Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T05:04:40.340Z Has data issue: false hasContentIssue false

3 - Human and Societal Dimensions of Past Climate Change

from Part I - Challenges: Time and Memory

Published online by Cambridge University Press:  10 November 2017

Carole L. Crumley
Affiliation:
University of North Carolina, Chapel Hill
Tommy Lennartsson
Affiliation:
Swedish Biodiversity Centre, Uppsala
Anna Westin
Affiliation:
Swedish Biodiversity Centre, Uppsala
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Issues and Concepts in Historical Ecology
The Past and Future of Landscapes and Regions
, pp. 41 - 83
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, W. (1980). Agricultural Fluctuations in Europe: From the Thirteenth to the Twentieth Centuries. London: Methuen.Google Scholar
Afifi, T. & Jäger, J. eds. (2010). Environment, Forced Migration and Social Vulnerability. Heidelberg: Springer-Verlag Berlin.Google Scholar
Alexander, P. (1987). Le Climate en Europe au moyen âge: Contribution à l’histoire des variations climatiques de 1000 à 1425, d’après les sources narratives de l’Europe occidentale. Paris: Éditions de l’École des hautes études en sciences sociales [in French].Google Scholar
Alley, R. B. (2000). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews, 19, 213–26.Google Scholar
Andersen, B. G. & Borns, H. W. (1997). The Ice Age World: An Introduction to Quaternary History and Research with Emphasis on North America and Northern Europe during the Last 2.5 Million Years. Oslo: Scandinavian University Press.Google Scholar
Anderson, D. G., Maasch, K., & Sandweiss, D. H., eds. (2007). Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions. London: Academic Press.Google Scholar
Anderson, R. W., Johnson, N., & Koyama, D. M. (2017). Jewish persecutions and weather shocks: 1100–1800. The Economic Journal, 127, 924–58.CrossRefGoogle Scholar
Annan, J. D. & Hargreaves, J. C. (2013). A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate of the Past, 9, 367–76.CrossRefGoogle Scholar
Appleby, A. B. (1980). Epidemics and famine in the Little Ice Age. The Journal of Interdisciplinary History, 10, 643–63.Google Scholar
Arjava, A. (2005). The mystery cloud of 536 CE in the Mediterranean sources. Dumbarton Oaks Papers, 59, 7394.Google Scholar
Arnold, D. (1988). Famine: Social Crisis and Historical Change. Oxford: Basil Blackwell.Google Scholar
Babst, F., Poulter, B. & Trouet, V., Tan, K., Neuwirth, B., Wilson, R., Carrer, M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M., Urbinati, C., Bouriaud, O., Ciais, P., & Frank, D. (2013). Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography, 22, 706–17.Google Scholar
Barlow, L. K., Sadler, J. P. & Ogilvie, A. E. J., Buckland, P. C., Amorosi, T., Ingimundarson, J. H., Skidmore, P., Dugmore, A., & McGowan, T. H. (1997). Interdisciplinary investigations of the end of the Norse Western Settlement in Greenland. The Holocene, 7, 489–99.Google Scholar
Barnett, J. (2003). Security and climate change. Global Environmental Change, 13, 717.CrossRefGoogle Scholar
Bartlein, P. J., Harrison, S. P. & Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Joel, G., Harrison-Prentice, T. I., Henderson, A. P., Peyron, O., Prentice, I. C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R., Viau, A. E., Williams, J. W., & Wu, H. (2011). Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Climate Dynamics, 37, 775802.Google Scholar
Behringer, W. (1995). Weather, hunger and fear: the origins of the European witch persecution in climate, society and mentality. German History, 13, 127.Google Scholar
Behringer, W. (1999). Climate change and witch-hunting: the impact of the Little Ice Age on mentalities. Climate Change, 43, 335–51.Google Scholar
Behringer, W. (2010). A Cultural History of Climate. London: Polity Press.Google Scholar
Bender, M., Sowers, T., & Brook, E. (1997). Gases in ice cores. Proceedings of the National Academy of Sciences of the United States of America, 94, 8343–9.Google Scholar
Benson, L. V. (2010). Who provided maize to Chaco Canyon after the mid-12th-century drought?. Journal of Archaeological Science, 37, 621–9.Google Scholar
Benson, L. & Berry, M. S. (2009). Climate change and cultural response in the prehistoric American Southwest. Kiva, 75, 89119.Google Scholar
Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, S., Meko, D., & Landström, S. (2002). Holocene multidecadal and multicentennial droughts affecting Northern California and Nevada. Quaternary Science Reviews, 21, 659–82.CrossRefGoogle Scholar
Benson, L., Petersen, K., & Stein, J. (2007). Anasazi (pre-Columbian Native American) migrations during the middle-12th and late-13th centuries – Were they drought induced?. Climatic Change, 83, 187213.Google Scholar
Berger, A. & Loutre, M. F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10, 297317.Google Scholar
Blinman, E. (2008). 2000 years of cultural adaptation to climate change in the Southwestern United States. AMBIO: A Journal of the Human Environment, 37, 489–97.Google Scholar
Bocinsky, R. K. & Kohler, T. A. (2014). A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest. Nature Communications, 5, 5618. doi: 10.1038/ncomms6618.Google Scholar
Bond, G., Kromer, B. & Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., & Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–6.Google Scholar
Bond, G., Showers, W. & Cheseby, M., Lotti, W., Almasi, P., Demenocal, P. B., Priore, P., Cullen, H., Hajdas, I., & Bonani, G. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 1257–66.Google Scholar
Bond, G. C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Beosnan, G., & Johnson, S. (1999). The North Atlantic’s 1–2 kyr climate rhythm’s relation to Heinrich Events, Dansgaard/Oeschger Cycles and the Little Ice Age. In Clark, P. U., Webb, R. S., & Keigwin, L. D., eds., Mechanisms of Global Climate Change at Millennial Time Scales. Washington, DC: Geophysical Monograph Series. American Geophysical Union, pp. 3558.Google Scholar
Bradley, R. S. (1999). Paleoclimatology: Reconstructing Climates of the Quaternary. San Diego, CA: Academic Press.Google Scholar
Brázdil, R., Pfister, C., Wanner, H., von Storch, H., & Luterbacher, J. (2005). Historical climatology in Europe – The state of the art. Climatic Change, 70, 363430.Google Scholar
Breitenmoser, P., Beer, J., & Brönnimann, S. (2012). Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 313–14, 127–39.Google Scholar
Broecker, W. S. & Putnam, A. E. (2013). Hydrologic impacts of past shifts of Earth’s thermal equator offer insight into those to be produced by fossil fuel CO2. Proceedings of the National Academy of Sciences of the United States of America, 110, 16710–15.Google Scholar
Brooke, J. L. (2014). Climate Change and the Course of Global History: A Rough Journey. New York: Cambridge University Press.Google Scholar
Bryson, R. A. & Murray, T. J. (1977). Climates of Hunger: Mankind and the World’s Changing Weather. Madison: University of Wisconsin Press.Google Scholar
Buckland, P. C., Amorosi, T. & Barlow, L. K., Dugmore, A. J., Mayewski, P. A., McGovern, T. H., Ogilvie, A. E. J., Sadler, J. P., & Skidmore, P. (1996). Bioarchaeological and climatological evidence for the fate of Norse farmers in medieval Greenland. Antiquity, 70, 8896.Google Scholar
Buhaug, H. (2010). Climate not to blame for African civil wars. Proceedings of the National Academy of Sciences of the United States of America, 107 (38), 16477–82.Google Scholar
Büntgen, U., Myglan, V. & Ljungqvist, F. C. McCormic, M., Di Cosmo, N., Sigl, M., Jungclaus, J. H., Wagner, S., Krusic, P. J., Esper, J., Kaplan, J. O., De Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., & Kirdyanov, . (2016). Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 9, 231–6.Google Scholar
Campbell, B. M. S. (2016). The Great Transition: Climate, Disease and Society in the Late-Medieval World. Cambridge: Cambridge University Press.Google Scholar
Carey, M. (2012). Climate and history: a critical review of historical climatology and climate change historiography. Wiley Interdisciplinary Reviews: Climate Change, 3, 233–49.Google Scholar
Chen, J., Chen, F. & Feng, S., Huang, W., Liu, J., & Zhou, A. (2015). Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms. Quaternary Science Reviews, 107, 98111.Google Scholar
Chen, J., Rao, Z., Liu, J., Huang, W., Feng, S., & Dong, G. (2016). On the timing of the East Asian summer monsoon maximum during the Holocene – Does the speleothem oxygen isotope record reflect monsoon rainfall variability? Science China Earth Sciences, 59, 2328–38.Google Scholar
Chen, Q. (2015). Climate shocks, dynastic cycles and nomadic conquests: evidence from historical China. Oxford Economic Papers, 67, 185204.Google Scholar
