intracellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. Proc Natl Acad Sci U S A 1994;91:9014–18.Google Scholar
Kamimoto, T, Shoji, S, Hidvegi, T, Mizushima, N, Umebayashi, K, Perlmutter, DH, Yoshimori, T. Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J Biol Chem 2006;281:4467–76.Google Scholar
Kruse, KB, Brodsky, JL, McCracken, AA. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 2006;17:203–12.Google Scholar
Kruse, KB, Dear, A, Kaltenbrun, ER, Crum, BE, George, PM, Brennan, SO, McCracken, AA. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease. Am J Pathol 2006;168:1299–308.Google Scholar
Cabral, CM, Choudhury, P, Liu, Y, Sifers, RN. Processing by endoplasmic reticulum mannosidases partitions a secretion-impaired glycoprotein into distinct disposal pathways. J Biol Chem 2000;275:25015–22.Google Scholar
Gelling, CL, Dawes, IW, Perlmutter, DH, Fisher, EA, Brodsky, JL. The endosomal protein-sorting receptor sortilin has a role in trafficking alpha-1 antitrypsin. Genetics 2012;192:889903.Google Scholar
Long, OS, Benson, JA, Kwak, JH, Luke, CJ, Gosai, SJ, O’Reilly, LP, Wang, Y, et al. A C. elegans model of human alpha1-antitrypsin deficiency links components of the RNAi pathway to misfolded protein turnover. Hum Mol Genet 2014;23:5109–22.Google Scholar
Mizushima, N, Yamamoto, A, Matsui, M, Yoshimori, T, Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004;15:1101–11.Google Scholar
Hidvegi, T, Mirnics, K, Hale, P, Ewing, M, Beckett, C, Perlmutter, DH. Regulator of G signaling 16 is a marker for the distinct endoplasmic reticulum stress state associated with aggregated mutant alpha1-antitrypsin Z in the classical form of alpha1-antitrypsin deficiency. J Biol Chem 2007;282:27769–80.Google Scholar
Hidvegi, T, Schmidt, BZ, Hale, P, Perlmutter, DH. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. J Biol Chem 2005;280:39002–15.CrossRefGoogle Scholar
Mukherjee, A, Hidvegi, T, Araya, P, Ewing, M, Stolz, DB, Perlmutter, DH. NFkappaB mitigates the pathological effects of misfolded alpha1-antitrypsin by activating autophagy and an integrated program of proteostasis mechanisms. Cell Death Differ 2019;26(3):455–69.Google Scholar
Liao, Y, Shikapwashya, ON, Shteyer, E, Dieckgraefe, BK, Hruz, PW, Rudnick, DA. Delayed hepatocellular mitotic progression and impaired liver regeneration in early growth response-1-deficient mice. J Biol Chem 2004;279:43107–16.Google Scholar
Teckman, JH, An, JK, Blomenkamp, K, Schmidt, B, Perlmutter, D. Mitochondrial autophagy and injury in the liver in alpha 1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2004;286:G851–62.CrossRefGoogle ScholarPubMed
Hidvegi, T, Stolz, DB, Alcorn, JF, Yousem, SA, Wang, J, Leme, AS, Houghton, AM, et al. Enhancing autophagy with drugs or lung-directed gene therapy reverses the pathological effects of respiratory epithelial cell proteinopathy. J Biol Chem 2015;290:29742–57.Google Scholar
Pastore, N, Attanasio, S, Granese, B, Castello, R, Teckman, J, Wilson, AA, Ballabio, A, et al. Activation of the c-Jun N-terminal kinase pathway aggravates proteotoxicity of hepatic mutant Z alpha1-antitrypsin. Hepatology 2017;65:1865–74.CrossRefGoogle ScholarPubMed
Pan, S, Huang, L, McPherson, J, Muzny, D, Rouhani, F, Brantly, M, Gibbs, R, et al. Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in alpha1-antitrypsin deficiency. Hepatology 2009;50:275–81.Google Scholar
