Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: September 2009

6 - Predictability of Lagrangian motion in the upper ocean

Summary

Introduction

The prediction particle trajectories in the ocean is of practical importance for problems such as searching for objects lost at sea, tracking floating mines, designing oceanic observing systems, and studying ecological issues such as the spreading of pollutants and fish larvae (Mariano et al., 2002). In a given year, for example, the US Coast Guard (USCG) performs over 5000 search and rescue missions (Schneider, 1998). Even though the USCG and its predecessor, the Lifesaving Service, have been performing search and rescue operations for over 200 years, it has only been in the last 30 years that Computer Assisted Search Planning has been used by the USCG. The two primary components are determining the drift caused by ocean currents and the movement caused by wind. The results presented in this review are motivated by the drift estimation problem.

A number of authors (e.g., Aref, 1984; Samelson, 1996) have shown that prediction of particle motion is an intrinsically difficult problem because Lagrangian motion often exhibits chaotic behavior, even in regular and simple Eulerian flows. In the ocean, the combined effects of complex time-dependence (Samelson, 1992; Meyers, 1994; Duan and Wiggins, 1996) and three-dimensional structure (Yang and Liu, 1996) are likely to induce chaotic transport. Chaos implies strong dependence on the initial conditions, which are usually not known with great accuracy, so that the task of predicting particle motion is often extremely difficult.

