Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2010
  • Online publication date: July 2010

2 - Geologic analogies between the surface of Mars and the McMurdo Dry Valleys: microclimate-related geomorphic features and evidence for climate change

Summary

Abstract

The McMurdo Dry Valleys (MDV), classified as a hyperarid, cold-polar desert, have long been considered an important terrestrial analog for Mars because of their cold and dry climate and their suite of landforms that closely resemble those occurring on the surface of Mars at several different scales, despite significant differences in current atmospheric pressure. The MDV have been subdivided on the basis of summertime measurements of atmospheric temperature, soil moisture, and relative humidity, into three microclimate zones (Marchant and Head,2007): a coastal thaw zone, an inland mixed zone, and a stable upland zone. Minor differences in these climate parameters lead to large differences in the distribution and morphology of features at the macroscale (e.g., slopes and gullies); mesoscale (e.g., polygons, viscous-flow features, and debris-covered glaciers); and microscale (e.g., rock-weathering processes/features, including wind erosion, salt weathering, and surface pitting). Equilibrium landforms form in balance with environmental conditions within fixed microclimate zones. For example, sublimation polygons indicate the presence of extensive near-surface ice in the MDV and identification of similar landforms on Mars appears to provide a basis for detecting the location of current and past shallow ice. The modes of occurrence of the limited and unusual biota in the MDV provide terrestrial laboratories for the study of possible environments for life on Mars. The range of microenvironments in the MDV are hypersensitive to climate variability, and their stability and change provide important indications of climate history and potential stress on the biota.

Related content

Powered by UNSILO
References
Allen, C. C. and Conca, J. L. (1991). Weathering of basaltic rocks under cold, arid conditions: Antarctica and Mars. In Proceedings of 21st Lunar Planetary Science Conference, Houston, TX, pp. 711–717.
Anderson, D. M., Gatto, L. W., and Ugolini, F. C. (1972). An Antarctic analog of martian permafrost terrain. Antarctic Journal of the United States, 7, 114–116.
Arvidson, R. E., Guinness, E., and Lee, S. (1979). Differential aeolian redistribution rates on Mars. Nature, 278, 533–535.
Atkins, C. B., Barrett, P. J., and Hicock, S. R. (2002). Cold glaciers erode and deposit: evidence from Allan Hills, Antarctica. Geology, 30, 659–662.
Augustinus, P. C. and Selby, M. J. (1990). Rock slope development in McMurdo Oasis, Antarctica, and implications for interpretations of glacial history. Geografiska Annaler, 72(A), 55–62.
Baker, V. R. (2001). Water and the martian landscape. Nature, 412, 228–236.
Bao, H. and Marchant, D. R. (2006). Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 111, doi: 10.1029/2005JD006669.
Bao, H., Campbell, D. A., Bockheim, J. G., and Thiemens, M. H. (2000). Origin of sulfate in Antarctic Dry Valley soils as deduced from anomalous 17O compositions. Nature, 407, 499–502.
Bao, H., Barnes, J. D., Sharp, Z. D., and Marchant, D. R. (2008). Two chloride sources in soils of the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 113(D3) D03301, doi: 10.1029/2007JD008703.
Berg, T. E. and Black, R. F. (1966). Preliminary measurements of growth of non-sorted polygons, Victoria Land, Antarctica. In Antarctic Soils and Soil Forming Processes, ed. Tedrow, J. C. F.. American Geophysical Union Antarctic Research Series 8. Washington, D.C.: AGU, pp. 61–108.
Berman, D. C., Hartmann, W. K., Crown, D. A., and Baker, V. R. (2005). The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars. Icarus, 178(2), 465–486.
Beyer, L., Bockheim, J. G., Campbell, I. B., and Claridge, G. G. C. (1999). Review: genesis, properties, and sensitivity of Antarctic gelisols. Antarctic Science, 11, 387–398.
Bibring, J. -B., Langevin, Y., Mustard, J. F., and ,the OMEGA Team (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400–404.
Bidle, K. D., SangHoon, L., Marchant, D. R., and Falkowski, P. G. (2007). Fossil genes and microbes in the oldest ice on Earth. Proceedings of the National Academy of Sciences, 104(33), 13 455–13 460.
Binder, A. B., Arvidson, R. E., Guinness, E. A., et al. (1977). The geology of the Viking 1 landing site. Journal of Geophysical Research, 82, 4439–4451.
Black, R. F. (1973). Growth of patterned ground in Victoria Land, Antarctica. In: Permafrost Second International Conference, National Academy of Sciences, Yakutsk, Siberia, pp. 193–203.
Bockheim, J. G. (1997). Properties and classification of cold desert soils from Antarctica. Soil Society of America Journal, 61(1), 224–231.
Bockheim, J. G. (2002). Landform and soil development in the McMurdo Dry Valleys: a regional synthesis. Arctic Antarctic and Alpine Research, 34, 308–317.
Bockheim, J. G. (2003). University of Wisconsin Antarctic Soils Database. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital media.
Bockheim, J. G. and McLeod, M. (2006). Soil formation in Wright Valley, Antarctica since the late Neogene. Geoderma, 137, 109–116.
Borgstrom, I. (1999). Basal ice temperatures during late Weichselian deglaciation: comparison of landform assemblages in west-central Sweden. Annals of Glaciology, 28, 9–15.
Boynton, W. V. and 24 colleagues (2002). Distribution of hydrogen in the near-surface of Mars: evidence for subsurface ice deposits. Science, 296, 81–85.
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climates of the Quaternary. International Geophysics Series, 64. London: Academic Press, 613 pp.
Brass, G. W. (1980). Stability of brines on Mars. Icarus, 42, 20–28.
Bridges, J. C., Catling, D. C., Saxton, J. M., et al. (2001). Alteration assemblages in martian meteorites: implications for near-surface processes. Space Science Review, 96, 365–392.
Bridges, N. T. and Lackner, C. N. (2006). Northern hemisphere Martian gullies and mantled terrain: implications for near-surface water migration in Mars' recent past. Journal of Geophysical Research, Planets, 111, doi: 10.1029/2006JE002702.