Pan, S, Wang, S, Utama, B, Huang, L, Blok, N, Estes, MK, Moremen, KW, et al. Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 2011;22:2810–22.Google Scholar
Iannotti, MJ, Figard, L, Sokac, AM, Sifers, RN. A Golgi-localized mannosidase (MAN1B1) plays a non-enzymatic gatekeeper role in protein biosynthetic quality control. J Biol Chem 2014;289:11844–58.Google Scholar
Chappell, S, Guetta-Baranes, T, Hadzic, N, Stockley, R, Kalsheker, N. Polymorphism in the endoplasmic reticulum mannosidase I (MAN1B1) gene is not associated with liver disease in individuals homozygous for the Z variant of the alpha1-antitrypsin protease inhibitor (PiZZ individuals). Hepatology 2009;50:1315, author reply 1315–16.Google Scholar
Joly, P, Lachaux, A, Ruiz, M, Restier, L, Belmalih, A, Chapuis-Cellier, C, Francina, A, et al. SERPINA1 and MAN1B1 polymorphisms are not linked to severe liver disease in a French cohort of alpha-1 antitrypsin deficiency children. Liver Int 2017;37:1608–11.Google Scholar
Chappell, S, Hadzic, N, Stockley, R, Guetta-Baranes, T, Morgan, K, Kalsheker, N. A polymorphism of the alpha1-antitrypsin gene represents a risk factor for liver disease. Hepatology 2008;47:127–32.Google Scholar
Hubner, RH, Leopold, PL, Kiuru, M, De, BP, Krause, A, Crystal, RG. Dysfunctional glycogen storage in a mouse model of alpha1-antitrypsin deficiency. Am J Respir Cell Mol Biol 2009;40:239–47.Google Scholar
Piccolo, P, Annunziata, P, Soria, LR, Attanasio, S, Barbato, A, Castello, R, Carissimo, A, et al. Down-regulation of hepatocyte nuclear factor-4alpha and defective zonation in livers expressing mutant Z alpha1-antitrypsin. Hepatology 2017;66:124–35.Google Scholar
Teckman, J, Perlmutter, DH. Conceptual advances in the pathogenesis and treatment of childhood metabolic liver disease.Gastroenterology 1995;108:1263–79.Google Scholar
Tafaleng, EN, Chakraborty, S, Han, B, Hale, P, Wu, W, Soto-Gutierrez, A, Feghali-Bostwick, CA, et al. Induced pluripotent stem cells model personalized variations in liver disease resulting from alpha1-antitrypsin deficiency. Hepatology 2015;62:147–57.Google Scholar
Lindblad, D, Blomenkamp, K, Teckman, J. Alpha-1-antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model. Hepatology 2007;46:1228–35.Google Scholar
Dooley, S, Hamzavi, J, Ciuclan, L, Godoy, P, Ilkavets, I, Ehnert, S, Ueberham, E, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 2008;135:642–59.Google Scholar
Bridges, JP, Wert, SE, Nogee, LM, Weaver, TE. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. J Biol Chem 2003;278:52739–46.Google Scholar
Young, LR, Gulleman, PM, Bridges, JP, Weaver, TE, Deutsch, GH, Blackwell, TS, McCormack, FX. The alveolar epithelium determines susceptibility to lung fibrosis in Hermansky-Pudlak syndrome. Am J Respir Crit Care Med 2012;186:1014–24.Google Scholar
Bhuiyan, MS, Pattison, JS, Osinska, H, James, J, Gulick, J, McLendon, PM, Hill, JA, et al. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest 2013;123:5284–97.Google Scholar
Doppler, K, Mittelbronn, M, Lindner, A, Bornemann, A. Basement membrane remodelling and segmental fibrosis in sporadic inclusion body myositis. Neuromuscul Disord 2009;19:406–11.Google Scholar
Nogalska, A, D’Agostino, C, Terracciano, C, Engel, WK, Askanas, V. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am J Pathol 2010;177:1377–87.Google Scholar
Rudnick, DA, Liao, Y, An, JK, Muglia, LJ, Perlmutter, DH, Teckman, JH. Analyses of hepatocellular proliferation in a mouse model of alpha-1-antitrypsin deficiency. Hepatology 2004;39:1048–55.Google Scholar
