Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: December 2016

14 - Nanoscale Deposition and Etching of Materials Using Focused Electron Beams and Liquid Reactants

from Part II - Applications
1.van Dorp, W. F. and Hagen, C. W., A critical literature review of focused electron beam-induced deposition. J. Appl. Phys., 104 (2008), 081301.
2.Utke, I., Hoffmann, P. and Melngailis, J., Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B, 26 (2008), 11971276.
3.Randolph, S. J., Fowlkes, J. D. and Rack, P. D., Focused, nanoscale electron beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci., 31 (2006), 5589.
4.Botman, A., Mulders, J. J. L. and Hagen, C. W., Creating pure nanostructures from electron beam-induced deposition using purification techniques: a technology perspective. Nanotechnology, 20 (2009), 372001.
5.Furuya, K., Nanofabrication by advanced electron microscopy using intense and focused beam. Sci. Technol. Adv. Mater., 9 (2008), 014110.
6.Song, M. H. and Furuya, K., Fabrication and characterization of nanostructures on insulator substrates by electron beam-induced deposition. Sci. Technol. Adv. Mater., 9 (2008), 023002.
7.Lee, S. W. and Sankaran, R. M., Direct writing via electron-driven reactions. Mater. Today, 16 (2013), 117122.
8.Silvis-Cividjian, N. and Hagen, C. W., Electron Beam-Induced Nanometer-Scale Deposition (San Diego, CA: Academic Press, 2006).
9.Utke, I., Moshkalev, S. and Russell, P., Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford; New York: Oxford University Press, 2012).
10.Takahashi, T., Arakawa, Y., Nishioka, M. and Ikoma, T., Selective growth of GaAs wire structures by electron beam-induced metalorganic chemical vapor-deposition. Appl. Phys. Lett., 60 (1992), 6870.
11.Crozier, P. A., Tolle, J., Kouvetakis, J. and Ritter, C., Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3. Appl. Phys. Lett., 84 (2004), 34413443.
12.Che, R. C., Takeguchi, M., Shimojo, M., Zhang, W. and Furuya, K., Fabrication and electron holography characterization of FePt alloy nanorods. Appl. Phys. Lett., 87 (2005), 223109.
13.Winhold, M., Weirich, P. M., Schwalb, C. H. and Huth, M., Superconductivity and metallic behavior in PbxCyOδ structures prepared by focused electron beam-induced deposition. Appl. Phys. Lett., 105 (2014), 162603.
14.Bresin, M., Chamberlain, A., Donev, E. U. et al., Electron beam-induced deposition of bimetallic nanostructures from bulk liquids. Angew. Chem. Int. Ed., 52 (2013), 80048007.
15.Bresin, M., Nadimpally, B. R., Nehru, N., Singh, V. P. and Hastings, J. T., Site-specific growth of CdS nanostructures. Nanotechnology, 24 (2013), 505305.
16.Bresin, M., Nehru, N. and Hastings, J. T., Focused electron beam-induced deposition of plasmonic nanostructures from aqueous solutions. In Proc. SPIE 8613, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI (2013), p. 861306.
17.Chen, X., Zhou, L. H., Wang, P. et al., A study of electron beam-induced deposition and nano device fabrication using liquid cell TEM technology. Chinese J. Chem., 32 (2014), 399404.
18.Chen, X., Zhou, L. H., Wang, P., Zhao, C. J. and Miao, X. L., A study of nano materials and their reactions in liquid using in situ wet cell TEM technology. Chinese J. Chem., 30 (2012), 28392843.
19.den Heijer, M., Shao, I., Radisic, A., Reuter, M. C. and Ross, F. M., Patterned electrochemical deposition of Cu using an electron beam. APL Mater., 2 (2014), 022101.
20.Donev, E. U. and Hastings, J. T., Liquid-precursor electron beam-induced deposition of Pt nanostructures: dose, proximity, resolution. Nanotechnology, 20 (2009), 505302.
21.Donev, E. U. and Hastings, J. T., Electron beam-induced deposition of Pt from a liquid precursor. Nano Lett., 9 (2009), 27152718.