Brook, E. J., Kurz, M. D.Ackert, Jr., R. P., et al. (1993). Chronology of Taylor Glacier advance in Arena Valley, Antarctica, using in situ cosmogenic 3He and 10Be. Quaternary Research, 39,11–23.
Brook, E. J., Brown, E. T., Kurz, M. D., et al. (1995). Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Berillium and 26Aluminum. Geology, 23, 1063–1066.
Brook, M. S., Kirkbride, M. P., and Bock, B. W. (2006). Quantified time scale for glacial valley cross-profile evolution in alpine mountains. Geology, 34, 637–640.
Burt, D. M. and Knauth, L. P. (2003). Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. Journal of Geophysical Research, 108, doi: 10.1029/2002JE001862.
Campbell, I. B. and Claridge, G. G. C. (1969). A classification of frigic soils: the zonal soils of the Antarctic continent. Soil Science, 107, 75–85.
Campbell, I. B. and Claridge, G. G. C. (1987). Antarctica: Soils, Weathering Processes, and Environment. Developments in Soil Science 16. New York: Elsevier, 368 pp.
Campbell, I. B. and Claridge, G. G. C. (2006). Permafrost properties, patterns and processes in the Transantarctic Mountains region. Permafrost and Periglacial Processes, 17, 215–232.
Campbell, I. B., Claridge, G. G. C., Balks, M. R., and Campbell, D. I. (1997a). Moisture content in soils of the McMurdo Sound and Dry Valley region of Antarctica. In Ecosystem Processes in Antarctic Ice-free Landscapes, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I.. Rotterdam, Netherlands: A. A. Balkema, pp. 61–76.
Campbell, D. I., MacCulloch, R. J. L., and Campbell, I. B. (1997b). Thermal regimes of some soils in the McMurdo Sound and Dry Valley region. In Ecosystem Processes in Antarctic Ice-free Landscapes, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I.. Rotterdam, Netherlands: A. A. Balkema, pp. 45–56.
Campbell, I. B, Claridge, G. G. C., Campbell, D. I, and Balks, M. R. (1998). The soil environment of the McMurdo Dry Valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 297–322.
Carr, M. H. (1981). The Surface of Mars. New Haven, CT: Yale University Press.
Carr, M. H. (1996). Water on Mars. New York: Oxford University Press.
Carr, M. H. (2006). The Surface of Mars. New York: Cambridge University Press.
Chinn, T. J. (1980). Glacier balances in the Dry valleys area, Victoria Land, Antarctica. In Proceedings of the Riederlap Workshop. IAHS-AISH Publication 126, pp. 237–247.
Chinn, T. J. (1981). Hydrology and climate in the Ross Sea area. Journal of the Royal Society of New Zealand, 11(4), 373–386.
Chinn, T. J. (1993). Physical hydrology of the Dry Valley lakes. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J. and Freidmann, E. I.. Antarctic Research Series 59.Washington, D.C.: American Geophysical Union, pp. 1–51.
Christensen, P. R. (2003). Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature, 422, 45–48.
Christensen, P. R. and 25 colleagues (2001). Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. Journal of Geophysical Research, 106(E10), 23 823–23 872.
Claridge, G. G. C. and Campbell, I. B. (1968). Soils of the Shackleton Glacier, Queen Maude Range, Antarctica. New Zealand Journal of Science, 11, 171–218.
Claridge, G. G. C. and Campbell, I. B. (1977). The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Science, 28, 377–384.
Claridge, G. G. C. and Campbell, I. B. (2005). Weathering processes in arid cryosols. In Cryosols: Permafrost Affected Soils, ed. Kimble, J.. Berlin: Springer, pp. 447–458.
Clark, B. C. (1978). Implications of abundant hygroscopic materials in the martian regolith. Icarus, 34, 645–665.
Clark, B. C. (1979). Chemical and physical microenvironments at the Viking landing sites. Journal of Molecular Evolution, 14, 13–31.
Clark, B. C. and Baird, A. K. (1979). Is the martian lithosphere sulfur rich?Journal of Geophysical Research, 84, 8395–8403.
Clark, B. C. and Hart, D. C. (1981). The salts of Mars. Icarus, 45, 370–378.
Clark, B. C., Baird, A. K., Weldon, R. J., et al. (1982). Chemical composition of martian fines. Journal of Geophysical Research, 87, 10 059–10 067.
Conca, J. L. and Astor, A. M. (1987). Capillary moisture flow and the origin of cavernous weathering in dolerites of Bull Pass, Antarctica. Geology, 15, 151–154.
Costard, F., Forget, F., Mangold, N., and Peulvast, J. -P. (2002). Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295, 110–113.
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research, 107(E11), doi: 10.1029/2001JE001505.
Cuffey, K. M., Conway, H., Gades, A. M., et al. (2000). Entrainment at cold glacier beds. Geology, 28, 351–354.
Dana, G. L., Wharton, R. A., and Dubayah, R. (1998). Solar radiation in the McMurdo dry valleys, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 39–64.
Davis, N. (2001). Permafrost: A Guide to Frozen Ground in Transition. Fairbanks, AK: University of Alaska Press.
Denton, G. H. and Marchant, D. R. (2000). The geologic basis for a reconstruction of a grounded ice sheet in McMurdo Sound, Antarctica, at the last glacial maximum. Geografiska Annaler, 82(A), 167–211.
Denton, G. H., Sugden, D. E., Marchant, D. R., Hall, B. L., and Wilch, T. I. (1993). East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a Dry Valleys perspective. Geografiska Annaler, 75A, 155–204.
Dickinson, W. W. and Rosen, M. R. (2003). Antarctic permafrost: an analogue for water and diagenetic minerals on Mars. Geology, 31, 199–202, doi: 10.1130/0091–7613.
Dickson, J. L., Head, J. W., Marchant, D. R., Morgan, G. A., and Levy, J. S. (2007a). Recent gully activity on Mars: clues from late-stage water flow in gully systems and channels in the Antarctic Dry Valleys. Lunar Planetary Science Conference, 38, abstract 1678.