References
Aref, H., 1984. Stirring by chaotic advection. J. Fluid Mech., 143, 1–21.
Bauer, S., Swenson, M. S., Griffa, A., Mariano, A. J., and Owens, K., 1998. Eddy-mean flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean. J. Geophys. Res., 103, 30855–71.
Bauer, S., Swenson, M. S., and Griffa, A., 2002. Eddy-mean flow and eddy diffusivity estimates in the tropical Pacific Ocean. 2: Results. J. Geophys. Res., 107, (c10), 3154–71.
Baxendale, P. and Harris, T., 1986. Isotropic stochastic flows, Ann. Prob., 14, No. 4, 1155–79.
Berloff, P. and McWilliams, J. C., 2002. Material transport in oceanic gyres. Part II: Hierarchy of stochastic models. J. Phys. Oceanogr., 32, 797–830.
Berloff, P., McWilliams, J. C., and Bracco, A., 2002. Material transport in oceanic gyres. Part I: Phenomenology. J. Phys. Oceanogr., 32, 764–96.
Berloff, P. and McWilliams, J. C., 2003. Material transport in oceanic gyres. Part III: Randomized stochastic models. J. Phys. Oceanogr., 33, 1416–45.
Borgas, M. S. and Sawford, B. L., 1994. Stochastic equations with multifractal random increments for modeling turbulent dispersion. Phys. Fluids, 6, 618.
Castellari, S., Griffa, A., Özgökmen, T. M., and Poulain, P.-M., 2001. Prediction of particle trajectories in the Adriatic Sea using Lagrangian data assimilation. J. Mar. Sys., 29, 33–50.
Cushman-Roisin, B., 1994. Introduction to Geophysical Fluid Dynamics. Englewood Cliffs, NJ: Prentice-Hall.
Duan, J. and Wiggins, S., 1996. Fluid exchange across a meandering jet with quasiperiodic variability. J. Phys. Oceanogr., 26, 1176–88.
Falco, P., Griffa, A., Poulain, P.-M., and Zambianchi, E., 2000. Transport properties in the Adriatic Sea deduced from drifter data. J. Phys. Oceanogr., 30, 2055–71.
Falkovich, G. and Piterbarg, L. I., 2004. The Lyapunov exponent for inertial particles and an explosive ergodic diffusion. Submitted to Comm. Math. Phys.
Flament, P. J., Kennan, S. C., Knox, R. A., Niiler, P. P., and Bernstein, R. L., 1996. The three-dimensional structure of an upper ocean vortex in the tropical Pacific Ocean. Nature, 383, 610–13.
Griffa, A., 1996. Applications of stochastic particle models to oceanographic problems. In Stochastic Modelling in Physical Oceanography, ed. Adler, R., Muller, P., and Rozovskii, B.. Cambridge, MA: Birkhauser Boston, 113–28.
Griffa, A., Owens, K., Piterbarg, L., and Rozovskii, B., 1995. Estimates of turbulence parameters from Lagrangian data using a stochastic particle model. J. Mar. Res., 53, 212–34.
Griffa, A., Piterbarg, L., and Özgökmen, T. M., 2004. Predictability of Lagrangian particles: effects of smoothing of the underlying Eulerian flow. J. Mar. Res., 62/1, 1–35.
Hansen, D. V. and Poulain, P.-M., 1996. Quality control and interpolations of WOCE/TOGA drifter data. J. Atmos. Oceanic Tec., 13, 900–9.
Jazwinski, A. H., 1970. Stochastic Processes and Filtering Theory. New York: Academic Press.
Liptser, R. S. and Shiryaev, A. N., 2000. Statistics of Random Processes., second edition. Berlin: Springer-Verlag.
Mariano, A. J., Griffa, A., Özgökmen, T. M., and Zambianchi, E., 2002. Lagrangian analysis and predictability of coastal and ocean dynamics 2000. J. Atmos. Ocean. Tech., 19, 1114–26.
Monin, A. S. and Yaglom, A. M., 1975. Statistical Fluid Mechanics: Mechanics of Turbulence. Cambridge, MA: MIT Press.
Meyers, S., 1994. Cross-frontal mixing in a meandering jet. J. Phys. Oceanogr., 24, 1641–6.
Niiler, P. P., Sybrandy, A. S., Bi, K., Poulain, P.-M., and Bittermam, D. S., 1995. Measurements of the water-following capability of holey-sock and TRISTART drifters. Deep Sea Res., 42, 1951–64.
Özgökmen, T. M., Griffa, A., Piterbarg, L. I., and Mariano, A. J., 2000. On the predictability of the Lagrangian trajectories in the ocean. J. Atmos. Ocean. Tech., 17/3, 366–83.
Özgökmen, T. M., Piterbarg, L. I., Mariano, A. J., and Ryan, E. H., 2001. Predictability of drifter trajectories in the tropical Pacific Ocean. J. Phys. Oceanogr., 31, 2691–720.
Paldor, N., Dvorkin, Y., Mariano, A. J., Özgökmen, T. M., and Ryan, E., 2004. A practical hybrid model for predicting the trajectories of near-surface drifters in the Pacific Ocean. J. Ocean. Atmos. Sci., 21, 1246–58.
Pedrizzetti, G. and Novikov, E. A., 1994. On Markov modelling of turbulence, J. Fluid Mech., 280, 69–93.
Piterbarg, L. I., 2001a. The top Lyapunov exponent for a stochastic flow modeling the upper ocean turbulence. SIAM J. Appl. Math., 62, 777–800.
Piterbarg, L. I., 2001b. Short term prediction of Lagrangian trajectories. J. Atmos. Ocean. Tech., 18, 1398–410.
Piterbarg, L. I. and Özgökmen, T. M., 2002. A simple prediction algorithm for the Lagrangian motion in two-dimensional turbulent flows. SIAM J. Appl. Math., 63, 116–48.
Piterbarg, L. I., 2004a. On predictability of particle clusters in a stochastic flow, to appear in Stochastics and Dynamics.
Piterbarg, L. I., 2005. Relative dispersion in 2D stochastic flows. J. of Turbulence, 6(4), doi:10.1080/14685240500103168.
Pope, S. B., 1987. Consistency conditions for random walk models of turbulent dispersion. Phys. Fluids, 30, 2374–9.
Poulain, P.-M., 1999. Drifter observations of surface circulation in the Adriatic Sea between December 1994 and March 1996. J. Mar. Sys., 20, 231–53.
Reverdin, G., Frankignoul, C., and Kestenare, E., 1994. Seasonal variability in the surface currents of the Equatorial Pacific. J. Geophys. Res., 99(10), 20323–44.
Reynolds, A. M., 1998. On the formulation of Lagrangian stochastic models of scalar dispersion within plant canopies. Boundary-Layer Meteor., 86, 333–44.
Rodean, H. C., 1996. Stochastic Lagrangian models of turbulent diffusion, Meteorological Monographs, 26, n.48. Boston: AMS.
Samelson, R. M., 1992. Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22, 431–40.
Samelson, R. M., 1996. Chaotic transport by mesoscale motions. In Stochastic Modelling in Physical Oceanography, ed. Adler, R. J., Müller, P., and Rozovoskii, B. L.. Cambridge, MA: Birkhäuser Boston, 423–38.
Sawford, B. L., 1993. Recent developments in the Lagrangian stochastic theory of turbulent dispersion. Boundary-Layer Meteor., 62, 197–215.
Schneider, T., 1998. Lagrangian drifter models as search and rescue tools. M. S. Thesis, Dept. of Meteorology and Physical Oceanography, University of Miami.
Thomson, D. J., 1986. A random walk model of dispersion in turbulent flows and its application to dispersion in a valley. Quat. J. R. Met. Soc., 112, 511–29.
Thomson, D. J., 1987. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529–56.
Thomson, D. J., 1990. A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech., 210, 113–53.
Toner, M., Poje, A. C., Kirwan, A. D., Jones, C. K. R. T., Lipphardt, B. L., and Grosch, C. E., 2001a. Reconstructing basin-scale Eulerian velocity fields from simulated drifter data. J. Phys. Oceanogr., 31, 1361–76.
Toner, M., Kirwan, A. D., Kantha, L. H., and Choi, J. K., 2001b. Can general circulation models be assessed and their output enhanced with drifter data?J. Geophys. Res. Oceans, 106, 19563–79.
Veneziani, M., Griffa, A, Reynolds, A. M., and Mariano, A. J., 2004. Oceanic turbulence and stochastic models from subsurface Lagrangian data for the North-West Atlantic Ocean, J. Phys. Oceanogr., 34, 1884–1906.
Yang, H. and Liu, Z., 1996. The three-dimensional chaotic transport and the great ocean barrier. J. Phys. Oceanogr., 27, 1258–73.
Yang, Q., Parvin, B., and Mariano, A. J., 2001. Detection of vortices and saddle points in SST data. Geophys. Res. Lett., 28, 331–4.
Zambianchi, E. and Griffa, A., 1994. Effects of finite scales of turbulence on dispersion estimates. J. Mar. Res., 52, 129–48.