Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 35
  • Print publication year: 2007
  • Online publication date: April 2010




We axiomatise and generalise the “Hecke algebra” construction of the Coleman-Mazur Eigencurve. In particular we extend the construction to general primes and levels. Furthermore we show how to use these ideas to construct “eigenvarieties” parametrising automorphic forms on totally definite quaternion algebras over totally real fields.


In a series of papers in the 1980s, Hida showed that classical ordinary eigenforms form p-adic families as the weight of the form varies. In the non-ordinary finite slope case, the same turns out to be true, as was established by Coleman in 1995. Extending this work, Coleman and Mazur construct a geometric object, the eigencurve, parametrising such modular forms (at least for forms of level 1 and in the case p > 2). On the other hand, Hida has gone on to extend his work in the ordinary case to automorphic forms on a wide class of reductive groups. One might optimistically expect the existence of nonordinary families, and even an “eigenvariety”, in some of these more general cases.

Anticipating this, we present in Part I of this paper (sections 2–5) an axiomatisation and generalisation of the Coleman-Mazur construction. In his original work on families of modular forms, Coleman in [10] developed Riesz theory for orthonormalizable Banach modules over a large class of base rings, and, in the case where the base ring was 1-dimensional, constructed the local pieces of a parameter space for normalised eigenforms. There are two places where we have extended Coleman's work.

Related content

Powered by UNSILO