Dickson, J. L., Head, J. W., and Kreslavsky, M. (2007b). Martian gullies in the southern mid-latitudes of Mars: evidence for climate-controlled formation of young fluvial features. Icarus, 188, 315–323.
Dickson, J. L., Head, J. W., and Marchant, D. R. (2008). Late Amazonian glaciation at the dichotomy boundary on Mars: evidence for glacial thickness maxima and multiple glacial phases. Geology, 36, 411–414.
Doran, P. T., McKay, C. P., Clow, G. D., et al. (2002). Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107(D24), doi: 10.1029/2001JD002045.
Elliot, D. E. and Fleming, T. H. (2004). Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Research, 7(1), 223–237.
Fabel, D., Stroeven, A. P., Harbor, J., et al. (2002). Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth and Planetary Science Letters, 201(2), 397–406.
Farmer, C. B. (1976). Liquid water on Mars. Icarus, 28, 279–289.
Farmer, C. B. and Doms, P. E. (1979). Global seasonal variation of water vapor on Mars and the implications of permafrost. Journal of Geophysical Research, 84, 2881–2888.
Fassett, C. I. and Head, J. W. (2006). Valleys on Hecates Tholus Mars: origin by basal melting of summit snowpack. Planetary and Space Science, 54, 370–378, doi: 10.1016/j.pss.2005.12.011.
Fassett, C. I. and Head, J. W. (2007). Valley formation on martian volcanoes in the Hesperian: evidence for melting of summit snowpack, caldera lake formation, drainage and erosion on Ceraunius Tholus, Mars. Icarus, 189, 118–135, doi: 10.1016/j.icarus.2006.12.021.
Feldman, W. C. and 12 colleagues (2002). Global distribution of neutrons from Mars: results from Mars Odyssey. Science, 297, 75–78.
Forget, F., Hourdin, F., Fournier, R., et al. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104(E10), 24 155–24 176.
Forget, F., Haberle, R. M., Montmessin, F., Levrard, B., and Head, J. W. (2006). Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science, 311, 368–371.
Fountain, A. G., Lewis, K. J., and Doran, P. T. (1999). Spatial climatic variation and its control on glacier equilibrium line altitude in Taylor Valley, Antarctica. Global and Planetary Change, 22, 1–10.
Frezotti, M. (1997). Ice front fluctuation, iceberg calving flux and mass balance of Victoria Land glaciers. Antarctic Science, 9, 61–73.
Garvin, J. B., Head, J. W., Marchant, D. R., and Kreslavsky, M. A. (2006). High-latitude cold-based glacial deposits on Mars: multiple superposed drop moraines in a crater interior at 70 °N latitude. Meteoritics and Planetary Science, 41, 1659–1674.
Ghysels, G. and Heyse, I. (2006). Composite-wedge pseudomorphs in Flanders, Belgium. Permafrost and Periglacial Processes, 17, 145–161.
Giardino, J. R., Shroder, J. F., and Vitek, J. D. (1987). Rock Glaciers. London: Allen and Unwin.
Gibson, E. K., Wentworth, S. T., and McKay, D. S. (1983). Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: an analog for Martian weathering processes. Journal of Geophysical Research, Supplement 88, A812–A918.
Gilichinsky, D. A., Wilson, G. S., Friedmann, E. I., et al. (2007). Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology, 7(2), 275–311. doi: 10.1089/ast.2006.0012.
Golombek, M. P. and 13 colleagues (1997). Overview of the Mars Pathfinder Mission and assessment of landing site predictions. Science, 278, 1743.
Golombek, M. P. and 22 colleagues (1999). Overview of the Mars Pathfinder Mission: launch through landing, surface operations, data sets, and science results. Journal of Geophysical Research, 104(E4), 8523–8554.
Gooding, J. L. (1992). Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus, 99, 28–41.
Gooding, J. L., Wentworth, S. J., and Zolensky, M. E. (1991). Aqueous alteration of the Nakhla meteorite. Meteoritics, 26, 135–143.
Gooseff, M. N., McKnight, D. M., Runkel, R. L., and Vaughn, B. H. (2003a). Determining long time-scale hyporheic zone flow paths in Antarctic streams. Hydrological Processes, 17(9), 1691–1710.
Gooseff, M. N., Barrett, J. E., Doran, P. T., et al. (2003b). Snow-patch influence on soil biogeochemical processes and invertebrate distribution in the McMurdo Dry Valleys, Antarctica. Arctic Antarctic and Alpine Research, 35, 92–100.
Haberle, R. M., McKay, C. P., Schaeffer, J., et al. (2001). On the possibility of liquid water on present-day Mars. Journal of Geophysical Research, 106(E10), 23 317–23 326.
Hall, B. L., Denton, G. H., Lux, D. R., and Bockheim, J. G. (1993). Late Tertiary Antarctic paleoclimate and ice-sheet dynamics inferred from surficial deposits in Wright Valley. Geografiska Annaler, 75(A), 239–268.
Hall, K. J. (1991). Mechanical weathering in the Antarctic: a maritime perspective. In Periglacial Geomorphology, ed. Dixon, J. C. and Abrahams, A. D.. Chichester, UK: John Wiley and Sons, pp. 103–123.
Hallet, B. and Waddington, D. E. (1991). Buoyancy forces induced by freeze-thaw in the active layer: implications for diapirism and soil circulation. In Periglacial Geomorphology, ed. Dixon, J. C. and Abrahams, A. D.. Chichester, UK: John Wiley and Sons, pp. 251–279.
Hallet, B., Hunter, L., and Bogen, J. (1996). Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global and Planetary Change, 12, 213–235.
Harris, K. J., Carey, A. E., Lyons, W. B., Welch, K. A., and Fountain, A. G. (2007). Solute and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica. Geological Society of America Bulletin, 119, 548–555.
Hartman, B. N. (1998). Miocene paleoclimate and ice sheet dynamics as recorded in central Taylor Valley, Antarctica. Unpublished M.S. thesis. Boston University, MA.
Haskin, L. A. and 29 colleagues (2005). Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature, 436, 66–69.
Hassinger, J. M. and Mayewski, P. A. (1983). Morphology and dynamics of rock glaciers in southern Victoria Land, Antarctica. Arctic and Alpine Research, 15, 351–368.
