Skip to main content Accessibility help
×
Home
  • Print publication year: 2016
  • Online publication date: December 2016

9 - Nanostructure Growth, Interactions, and Assembly in the Liquid Phase

from Part II - Applications
1.Faraday, M., The Bakerian lecture: experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond., 147 (1857), 145181.
2.Daniel, M. C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104 (2004), 293346.
3.Murphy, C. J. Sau, T. P., Gole, A. M., et al., Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B, 109 (2005), 1385713870.
4.Xia, Y., Xiong, Y., Lim, B. and Skrabalak, S. E., Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed., 48 (2009), 60103.
5.Liao, H.-G., Niu, K. and Zheng, H., Observation of growth of metal nanoparticles. Chem. Commun., 49 (2013), 1172011727.
6.Niu, K.-Y., Park, J., Zheng, H. and Alivisatos, A. P., Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. Nano Lett., 13 (2013), 57155719.
7.Xin, H. L. and Zheng, H., In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett., 12 (2012), 14701474.
8.Zheng, H., Smith, R. K., Jun, Y.-W., et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.
9.Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2013), 359364.
10.den Heijer, M., Shao, I., Radisic, A., Reuter, M. C. and Ross, F. M., Patterned electrochemical deposition of copper using an electron beam. APL Materials, 2 (2014), 022101.
11.Liu, Y., Lin, X.-M., Sun, Y. and Rajh, T., In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc., 135 (2013), 37643767.
12.Woehl, T. J., Park, C., Evans, J. E., et al., Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett., 14 (2013), 373378.
13.Liao, H.-G., Cui, L., Whitelam, S. and Zheng, H., Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336 (2012), 10111014.
14.Zhu, G., Jiang, Y., Lin, F., et al., In situ study of the growth of two-dimensional palladium dendritic nanostructures using liquid-cell electron microscopy. Chem. Commun., 50 (2014), 94479450.
15.Woehl, T. J., Evans, J. E., Arslan, I., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.
16.Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.
17.Niu, K.-Y., Liao, H.-G. and Zheng, H., Visualization of the coalescence of bismuth nanoparticles. Microsc. Microanal., 20 (2014), 416424.
18.Li, D., Nelson, M. H., Lee, J. R., et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.
19.Yuk, J. M., Park, J., Ercius, P., et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.
20.Wulff, G., On the question of speed of growth and dissolution of crystal surfaces. Z. Krystallogr. Mineral., 34 (1901), 449530.
21.Gibbs, J. W., Bumstead, H. A., Van Name, R. G. and Longley, W. R., The Collected Works of J. Willard Gibbs (London: Longmans, Green and Co., 1902).
22.Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. and Wang, Z. L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 316 (2007), 732735.
23.Ringe, E., Van Duyne, R. P. and Marks, L. D., Wulff construction for alloy nanoparticles. Nano Lett., 11 (2011), 33993403.
24.Bealing, C. R., Baumgardner, W. J., Choi, J. J., Hanrath, T. and Hennig, R. G., Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano, 6 (2012), 21182127.
25.Liao, H.-G., Zherebetskyy, D., Xin, H., et al., Facet development during platinum nanocube growth. Science, 345 (2014), 916919.
26.Liao, H.-G. and Zheng, H., Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc., 135 (2013), 50385043.
27.Kimura, Y., Niinomi, H., Tsukamoto, K. and García-Ruiz, J. M., In situ live observation of nucleation and dissolution of sodium chlorate nanoparticles by transmission electron microscopy. J. Am. Chem. Soc., 136 (2014), 17621765.
28.Sutter, E., Jungjohann, K., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.
29.Jungjohann, K., Bliznakov, S., Sutter, P., Stach, E. A. and Sutter, E., In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett., 13 (2013), 29642970.
30.Lewis, E. A., Haigh, S. J., Slater, T. J. A., et al., Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun., 50 (2014), 1001910022.
31.Wu, J., Gao, W., Wen, J. et al., Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. Nano Lett., 15 (2015), 27112715.
32.De Clercq, A., Dachraoui, W., Margeat, O., et al., Growth of Pt–Pd nanoparticles studied in situ by HRTEM in a liquid cell. J. Phys. Chem. Lett., 5 (2014), 21262130.
33.Kraus, T. and de Jonge, N., Dendritic gold nanowire growth observed in liquid with transmission electron microscopy. Langmuir, 29 (2013), 84278432.
34.Liao, H.-G., Shao, Y., Wang, C. M., et al., TEM study of fivefold twinned gold nanocrystal formation mechanism. Mater. Lett., 116 (2014), 299303.
35.Alloyeau, D., Dachraoui, W., Javed, Y., et al., Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett., 15 (2015), 25742581.
36.Parent, L. R., Robinson, D. B., Woehl, T. J., et al., Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6 (2012), 35893596.
37.Parent, L. R., Robinson, D. B., Cappillino, P. J., et al., In situ observation of directed nanoparticle aggregation during the synthesis of ordered nanoporous metal in soft templates. Chem. Mater., 26 (2014), 14261433.
38.Chen, X. and Wen, J., In situ wet-cell TEM observation of gold nanoparticle motion in an aqueous solution. Nanoscale Res. Lett., 7 (2012), 16.
39.Ring, E. A. and de Jonge, N., Microfluidic system for transmission electron microscopy. Microsc. Microanal., 16 (2010), 622629.
40.Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.
41.Chen, Q., Smith, J. M., Park, J., et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.
42.de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B. and Drouin, D., Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy, 110 (2010), 11141119.
43.White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.
44.Mueller, C., Harb, M., Dwyer, J. R. and Miller, R. D., Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J. Phys. Chem. Lett., 4 (2013), 23392347.
45.Li, F., Josephson, D. P. and Stein, A., Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed., 50 (2011), 360388.
46.Baker, J. L., Widmer-Cooper, A., Toney, M. F., Geissler, P. L. and Alivisatos, A. P., Device-scale perpendicular alignment of colloidal nanorods. Nano Lett., 10 (2009), 195201.
47.Park, J., Zheng, H., Lee, W. C., et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.
48.Grogan, J. M., Rotkina, L. and Bau, H. H., In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.
49.Oleshko, V. P. and Howe, J. M., Are electron tweezers possible? Ultramicroscopy, 111 (2011), 15991606.
50.Batson, P. E., Reyes-Coronado, A., Barrera, R. G., et al., Nanoparticle movement: plasmonic forces and physical constraints. Ultramicroscopy, 123 (2012), 5058.
51.Batson, P. E., Reyes-Coronado, A., Barrera, R. G., et al., Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. Nano Lett., 11 (2011), 33883393.
52.Zheng, H., Mirsaidov, U. M., Wang, L.-W. and Matsudaira, P., Electron beam manipulation of nanoparticles. Nano Lett., 12 (2012), 56445648.
53.Zheng, H., Using molecular tweezers to move and image nanoparticles. Nanoscale, 5 (2013), 40704078.
54.Chen, Y.-T., Wang, C.-Y., Hong, Y.-J., et al., Electron beam manipulation of gold nanoparticles external to the beam. RSC Adv., 4 (2014), 3165231656.
55.Jiang, Y., Zhu, G., Lin, F., et al., In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett., 14 (2014), 37613765.