Cheyette, F. L. (2008). The disappearance of the ancient landscape and the climatic anomaly of the early Middle Ages: a question to be pursued. Early Medieval Europe, 16, 127–65.Google Scholar
Christiansen, B. & Ljungqvist, F. C. (2012). The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Climate of the Past, 8, 765–86.Google Scholar
Christiansen, B. & Ljungqvist, F. C. (2017). Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Reviews of Geophysics, 55, 40–96.Google Scholar
Chu, C. Y. C. & Lee, R. D. (1994). Famine, revolt, and the dynastic cycle–population dynamics in historical China. Journal of Population Economics, 7, 351–78.Google Scholar
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, Jr., B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., & Worley, S. J. (2011). The twentieth century reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137, 128.Google Scholar
Cook, B. I., Smerdon, J. E., Seager, R., & Coats, S. (2014). Global warming and 21st century drying. Climate Dynamics, 43, 2607–27.Google Scholar
Cook, E. R., Anchukaitis, K. J., Buckley, B. M., Jacoby, G. C., & Wright, W. E. (2010). Asian monsoon failure and megadrought during the last millennium. Science, 328, 486–9.Google Scholar
Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., & Funkhouser, G. (1995). The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. The Holocene, 5, 229–37.Google Scholar
Cook, E. R., Woodhouse, C. A., & Eakin, C. M. (2004). Long term aridity changes in the western United States. Science, 306, 1015–18.Google Scholar
Crumley, C. L. (1993). Historic ecotonal shifts. Ecological Applications, 3, 377–84.Google Scholar
Cullen, H., deMenocal, P. B. & Hemming, S., Hemming, G., Brown, F. H., Gulderson, T., & Sirocko, F. (2000). Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology, 28, 379–82.Google Scholar
d’Alpoim Guedes, J. A., Crabtree, S. A., Bocinsky, R. K., & Kohler, T. A. (2016). Twenty-first century approaches to ancient problems: climate and society. Proceedings of the National Academy of Sciences of the United States of America, 113, 14483–91.Google Scholar
D’Arrigo, R., Frank, D., Jacoby, G., & Pederson, N. (2001). Spatial response to major volcanic events in or about AD 536, 934 and 1258: frost rings and other dendrochronological evidence from Mongolia and northern Siberia. Climatic Change, 49, 239–46.Google Scholar
deMenocal, P. B. (2001). Cultural responses to climate change during the Late Holocene. Science, 292, 667–73.Google Scholar
Diamond, J. (2005). Collapse: How Societies Choose to Fail or Succeed. New York: Penguin Books.Google Scholar
Diaz, H. & Trouet, V. (2014). Some perspectives on societal impacts of past climatic changes. History Compass, 12, 160–77.Google Scholar
Douglas, P. M. J., Demarest, A. A., Brenner, M., & Canuto, M. A. (2016). Impacts of climate change on the collapse of lowland Maya civilization. Annual Review of Earth and Planetary Sciences, 44, 613–45.Google Scholar
Dugmore, A. J., Keller, C., & McGovern, T. H. (2007). Norse Greenland settlement: reflections on climate change, trade, and the contrasting fates of human settlements in the North Atlantic islands. Arctic Anthropology, 44, 1236.CrossRefGoogle ScholarPubMed
Dykoski, C. A., Edwards, R. L., Chen, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., An, Z., & Revenaugh, J. (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233, 7186.Google Scholar
Esper, J., Cook, E. R., Krusic, P. J., Peters, K., & Schweingruber, F. H. (2003). Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Research, 59, 8198.Google Scholar
Esper, J., Krusic, P. J., Ljungqvist, F. C., Luterbacher, J., Carrer, M., Cook, E., Davi, N. K., Hartl-Marier, C., Kirdyanov, A., Konter, O., Myglan, V., Timonen, M., Treydte, K., Truet, V., Villalba, R., Yang, B., & Büntgen, U. (2016). Ranking of tree-ring based temperature reconstructions of the past millennium. Quaternary Science Reviews, 145, 134–51.Google Scholar
Fagan, B. M. (2000). The Little Ice Age: How Climate Made History, 1300–1850. New York: Basic Books.Google Scholar
Fairchild, I. J. & Baker, A. (2012), Speleothem Science: From Process to Past Environments. Oxford: Wiley.Google Scholar
Fan, K.-W. (2010). Climatic change and dynastic cycles in Chinese history: a review essay. Climatic Change, 101, 565–73.Google Scholar
Fan, K.-W. (2015). Climate change and Chinese history: a review of trends, topics, and methods. Wiley Interdisciplinary Reviews: Climate Change, 6, 225–38.Google Scholar