22.Donev, E. U., Schardein, G., Wright, J. C. and Hastings, J. T., Substrate effects on the electron beam-induced deposition of Pt from a liquid precursor. Nanoscale, 3 (2011), 27092717.
23.Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2014), 359364.
24.Hoshino, T. and Morishima, K., Electron beam direct processing on living cell membrane. Appl. Phys. Lett., 99 (2011), 174102.
25.Jensen, E., Kobler, C., Jensen, P. S. and Molhave, K., In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy, 129 (2013), 6369.
26.Kolmakova, N. and Kolmakov, A., Scanning electron microscopy for in situ monitoring of semiconductor-liquid interfacial processes: electron assisted reduction of Ag ions from aqueous solution on the surface of TiO2 rutile nanowire. J. Phys. Chem. C, 114 (2010), 1723317237.
27.Kraus, T. and de Jonge, N., Dendritic Au nanowire growth observed in liquid with transmission electron microscopy. Langmuir, 29 (2013), 84278432.
28.Liu, Y., Chen, X., Noh, K. W. and Dillon, S. J., Electron beam-induced deposition of silicon nanostructures from a liquid phase precursor. Nanotechnology, 23 (2012), 385302.
29.Liu, Y., Tai, K. P. and Dillon, S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.
30.Noh, K. W., Liu, Y., Sun, L. and Dillon, S. J., Challenges associated with in-situ TEM in environmental systems: the case of silver in aqueous solutions. Ultramicroscopy, 116 (2012), 3438.
31.Ocola, L. E., Joshi-Imre, A., Kessel, C. et al., Growth characterization of electron beam-induced silver deposition from liquid precursor. J. Vac. Sci. Technol. B, 30 (2012), 06FF08.
32.Schardein, G., Donev, E. U. and Hastings, J. T., Electron beam-induced deposition of Au from aqueous solutions. Nanotechnology, 22 (2011), 015301.
33.Woehl, T. J., Evans, J. E., Arslan, L., Ristenpart, W. D. and Browning, N. D., Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6 (2012), 85998610.
34.Yuk, J. M., Park, J., Ercius, P. et al., High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336 (2012), 6164.
35.Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal Pt nanocrystal growth trajectories. Science, 324 (2009), 13091312.
36.Donev, E. U., Nehru, N., Schardein, G. et al., Recent advances in liquid-phase electron beam-induced deposition: characterizing growth processes and optical properties. Microsc. Microanal., 17 (2011), 438439.
37.Randolph, S. J., Botman, A. and Toth, M., Capsule-free fluid delivery and beam-induced electrodeposition in a scanning electron microscope. RSC Adv., 3 (2013), 2001620023.
38.Bresin, M., Botman, A., Randolph, S. J., Straw, M. and Hastings, J. T., Liquid phase electron beam-induced deposition on bulk substrates using environmental scanning electron microscopy. Microsc. Microanal., 20 (2014), 376384.
39.Tsuda, T., Seino, S. and Kuwabata, S., Au nanoparticles prepared with a room-temperature ionic liquid-radiation irradiation method. Chem. Commun., 44 (2009), 67926794.
40.Roy, P., Lynch, R. and Schmuki, P., Electron beam-induced in-vacuo Ag deposition on TiO2 from ionic liquids. Electrochem. Commun., 11 (2009), 15671570.
41.Imanishi, A., Tamura, M. and Kuwabata, S., Formation of Au nanoparticles in an ionic liquid by electron beam irradiation. Chem. Commun., 44 (2009), 17751777.
42.Imanishi, A., Gonsui, S., Tsuda, T., Kuwabata, S. and Fukui, K., Size and shape of Au nanoparticles formed in ionic liquids by electron beam irradiation. Phys. Chem. Chem. Phys., 13 (2011), 1482314830. Jonge, N., Introduction to special issue on electron microscopy of specimens in liquid. Microsc. Microanal., 20 (2014), 315316. Jonge, N., and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.
45.Thiberge, S., Zik, O. and Moses, E., An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscope. Rev. Sci. Instrum., 75 (2004), 22802289.
46.Ciarlo, D. R., Silicon nitride thin windows for biomedical microdevices. Biomed. Microdevices, 4 (2002), 6368.