Head, J. W. and Kreslavsky, M. A. (2006). Formation of weathering pits on rock surfaces in the Antarctic Dry Valleys and on Mars. Paper presented at the 44th Brown/Vernadsky Microsymposium, Moscow, Russia, abstract m44–25.
Head, J. W. and Marchant, D. R. (2003). Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology, 31(7), 641–644.
Head, J. W. and Marchant, D. R. (2006). Gullies and saline ponds in the cold hyper-arid desert of the Antarctic Dry Valleys: clues to interpreting climate conditions on Mars. Paper presented at the 44th Brown/Vernadsky Microsymposium, Moscow, Russia, Abstract m44–26.
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R. (2003). Recent ice ages on Mars. Nature, 426, 797–802.
Head, J. W., Marchant, D. R., and Ghatan, G. J. (2004). Glacial deposits on the rim of a Hesperian-Amazonian outflow channel source trough: Mangala Valles, Mars. Geophysical Research Letters, L10701, doi: 10.1029/2004GL020294.
Head, J. W. and 13 colleagues (2005). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346–351.
Head, J. W., Marchant, D. R., Agnew, M. C., Fassett, C. I., and Kreslavsky, M. A (2006a). Extensive valley glacier deposits in the northern mid-latitudes of Mars: evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters, 241, 663–671.
Head, J. W., Nahm, A. L., Marchant, D. R., Neukum, G., and ,the HRSC Co-Investigator Team (2006b). Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophysical Research Letters, 33(8), doi: 2005GL024360.
Head, J. W., Marchant, D. R., Dickson, J. L., Levy, J. S., and Morgan, G. A. (2007a). Mars gully analogs in the Antarctic Dry Valleys: geological setting and processes. Lunar Planetary Science Conference, 38, Abstract 1617.
Head, J. W., Marchant, D. R., Dickson, J., Levy, J., and Morgan, G. (2007b). Transient streams and gullies in the Antarctic Dry Valleys: geological setting, processes and analogs to Mars. Online Proceedings of the 10th ISAES X, ed. A. K. Cooper, C. R. Raymond, et al. USGS Open-File Report 2007-1047, Extended Abstract 1763, 1–4.
Head, J. W., Marchant, D. R., and Kreslavsky, M. A. (2008). Formation of gullies on Mars: link to recent climate history and insolation microenvironments implicate surface water flow origin. Proceedings of the National Academy of Sciences, 105, 13 258–13 263, doi 10.1073 pnas.08037 60105.
Healy, M., Webster-Brown, J. G., Brown, K. L., and Lane, V. (2006). Chemistry and stratification of Antarctic meltwater ponds. II. Inland ponds in the McMurdo Dry Valleys, Victoria Land. Antarctic Science, 18, 525–533.
Hecht, M. H. (2002). Metastability of liquid water on Mars. Icarus, 156, 373–386.
Helbert, J., Head, J. W., and Kreslavsky, M. (2007). A global physical and morphological survey of candidate ice-rich environments and deposits on Mars. Lunar Planetary Science Conference, 38, Abstract 1279.
Heldmann, J. L. and Mellon, M. T. (2004). Observations of martian gullies and constraints on potential formation mechanisms. Icarus, 168, 285–304.
Heldmann, J. L., Toon, O. B., Pollard, W. H., et al. (2005b). Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. Journal of Geophysical Research, 110, E05004, doi: 10.1029/2004JE002261.
Holt, J. W., Safaeinili, A., Plaut, J. J., et al., and the SHARAD Team (2008a). Radar sounding evidence for ice within lobate debris aprons near Hellas basin, mid-southern latitudes on Mars, Lunar Planetary Science Conference, 39, Abstract 2441.
Holt, J. W., Safaeinili, A., Plaut, J. J., et al. (2008b). Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science, 322, 1235–1238.
Huinink, H. P., Pel, L., and Kopinga, K. (2004). Stimulating the growth of tafoni. Earth Surface Process Landforms, 29(10), 1225–1233.
Ikard, S. J, Gooseff, M. N., Barrett, J. E., and Takacs-Vesbach, C. (2009). Thermal characterization of active layer across a soil moisture gradient in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 20, 27–39.
Jakosky, B. M. and Mellon, M. T. (2001). High-resolution thermal intertia mapping of Mars: sites of exobiological interest. Journal of Geophysical Research, 106(E10), 23 887–23 908.
Jones, K. L., Bragg, S. L., Wall, S. D., Carlston, C. E., and Pidek, D. G. (1979). One Mars year: Viking lander imaging observations. Science, 204, 799–806.
Kleman, J. and Hattestrand, C. (1999). Frozen-bed Fennoscandian and Laurentide ice sheets during the last glacial maximum. Nature, 402, 63–66.
Kleman, J., Marchant, D. R., and Borgstrom, I. (2001). Late glacial ice dynamics on southern Baffin Island and in Hudson Strait. Arctic Antarctic and Alpine Research, 33(3), 249–257.
Knauth, L. P. and Burt, D. M. (2002). Eutectic brine seeps on Mars: origin and possible relation to young seepage features. Icarus, 158, 267–271.
Koppes, M. and Hallet, B. (2006). Erosion rates during rapid deglaciation in Icy Bay, Alaska. Journal of Geophysical Research, 111, doi: 10.1029/2005JF000349.
Kostama, V. -P., Kreslavsky, M. A., and Head, J. W. (2006). Recent high-latitude icy mantle in the northern plains of Mars: characteristics and ages of emplacement. Geophysical Research Letters, 33(11), doi: 10.1029/2006GL025946.
Kowalewski, D. E., Marchant, D. R., Levy, J. S., and Head, J. W. III. (2006). Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley, Antarctica. Antarctic Science, 18(3), 421–428.
Kreslavsky, M. A. and Head, J. W. (1999). Kilometer-scale slopes on Mars and their correlation with geologic units: initial results from Mars Orbiter Laser Altimeter (MOLA) data. Journal of Geophysical Research, 104(E9), 21 911–21 924.
