Skip to main content Accessibility help
×
Home
  • Print publication year: 2012
  • Online publication date: July 2012

7 - LCP for system design

Summary

This chapter presents a number of subsystem-level modules that benefit from an LCP implementation. The first module, in section 7.1, is a long time delay (LTD) circuit with amplitude compensation. This module demonstrates the advantages of homogenous dielectric core and ply layers in a multilayer build. Known analytic solutions for transmission lines may be readily applied for first-pass success. In addition, the homogenous multilayer build achieves amplitude compensation through novel LCP transmission line implementations. Lastly, this module demonstrates LCP’s surface mount (SMT) component compatibility with commercially available MEMS switches.

The second module, in section 7.2, is a push–pull amplifier. This module demonstrates how LCP’s multilayer construction easily allows minimally short bondwires for high-performance chip interconnect. Further, this module integrates high-performance LCP baluns to achieve excellent even-mode distortion cancellation. This module also demonstrates how LCP lends itself naturally to the higher-level integration of LCP-enhanced passives.

Lastly, a receiver module with a built-in phased-array antenna is described in section 7.3 . In this receiver module , LCP is demonstrated to provide a convenient platform for mechanically flexible electronics. Passive antenna structures are designed directly into the LCP build. Active semiconductor chips are packaged into this platform to show how LCP is ideally suited for building up large systems.

Each module represents advanced research based on an LCP platform that extends the electrical performance and mechanical functionality of today’s subsystem modules.

References
Gardiol, F.Microstrip CircuitsJohn Wiley and Sons 1994
Collin, R. E.Foundations for Microwave EngineeringMcGraw-Hill 1992
Carvalho, N. B.Pedro, J. C.Large- and small-signal IMD behavior of microwave power amplifiersIEEE Transactions on Microwave Theory Techniques 45 2150 1997
Hagensen, M.Influence of imbalance on distortion in optical push–pull frontendsJ. Lightwave Technology 13 650 1995
Meharry, D. E.Sanctuary, J. E.Golja, B. A.Broad bandwidth transformer coupled differential amplifiers for high dynamic rangeIEEE Journal of Solid-State Circuits 34 1233 1999
Lee, J.-W.Eastman, L. F.Webb, K. J.A gallium-nitride push–pull microwave power amplifierIEEE Transactions on Microwave Theory and Techniques 51 2243 2003
Hsu, P. S.Nguyen, C.Kintis, M.Uniplanar broad-band push–pull FET amplifiersProc. IEEE Transactions on Microwave Theory and Techniques 47 2364 1999
Chen, A. C.Pham, A.-V.Leoni, R. E.IEEE MTT-S Int. Microwave Symposium DigHonolulu 2007
Brookner, E.Practical Phased-Array Antenna SystemsArtech House 1991
Kunath, R. R.Lee, R. Q.Martzaklis, K. S.Shalkhauser, K. A.Downey, A. N.Simons, R. 1992
Steinberg, B. D.Microwave Imaging with Large Antenna ArraysWiley-Interscience 1983
Caetano, L.
Chieh, J. S.Pham, A.-V.Dalrymple, T. W.Kuhl, D. G.Garber, B. B.Aihara, K.IEEE Int. Microwave SympAnaheim, 2010
Kingsley, N.Ponchak, G. E.Papapolymerou, J.Reconfigurable RF MEMS phased array antenna integrated within a liquid crystal polymer (LCP) system-on-packageIEEE Transactions on Antennas and Propagation 56 108 2008
Hajimiri, A.Hashemi, H.Natarajan, A.Guan, X.Komijani, A.Integrated phased array systems in siliconProceedings of the IEEE 93 1637 2005 Parker, D.Zimmermann, D. C.
Xiang, G.Hashemi, H.Hajimiri, A.A fully integrated 24-GHz eight-element phased-array receiver in siliconIEEE Journal of Solid-State Circuits 39 2311 2004
Hashemi, H.Xiang, G.Komijani, A.Hajimiri, A.A 24-GHz SiGe phased-array receiver-LO phase-shifting approachIEEE Transactions on Microwave Theory and Techniques 53 614 2005
Kwang-Jin, K.Rebeiz, G. M.An X- and Ku-band 8-element phased-array receiver in 0.18-µm SiGe BiCMOS technologyIEEE Journal of Solid-State Circuits 43 1360 2008
Parker, D.Zimmermann, D. C.Phased arrays–part II: implementations, applications, and future trendsIEEE Transactions on Microwave Theory and Techniques 50 688 2002
Hashemi, H.Ta-shun, C.Roderick, J.Integrated true-time-delay-based ultra-wideband array processingIEEE Communications Magazine 46 162 2008
Lee, K. F.Chen, W.Advances in Microstrip and Printed AntennasJohn Wiley and Sons 1997
Schaubert, D.Kolberg, E.Korzeniowski, T.Thungren, T.Johansson, J.Yngvesson, K.Endfire tapered slot antennas on dielectric substratesIEEE Transactions on Antennas and Propagation 33 1392 1985
Langley, J. D. S.Hall, P. S.Newham, P.Balanced antipodal Vivaldi antenna for wide bandwidth phased arraysIEE Proceedings – Microwaves, Antennas and Propagation 143 97 1996
Allen, J. L. 1963
Chen, M. J.Zhang, Z.Pham, A.-V.Hyman, D.Design and development of a broadband amplitude compensated long time delay circuit on thin-film liquid crystal polymerWiley InterScience Microwave and Optical Technology Letters 51 1060 2009
Chen, M. J.Zhang, Z.Pham, A.-V.Hyman, D.IEEE MTT-S Int. Microwave Symp. DigAtlanta, 2008