47.Stelmashenko, N. A., Craven, J. P., Donald, A. M., Terentjev, E. M. and Thiel, B. L., Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy. J. Microsc. Oxford, 204 (2001), 172183.
48.Botman, A., Mulders, J. J. L., Weemaes, R. and Mentink, S., Purification of Pt and Au structures after electron beam-induced deposition. Nanotechnology, 17 (2006), 37793785.
49.Langford, R. M., Wang, T. X. and Ozkaya, D., Reducing the resistivity of electron and ion beam assisted deposited Pt. Microelectron. Eng., 84 (2007), 784788.
50.Lin, J. F., Bird, J. P., Rotkina, L. and Bennett, P. A., Classical and quantum transport in focused-ion beam-deposited Pt nanointerconnects. Appl. Phys. Lett., 82 (2003), 802804.
51.Penate-Quesada, L., Mitra, J. and Dawson, P., Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology, 18 (2007), 215203.
52.Tao, T., Ro, J. S., Melngailis, J., Xue, Z. L. and Kaesz, H. D., Focused ion beam-induced deposition of Pt. J. Vac. Sci. Technol. B, 8 (1990), 18261829.
53.Telari, K. A., Rogers, B. R., Fang, H. et al., Characterization of Pt films deposited by focused ion beam-assisted chemical vapor deposition. J. Vac. Sci. Technol. B, 20 (2002), 590595.
54.Ritchie, N. W. M., Spectrum simulation in DTSA-II. Microsc. Microanal., 15 (2009), 454468.
55.Ritchie, N. W. M., Using DTSA-II to simulate and interpret energy dispersive spectra from particles. Microsc. Microanal., 16 (2010), 248258.
56.Folch, A., Servat, J., Esteve, J., Tejada, J. and Seco, M., High-vacuum versus “environmental” electron beam deposition. J. Vac. Sci. Technol. B, 14 (1996), 26092614.
57.Brintlinger, T., Fuhrer, M. S., Melngailis, J. et al., Electrodes for carbon nanotube devices by focused electron beam-induced deposition of Au. J. Vac. Sci. Technol. B, 23 (2005), 31743177.
58.Green, T. A., Au electrodeposition for microelectronic, optoelectronic and microsystem applications. Gold Bull., 40 (2007), 105114.
59.Friedli, V., Utke, I., Molhave, K. and Michler, J., Dose and energy dependence of mechanical properties of focused electron beam-induced pillar deposits from Cu(C5HF6O2)2. Nanotechnology, 20 (2009), 385304.
60.Ochiai, Y., Fujita, J. and Matsui, S., Electron beam-induced deposition of Cu compound with low resistivity. J. Vac. Sci. Technol. B, 14 (1996), 38873891.
61.Kunz, R. R. and Mayer, T. M., Electron beam-induced surface nucleation and low-temperature decomposition of metal-carbonyls. J. Vac. Sci. Technol. B, 6 (1988), 15571564.
62.Chamberlain, A., Donev, E. U., Samantaray, C. B. et al., Electron beam-induced deposition of transition metals from bulk liquids: Ag, Cr, and Ni. In 55th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (Las Vegas, NV, 2011).
63.Spoddig, D., Schindler, K., Rodiger, P. et al., Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope. Nanotechnology, 18 (2007), 495202.
64.Anbar, M. and Neta, P., A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution. Int. J. Appl. Radiat. Isot., 18 (1967), 493523.
65.Hayes, D., Micic, O. I., Nenadovic, M. T., Swayambunathan, V. and Meisel, D., Radiolytic production and properties of ultrasmall cadmium sulfide particles. J. Phys. Chem., 93 (1989), 46034608.
66.Wu, M. H., Zhong, H. J., Jiao, Z., Li, Z. and Sun, Y. F., Synthesis of PbS nanocrystallites by electron beam irradiation. Coll. Surf. A, 313 (2008), 3539.
67.Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.
68.Roediger, P., Hochleitner, G., Bertagnolli, E., Wanzenboeck, H. D. and Buehler, W., Focused electron beam-induced etching of silicon using chlorine. Nanotechnology, 21 (2010), 285306.