Kreslavsky, M. A. and Head, J. W. (2000). Kilometer-scale roughness of Mars: results from MOLA data analysis. Journal of Geophysical Research, 105(E11), 26 695–26 712.
Kreslavsky, M. A. and Head, J. W. (2002a). Mars: nature and evolution of young latitude-dependent water-ice-rich mantle. Geophysical Research Letters, 29(15), doi: 10.1029/2002GL015392.
Kreslavsky, M. A. and Head, J. W. (2002b). The fate of outflow channel effluents in the Northern Lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. Journal of Geophysical Research, 107(E12), 5121, doi: 10.1029/2001JE001831.
Kreslavsky, M. A. and Head, J. W. (2003). North-south topographic slope asymmetry on Mars: evidence for insolation-related erosion at high obliquity. Geophysical Research Letters, 30(15), doi: 10.1029/2003GL017795.
Kreslavsky, M. A. and Head, J. W. (2004). Periods of active permafrost layer formation in the recent geological history of Mars. Lunar Planetary Science Conference, 35, Abstract 1201.
Kreslavsky, M. A. and Head, J. W. (2005). Mars at very low obliquity: atmospheric collapse and the fate of volatiles. Geophysical Research Letters, 32, doi: 10.1029/2005GL022645.
Kreslavsky, M. A., Head, III, J. W., and Marchant, D. R. (2008). Periods of active permafrost layer formation during the geological history of Mars: implications for circum-polar and mid-latitude surface processes. Planetary and Space Sciences, 56, 289–302, doi:10.1016/j.pss.2006.02.010.
Kress, A. M. and Head, J. W. (2008). Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: evidence for subsurface glacial ice. Geophysical Research Letters, 35, L23206, doi:10.1029/2008GL035501.
Kuzmin, R. O. and Zabalueva, E. V. (1998). On salt solutions of the martian cryolithosphere. Solar System Research, 32, 187–197.
Lachenbruch, A. H. (1962). Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geological Society of America Special Paper, 70, 1–69.
Lancaster, N. (2002). Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic Antarctic and Alpine Research, 34(3), 318–323.
Langbein, W. B. and Schumm, S. A. (1958). Yield of sediment in relation to mean annual precipitation. AGU Transactions, 39, 1023–1036.
Larsen, K. W., Arvidson, R. E., Jolliff, B. L., and Clark, B. C. (2000). Correspondence and least-squares analysis of soil and rock compositions for the Viking Lander 1 and Pathfinder landing sites. Journal of Geophysical Research, 105, 29 207–29 221.
Laskar, J., Levrard, B., and Mustard, J. F. (2002). Orbital forcing of the martian polar layered deposits. Nature, 419, 375–377.
Laskar, J., Gastineau, M., Joutel, F., et al. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 170, 343–364.
Levrard, B., Forget, F., Montmessin, F., and Laskar, J. (2004). Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature, 431, 1072–1075.
Levy, J. S., Marchant, D. R., and Head, III, J. W. (2006). Distribution and origin of patterned ground on Mullins Valley debris-covered glacier, Antarctica: the roles of ice flow and sublimation. Antarctic Science, 18(3), 385–397.
Levy, J., Head, J. W., Marchant, D. R., Morgan, G. A., and Dickson, J. L. (2007). Gully surface and shallow subsurface structure in the South Fork of Wright Valley, Antarctic Dry Valleys: implications for gully activity on Mars. Lunar Planetary Science Conference, 38, Abstract 1728.
Levy, J. S., Head, J. W., and Marchant, D. R. (2008a). The role of thermal contraction crack polygons in cold-desert fluvial systems. Antarctic Science, 20, 565–579, doi: 10.1017/S0954102008001375.
Levy, J. S., Head, J. W., Marchant, D. R., and Kowalewski, D. E. (2008b). Identification of sublimation-type thermal contraction crack polygons at the proposed NASA landing site: implications for substrate properties and climate-driven morphological evolution. Geophysical Research Letters, 35, L04202, doi: 10.1029/2007GL032813.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hemming, S. R., and Machlus, M. (2007). Major middle Miocene global climate change: evidence from East Antarctica and the Transantarctic Mountains. Geological Society of America Bulletin, 119(11/12), 1449–1461, doi: 10.1130B26134.1.
Lewis, A. R., Marchant, D. R., Ashworth, A. C., et al. (2008). Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences, 105(31), 10 676–10 689, doi: 10.1073/ pnas.08025 01105.
Lobitz, B., Wood, B. L., Averner, M. M., and McKay, C. P. (2001). Use of spacecraft data to derive regions on Mars where liquid water would be stable. Proceedings of the National Academy of Sciences, 98(5), 2132–2137, doi: 10.1073/ pnas.031581098.
Lyons, W. B., Howard-Williams, C., and Hawes, I., eds. (1997). Ecosystem Processes in Antarctic Ice-Free Landscapes. Rotterdam, Netherlands: A.A. Balkema
Lyons, W. B., Welch, K. A., Carey, A. E., et al. (2005). Groundwater seeps in Taylor Valley, Antarctica: an example of a subsurface melt event. Annals of Glaciology, 40, 200–206.
Mackay, J. R. (1977). The widths of ice wedges. Geological Survey of Canada Professional Paper, 77–1A, 43–44.
Mahaney, W. C., Dohm, J. M., Baker, V. R., et al. (2001). Morphogenesis of Antarctic Paleosols: Martian analogue. Icarus, 154(1), 113–130.
Malin, M. C. (1974). Salt weathering on Mars. Journal of Geophysical Research, 79, 3888–3894.
Malin, M. C. (1984). Abrasion rate observations in Victoria Valley, Antarctica: 340-day experiment. Antarctic Journal of the United States, 19(5), 14–16.
Malin, M. C. (1987). Abrasion in ice-free areas of southern Victoria Land, Antarctica. Antarctic Journal of the United States, 21(5), 38–39.
Malin, M. C. and Edgett, K. S. (2000). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–2335.
Malin, M. C. and Edgett, K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. Journal of Geophysical Research, 106(E10), 23 429–23 570.
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Noe Dobrea, E. Z. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573–1577.