Rudnick, DA, Perlmutter, DH. Alpha-1-antitrypsin deficiency: a new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology 2005;42:514–21.Google Scholar
Ding, J, Yannam, GR, Roy-Chowdhury, N, Hidvegi, T, Basma, H, Rennard, SI, Wong, RJ, et al. Spontaneous hepatic repopulation in transgenic mice expressing mutant human alpha1-antitrypsin by wild-type donor hepatocytes. J Clin Invest 2011;121:1930–4.Google Scholar
Kemmer, N, Kaiser, T, Zacharias, V, Neff, GW. Alpha-1-antitrypsin deficiency: outcomes after liver transplantation. Transplant Proc 2008;40:1492–4.Google Scholar
Tannuri, AC, Gibelli, NE, Ricardi, LR, Santos, MM, Maksoud-Filho, JG, Pinho-Apezzato, ML, Silva, MM, et al. Living related donor liver transplantation in children. Transplant Proc 2011;43:161–4.Google Scholar
Sarkar, S, Perlstein, EO, Imarisio, S, Pineau, S, Cordenier, A, Maglathlin, RL, Webster, JA, et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 2007;3:331–8.Google Scholar
Li, C, Xiao, P, Gray, SJ, Weinberg, MS, Samulski, RJ. Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins. Proc Natl Acad Sci U S A 2011;108:14258–63.Google Scholar
Mueller, C, Tang, Q, Gruntman, A, Blomenkamp, K, Teckman, J, Song, L, Zamore, PD, et al. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther 2012;20:590600.Google Scholar
Guo, S, Booten, SL, Aghajan, M, Hung, G, Zhao, C, Blomenkamp, K, Gattis, D, et al. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Invest 2014;124:251–61.Google Scholar
Pastore, N, Blomenkamp, K, Annunziata, F, Piccolo, P, Mithbaokar, P, Maria Sepe, R, Vetrini, F, et al. Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Mol Med 2013;5:397412.Google Scholar
Shen, S, Sanchez, ME, Blomenkamp, K, Corcoran, EM, Marco, E, Yudkoff, CJ, Jiang, H, et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther 2018;29(8):861–73.Google Scholar
Song, CQ, Wang, D, Jiang, T, O’Connor, K, Tang, Q, Cai, L, Li, X, et al. In vivo genome editing partially restores alpha1-antitrypsin in a murine model of AAT deficiency. Hum Gene Ther 2018;29(8):853–60.Google Scholar
Mallya, M, Phillips, RL, Saldanha, SA, Gooptu, B, Brown, SC, Termine, DJ, Shirvani, AM, et al. Small molecules block the polymerization of Z alpha1-antitrypsin and increase the clearance of intracellular aggregates. J Med Chem 2007;50:5357–63.Google Scholar
Alam, S, Wang, J, Janciauskiene, S, Mahadeva, R. Preventing and reversing the cellular consequences of Z alpha-1 antitrypsin accumulation by targeting s4A. J Hepatol 2012;57:116–24.CrossRefGoogle ScholarPubMed
Burrows, JA, Willis, LK, Perlmutter, DH. Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci U S A 2000;97:1796–801.Google Scholar
Teckman, JH. Lack of effect of oral 4-phenylbutyrate on serum alpha-1-antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J Pediatr Gastroenterol Nutr 2004;39:34–7.Google Scholar
Bouchecareilh, M, Hutt, DM, Szajner, P, Flotte, TR, Balch, WE. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of alpha1-antitrypsin deficiency. J Biol Chem 2012;287:38265–78.Google Scholar
Fox, IJ, Chowdhury, JR, Kaufman, SS, Goertzen, TC, Chowdhury, NR, Warkentin, PI, Dorko, K, et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 1998;338:1422–6.Google Scholar
Yusa, K, Rashid, ST, Strick-Marchand, H, Varela, I, Liu, PQ, Paschon, DE, Miranda, E, et al. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 2011;478:391–4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×