69.Roediger, P., Wanzenboeck, H. D., Hochleitner, G., Bertagnolli, E. and Buehler, W., Focused electron beam-induced etching of silicon by chlorine gas: negative effects of residual gas contamination on the etching process. J. Appl. Phys., 108 (2010), 124316.
70.Martin, A. A. and Toth, M., Cryogenic electron beam-induced chemical etching. ACS Appl. Mater. Inter., 6 (2014), 1845718460.
71.Roediger, P., Mijic, M., Zeiner, C. et al., Local, direct-write, damage-free thinning of germanium nanowires. J. Vac. Sci. Technol. B, 29 (2011), 06FB03.
72.Roediger, P., Wanzenboeck, H. D., Hochleitner, G. and Bertagnolli, E., Crystallinity-retaining removal of germanium by direct-write focused electron beam-induced etching. J. Vac. Sci. Technol. B, 29 (2011), 041801.
73.Fox, D., O’Neill, A., Zhou, D. et al., Nitrogen assisted etching of graphene layers in a scanning electron microscope. Appl. Phys. Lett., 98 (2011), 243117.
74.Bret, T., Afra, B., Becker, R. et al., Gas assisted focused electron beam-induced etching of alumina. J. Vac. Sci. Technol. B, 27 (2009), 27272731.
75.Spinney, P. S., Howitt, D. G., Smith, R. L. and Collins, S. D., Nanopore formation by low-energy focused electron beam machining. Nanotechnology, 21 (2010), 375301.
76.Ganczarczyk, A., Geller, M. and Lorke, A., XeF2 gas-assisted focused-electron beam-induced etching of GaAs with 30 nm resolution. Nanotechnology, 22 (2011), 045301.
77.Noh, J. H., Fowlkes, J. D., Timilsina, R. et al., Pulsed laser-assisted focused electron beam-induced etching of titanium with XeF2: enhanced reaction rate and precursor transport. ACS Appl. Mater. Inter., 7 (2015), 41794184.
78.Schoenaker, F. J., Cordoba, R., Fernandez-Pacheco, R. et al., Focused electron beam-induced etching of titanium with XeF2. Nanotechnology, 22 (2011), 265304.
79.Toth, M., Advances in gas-mediated electron beam-induced etching and related material processing techniques. Appl. Phys. A, 117 (2014), 16231629.
80.Coburn, J. W. and Winters, H. F., Ion-assisted and electron-assisted gas-surface chemistry: important effect in plasma-etching. J. Appl. Phys., 50 (1979), 31893196.
81.Yemini, M., Hadad, B., Liebes, Y., Auner, A. and Ashkenasy, N., The controlled fabrication of nanopores by focused electron beam-induced etching. Nanotechnology, 20 (2009), 245302.
82.Liebes, Y., Hadad, B. and Ashkenasy, N., Effects of electrons on the shape of nanopores prepared by focused electron beam-induced etching. Nanotechnology, 22 (2011), 285303.
83.Crozier, P. A., Nanoscale oxide patterning with electron-solid-gas reactions. Nano Lett., 7 (2007), 23952398.
84.Dekker, C., Solid-state nanopores. Nat. Nanotechnol., 2 (2007), 209215.
85.Donev, E. U., Samantaray, C. B., Bresin, M. and Hastings, J. T., Recent advances in liquid-phase e-beam-induced processing: silicon nitride etching and palladium deposition. In 39th International Conference on Micro and Nano Engineering (London, 2013), p. O-FEBIP-04.
86.Drezner, Y., Greenzweig, Y. and Raveh, A., Strategy for focused ion beam compound material removal for circuit editing. J. Vac. Sci. Technol. B, 30 (2012), 011207.
87.Jaeckervoirol, A., Ponche, J. L. and Mirabel, P., Vapor-pressures in the ternary-system water nitric-acid sulfuric-acid at low-temperatures. J. Geophys. Res. Atmos., 95 (1990), 1185711863.
88.Bresin, M. and Hastings, J. T., Etching of Cu using liquid reactants and a focused electron beam. In International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (Washington, D.C., 2014).
89.Massucci, M., Clegg, S. L. and Brimblecombe, P., Equilibrium vapor pressure of H2O above aqueous H2SO4 at low temperature. J. Chem. Eng. Data, 41 (1996), 765778.