Mangold, N. (2005). High latitude patterned grounds on Mars: classification, distribution and climatic control. Icarus, 174, 336–359.
Mangold, N., Allemand, P., Duval, P., Geraud, Y., and Thomas, P. (2002). Experimental and theoretical deformation of ice-rock mixtures: implications on rheology and ice content of Martian permafrost. Planetary and Space Science, 50(4), 385–401.
Mangold, N., Maurice, S., Feldman, W. C., Costard, F., and Forget, F. (2004). Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars. Journal of Geophysical Research, 109(E8), doi: 10.1029/2004JE002235.
Marchant, D. R. and Denton, G. H. (1996). Miocene and Pliocene paleoclimate of the Dry Valleys region, southern Victoria Land: a geomorphological approach. Marine Micropaleontology, 27, 253–271.
Marchant, D. R. and Head, J. W. (2003). Origin of sublimation polygons in the Antarctic western Dry Valleys region: implications for patterned ground development on Mars. EOS (fall Suppl.), 84(46), Abstract C12C–06.
Marchant, D. R. and Head, III, J. W. (2004). Microclimates zones of the Dry Valleys of Antarctica: implications for landscape evolution and climate change on Mars. Lunar Planetary Science Conference, 35, Abstract 1405.
Marchant, D. R. and Head, J. W. (2007). Antarctic Dry Valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192(1), 187–222, doi: 10.1016/j.icarus.2007.06.018.
Marchant, D. R., Denton, G. H., and Swisher, III, C. C. (1993a). Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica. Geografiska Annaler, 75A, 269–302.
Marchant, D. R., Denton, G. H., and Sugden, D. E. (1993b). Miocene glacial stratigraphy and landscape evolution of the western Asgard Range, Antarctica. Geografiska Annaler, 75A, 303–330.
Marchant, D. R., Swisher, III, C. C., Lux, D. R., West, Jr., D. P., and Denton, G. H. (1993c). Pliocene paleoclimate and East Antarctic ice-sheet history from surficial ash deposits. Science, 260, 667–670.
Marchant, D. R., Denton, G. H., Bockheim, J. G., Wilson, S. C., and Kerr, A. R. (1994). Quaternary ice-level changes of upper Taylor Glacier, Antarctica: implications for paleoclimate and ice-sheet dynamics. Boreas, 23, 29–42.
Marchant, D. R., Denton, G. H., Swisher, III, C. C., and Potter, Jr., N. (1996). Late Cenozoic Antarctic paleoclimate reconstructed from volcanic ashes in the Dry Valleys region, south Victoria Land. Geological Society of America Bulletin, 108(2), 181–194.
Marchant, D. R., Lewis, A., Phillips, W. C., et al. (2002). Formation of patterned-ground and sublimation till over Miocene glacier ice in Beacon Valley, Antarctica. Geological Society of America Bulletin, 114, 718–730.
Margerison, H. R., Phillips, W. M., Stuart, F. M., and Sugden, D. E. (2005). Cosmogenic He-3 concentrations in ancient flood deposits from the Coombs Hills, northern Dry Valleys, East Antarctica: interpreting exposure ages and erosion rates. Earth and Planetary Science Letters, 230, 163–175.
Marion, G. M. (1997). A theoretical evaluation of mineral stability in Don Juan Pond, Wright Valley, Victoria Land. Antarctic Science, 9, 92–99.
Marshall, G. J. and Turner, J. (1997). Katabatic wind propagation over the western Ross Sea observed using ERS-1 scatterometer data. Antarctic Science, 9, 221–226.
Matsuoka, N. (2001). Solifluction rates, processes, and landforms: a global review. Earth-science Reviews, 44, 107–134.
McKay, C. P. (2009). Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica. Antarctic Science, 21, 89–94.
McKay, C. P., Mellon, M. T., and Friedmann, E. I. (1998). Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 31–38.
McKnight, D. M., Niyogi, D. K., Alger, A. S., et al. (1999). Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985–995, doi: 10.2307/1313732.
Mellon, M. T. (1997). Small-scale polygonal features on Mars: seasonal thermal contraction cracks in permafrost. Journal of Geophysical Research, 102, 25 617–25 628.
Mellon, M. T. (2003). Theory of ground ice on Mars and implications to the neutron leakage flux. Lunar Planetary Science Conference, 34, Abstract 1916.
Mellon, M. T. and Jakosky, B. M. (1995). The distribution and behavior of martian ground ice during past and present epochs. Journal of Geophysical Research, 100, 11 781–11 799.
,MEPAG Next Decade Science Analysis Group (2008). Science priorities for Mars sample return. Astrobiology, 8, doi: 10.1089/ast.2008.0759.
Milkovich, S. M. and Head, J. W. (2005). North polar cap of Mars: polar layered deposit characterization and identification of a fundamental climate signal. Journal of Geophysical Research, 110(E1), doi: 10.1029/2004JE002349.
Milkovich, S. M., Head, J. W., Neukum, G., and ,the HRSC Co-Investigator Team (2008). Stratigraphic analysis of the northern polar layered deposits of Mars: implications for recent climate history. Planetary and Space Science, 56, 266–288, doi: 10.1016/j.pss.2007.08.004.
Miller, G. H., Wolfe, A. P., Briner, J. P., Sauer, P. E., and Nesje, A. (2005). Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quaternary Science Reviews, 24, 1703–1721.
Milliken, R. E., Mustard, J. F., and Goldsby, D. L. (2003). Viscous flow features on the surface of Mars: observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research, 108(E6), doi: 10.1029/2002JE002005.
Mitrofanov, I. and 11 colleagues (2002). Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey. Science, 297, 78–81.
Morgan, G., Head, J. W., Marchant, D. R., Dickson, J. L., and Levy, J. S. (2007). Gully formation on Mars: testing the snowpack hypothesis from analysis of analogs in the Antarctic Dry Valleys. Lunar Planetary Science Conference, 38, Abstract 1656.
Murton, J. B., Worsley, P., and Gozdzik, J. (2000). Sand veins and wedges in cold aeolian environments. Quaternary Science Reviews, 19, 899–922.
Mustard, J. F., Cooper, C. D., and Rifkin, M. K. (2001). Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature, 412, 411–414.
Mutch, T. A., Grenander, S. U., Jones, K. L., et al. (1976a). The surface of Mars: the view from the Viking 2 lander. Science, 194, 1277–1283.
Mutch, T. A., Patterson, W. R., Binder, A. B., et al. (1976b). The surface of Mars: the view from the Viking 1 Lander. Science, 193, 791–801.
Mutch, T. A., Arvidson, R. E., Guinness, E. A., Binder, A. B., and Morris, E. C. (1977). The geology of the Viking Lander 2 site. Journal of Geophysical Research, 82, 4452–4467.
Nichols, R. L. (1968). Coastal geomorphology, McMurdo Sound, Antarctica. Journal of Glaciology, 7, 449–478.
Nkem, J. N., Virginia, R. A., Barrett, J. E., Wall, D. H., and Li, G. (2006). Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biology, 28(8), 643–651.
Northcott, M. L., Gooseff, M. N., Barrett, J. E., et al. (2009). Hydrologic characteristics of lake- and stream-side riparian wetted margins in the McMurdo Dry Valleys, Antarctica. Hydrological Processes, 23, 1255–1267.
Nylen, T., Fountain, A. G., and Doran, P. (2004). Climatology of katabatic winds in the McMurdo Dry Valleys, southern Victoria Land, Antarctica. Journal of Geophysical Research, 109, doi: 10.10292–2003JD003937.
Ostrach, L. R., Head, J. W., and Kress, A. M. (2008). Ring-mold craters (RMC) in lobate debris aprons (LDA) in the Deuteronilus Mensae region of Mars: evidence for shallow subsurface glacial ice in lobate debris aprons. Lunar Planetary Science Conference, 39, Abstract 2422.
Paige, D. A. (2002). Near-surface liquid water on Mars. Lunar Planetary Science Conference, 33, Abstract 2049.
Parsons, R., Head, J. W., and Marchant, D. R. (2005). Weathering pits in the Antarctic Dry Valleys: insolation-induced heating and melting and applications to Mars. Lunar Planetary Science Conference, 36, Abstract 1138.
Patterson, W. S. B. (2001). The Physics of Glaciers. London: Butterworth-Heinemann.
Péwé, T. L. (1959). Sand-wedge polygons (tesselations) in the McMurdo Sound region, Antarctica: a progress report. American Journal of Science, 257, 545–552.
Pierce, T. L. and Crown, D. A. (2003). Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars. Icarus, 163, 46–65.
Plaut, J. J., Safaeinili, A., and Holt, J. W., et al. (2009). Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophysical Research Letters, 36, L02203, doi: 10.1029/2008GL036379.
Prentice, M. L., Kleman, J. K., and Stroeven, A. P. (1998). The composite glacial erosional landscape of the northern McMurdo Dry Valleys: implications for Antarctic Tertiary glacial history. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 1–38.
Priscu, J. C., ed. (1998). Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. AGU Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, 370 pp.
Reiss, D. and Jaumann, R. (2003). Recent debris flows on Mars: seasonal observations of the Russell Crater dune field. Geophysical Research Letters, 30(6), doi: 10.1029/2002GL016704.
Richardson, M. I. and Mischna, M. A. (2005). Long-term evolution of transient liquid water on Mars. Journal of Geophysical Research, 110(E3), doi: 10.1029/2004JE002367.
Rieder, R. and 14 colleagues (2004). Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray Spectrometer. Science, 306, 1746–1749.
Rignot, E., Hallet, B., and Fountain, A. (2002). Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophysical Research Letters, 29(12), doi: 10.1029/2001GL013494.
Schaefer, J. M., Bauer, H., Denton, G. H., et al. (2000). The oldest ice on Earth in Beacon Valley, Antarctica: new evidence from surface exposure dating. Earth and Planetary Science Letters, 179, 91–99.
Schumm, S. A. (1965). Quaternary paleohydrology. In The Quaternary of the United States, ed. Wright, H. E. and Frey, D. G.. Princeton, NJ: Princeton University Press, p. 922.
Schumm, S. A. and Lichty, R. W. (1965). Time, space and causality in geomorphology. American Journal of Science, 263, 110–119.
Schwerdtfeger, W. (1984). Weather and Climate of the Antarctic. Developments in Atmospheric Science 15. Amsterdam, Netherlands: Elsevier, 262 pp.
Selby, M. J. (1971a). Slopes and their development in an ice-free, arid area of Antarctica. Geografiska Annaler, 53(A), 235–245.
Selby, M. J. (1971b). Some solifluction surfaces and terraces in the ice-free valleys of Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 14(3), 469–476.
Selby, M. J. (1974). Slope evolution in an Antarctic oasis. New Zealand Geographer, 30, 18–34.
Selby, M. J. (1977). Transverse erosional marks on ventifacts from Antarctica. New Zealand Journal of Geology and Geophysics, 20(5), 949–969.
Settle, M. (1979). Formation and deposition of volcanic sulfate aerosols on Mars. Journal of Geophysical Research, 84, 8343–8354.
Shean, D. E., Head, J. W., and Marchant, D. R. (2005). Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit. Journal of Geophysical Research, 110, E05001, doi: 10.1029/2004JE002360.
Shean, D. E., Head, III, J. W., Fastook, J. L., and Marchant, D. R. (2007a). Recent glaciation at high elevations on Arsia Mons, Mars: implications for the formation and evolution of large tropical mountain glaciers. Journal of Geophysical Research, 112, E03004, doi: 10.1029/2006JE002761.
Shean, D. E., Head, J. W., and Marchant, D. R. (2007b). Shallow seismic surveys and ice thickness estimates of the Mullins Valley debris-covered glacier, McMurdo Dry Valleys, Antarctica. Antarctic Science, 19, 485–496, doi: 10.1017/S0954102007000624.
Siegel, B. Z., McMurty, G., Siegel, S. M., Chen, J., and Larock, P. (1979). Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature, 280, 828–829.
Sletten, R. S., Hallet, B., and Fletcher, R. C. (2003). Resurfacing time of terrestrial surfaces by the formation and maturation of polygonally patterned ground. Journal of Geophysical Research, 108, doi: 10.1029/2002JE001914.
Smith, D. E. and 23 colleagues (2001). Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research, 106, 23 689–23 722.
Smith, P. H. and the Phoenix Science Team (2007). The Phoenix mission. In Seventh International Conference on Mars, Abstract 3180.
Spotila, J. A, Buscher, J. T, Meigs, A. J., and Reiners, P. W. (2004). Long-term glacial erosion of active mountain belts: example of the Chugach-St. Elias Range, Alaska. Geology, 32, 501–504.
Squyres, S. W., Clifford, S. M., Kuzmin, R. O., Zimbelman, J. R., and Costard, F. M. (1992). Ice in the martian regolith. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 523–554.
Squyres, S. W. and 49 colleagues (2004a). The Spirit rover's Athena science investigation at Gusev Crater, Mars. Science, 305, 794–799.
Squyres, S. W. and 49 colleagues (2004b). The Opportunity rover's Athena science investigation at Meridiani Planum, Mars. Science, 306, 1698–1703.
Squyres, S. W. and 17 colleagues (2004c). In-situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science, 306, 1709–1714.
Squyres, S. W. and 17 colleagues (2006). Two years at Meridiani Planum: results from the Opportunity rover. Science, 313, 1403–1407.
Staiger, J. W., Marchant, D. R., Schaefer, J. M., et al. (2006). Plio-Pleistocene history of Ferrar Glacier, Antarctica: implications for climate and ice sheet stability. Earth and Planetary Science Letters, 243, 489–503.
Sugden, D. E., Denton, G. H., and Marchant, D. R. (1995a). Landscape evolution of the Dry Valleys, Transantarctic Mountains: tectonic implications. Journal of Geophysical Research, 100(B7), 9949–9967.
Sugden, D. E., Marchant, D. R., Potter, Jr., N., et al. (1995b). Miocene glacier ice in Beacon Valley, Antarctica. Nature, 376, 412–416.
Summerfield, M. A., Stuart, F. M., Cockburn, H. A. P., et al. (1998). Long-term rates of denudation in the Dry Valleys region of the Transantarctic Mountains, southern Victoria Land based on in-situ produced cosmogenic Ne-21. Geomorphology, 27, 113–129.
Summerfield, M. A., Sugden, D. E., Denton, G. H., et al. (1999). Cosmogenic isotope data support previous evidence of extremely low rates of denudation in the Dry Valleys region, southern Victoria Land, Antarctica. Geological Society of London Special Publication, 162, 255–267.
Swanger, K. M. and Marchant, D. R. (2007). Sensitivity of ice-cemented Antarctic soils to greenhouse-induced thawing: are terrestrial archives at risk?Earth and Planetary Science Letters, 259, 347–359.
Takamatsu, N., Kato, N., and Matsumoto, G. I. (1998). The origin of salts in water bodies of the McMurdo Dry Valleys. Antarctic Science, 10, 439–448.
Tanaka, K. L. (2005). Geology and insolation-driven climatic history of Amazonian north polar materials on Mars. Nature, 437, 991–994.
Tillman, J. E. (1988). Mars global atmospheric oscillations: annually synchronized, transient normal mode oscillations and the triggering of global dust storms. Journal of Geophysical Research, 93, 9433–9451.
Torii, T., Nakaya, S., Matsubaya, O., et al. (1989). Chemical characteristics of pond waters in the Labyrinth of southern Victoria Land, Antarctica. Hydrobiologia, 172, 255–264.
Tosca, N. J., McLennan, S. M., Clark, B. C., et al. (2005). Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth and Planetary Science Letters, 240, 122–148.
Toulmin, P., Baird, A. K., Clark, B. C., et al. (1977). Geochemical and mineralogical interpretation of the Viking inorganic chemical results. Journal of Geophysical Research, 82, 4625–4634.
Wateren, D. and Hindmarsh, R. (1995). Stabilists strike again. Nature, 376, 389–391.
Vaniman, D. T. and Chipera, S. J. (2006). Transformation of Mg- and Ca-sulfate hydrates in Mars regolith. American Mineralogist, 91, 1628–1642.
Wall, S. D. (1981). Analysis of condensates formed at the Viking 2 lander site: the first winter. Icarus, 47, 173–183.
Wang, A. and 11 colleagues (2007). Sulfate-rich soils exposed by Spirit rover at multiple locations in Guseve Crater on Mars. In Seventh International Conference on Mars, Abstract 3348.
Wentworth, S. K.Gibson, E. K.Velbel, M. A., and McKay, D. S. (2005). Antarctic Dry Valleys and indigenous weathering in Mars meteorites: implications for water and life on Mars. Icarus, 174, 383–395.
Whalley, W. B. and Palmer, C. F. (1998). A glacial interpretation for the origin and formation of the Marinet Rock Glacier, Alpes Maritimes, France. Geografiska Annaler, 80, 221–236.
Wilson, L. (1969). Les relations entre les processus geomorphologique et le climat moderne comme méthode de paléoclimatologie. Revue De Géographie Physique et de Geologie Dynamique, 11, 309–314.
Yershov, E. D. (1998). General Geocryology. Studies in Polar Research. Cambridge, UK: Cambridge University Press, 580 pp.
Zent, A. P. and Fanale, F. P. (1986). Possible Mars brines: equilibrium and kinetic considerations. Journal of Geophysical Research, 91, 439–445.
Zent, A. P. and Fanale, F. P. (1990). Possible martian brines: radar observations and models. Journal of Geophysical Research, 95, 14 531–14 542.
Zent, A. P., Fanale, F. P., Salvail, J. R., and Postawko, S. E. (1986). Distribution and state of H2O in the high-latitude shallow subsurface of Mars. Icarus, 67, 19–36.
Zurek, R. (1992). Comparative aspects of the climate of Mars: an introduction to the current atmosphere. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 799–817.
Zurek, R. W., Barnes, J. R., Haberle, R. M., et al. (1992). Dynamics of the atmosphere of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 835–933.