Fang, J. & Liu, G. (1992). Relationship between climatic change and the nomadic southward migrations in eastern Asia during historical times. Climatic Change, 22, 1511–69.CrossRefGoogle Scholar
Finné, M., Holmgren, , Sundqvist, K., Weiberg, H. S., , E., & Lindblom, M. (2011): Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years – A review. Journal of Archaeological Science, 38, 3153–73.Google Scholar
Fritts, H. (1976). Tree Rings and Climate. London: Academic Press.Google Scholar
Fyfe, J. C., Meehl, G. A. & England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E., Gillet, N. P., Xie, S.-P., Kosaka, Y., & Swart, N. C. (2016). Making sense of the early-2000s warming slowdown. Nature Climate Change, 6, 224–8.Google Scholar
Ge, Q., Hao, Z., Zheng, J., & Shao, X. (2013). Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere. Climate of the Past, 9, 1153–60.Google Scholar
Ge, Q., Zheng, J., Tian, Y., Wu, W., Fang, X., & Wang, W.-C. (2008). Coherence of climatic reconstruction from historical documents in China by different studies. International Journal of Climatology, 28, 1007–24.Google Scholar
Gill, R. B. (2000). The Great Maya Droughts: Water, Life, and Death. Albuquerque: University of New Mexico Press.Google Scholar
Glaser, R. (2008). Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen. Darmstadt: Wissenschaftliche Buchgesellschaft [in German].Google Scholar
Gleisner, H., Thejll, P., Christiansen, B., & Nielsen, J. K. (2015). Recent global warming hiatus dominated by low-latitude temperature trends in surface and troposphere data. Geophysical Research Letters, 42, 510–17. doi: 10.1002/2014GL062596.Google Scholar
Gray, L. J., Beer, J. & Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., & Fleitmann, D. (2010). Solar influences on climate. Reviews of Geophysics, 48, RG4001. doi: 10.1029/2009RG000282.Google Scholar
Gräslund, B. & Price, N. (2012). Twilight of the gods? The ‘dust veil event’ of AD 536 in critical perspective. Antiquity, 86, 428–43.Google Scholar
Gunn, J. D., ed. (2000). The Years Without Summer. Tracing A.D. 536 and its Aftermath. Oxford: Archaeopress.Google Scholar
Halstead, P. & O’Shea, J., eds. (1989). Bad Year Economics: Cultural Responses to Risk and Uncertainty. New York: Cambridge University Press.Google Scholar
Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48, RG4004. doi: 10.1029/2010RG000345.Google Scholar
Hansen, J., Sato, M. & Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Sciences of the United States of America, 103, 14288–93.Google Scholar
Hao, Z., Zheng, J., Ge, Q., & Zhang, X. (2012). Spatial patterns of precipitation anomalies for 30-yr warm periods in China during the past 2000 years. Acta Meteorologica Sinica, 26, 278–88.Google Scholar
Hao, Z., Zheng, J. & Zhang, X., Liu, H., Li, M., & Ge, Q. (2016). Spatial patterns of precipitation anomalies in eastern China during centennial cold and warm periods of the past 2000 years. International Journal of Climatology, 26, 467–75.Google Scholar
Held, I. M. & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19, 5686–99.CrossRefGoogle Scholar
Hellmann, L., Nikolaev, A. & Ljungqvist, F. C., Churakova(Sidorova), O., Düthorn, E., Esper, J., Hülsmann, L., Kirdyanov, A. V., Moiseev, P., & Myglan, V. S. (2016). Diverse growth trends and climate responses across Eurasia’s boreal forest. Environmental Research Letters, 11, 074021. doi: 10.1088/1748–9326/11/7/074021.Google Scholar
Hiller, A., Boettger, T., & Kremenetski, C. (2001). Medieval climatic warming recorded by radiocarbon dated alpine tree-line shift on the Kola Peninsula, Russia. The Holocene, 11, 491–7.Google Scholar
Hind, A., Zhang, Q., & Brattström, G. (2016). Problems encountered when defining Arctic amplification as a ratio. Scientific Reports, 6, 30469. doi: 10.1038/srep30469.Google Scholar
Holmes, J. A. (2008). How the Sahara became dry. Science, 320, 752–3.Google Scholar
Hsiang, S. M. & Burke, M. (2014). Climate, conflict, and social stability: what does the evidence say? Climate Change, 123, 3955.Google Scholar
Hsiang, S. M., Burke, M., & Miguel, E. (2013). Quantifying the influence of climate on human conflict. Science, 341, 1235367. doi: 10.1126/science.1235367.Google Scholar
Hsu, K. J. (1998). Sun, climate, hunger, and mass migration. Science in China Series D. Earth Sciences, 41, 449–72.Google Scholar
Hughes, M. K. & Graumlich, L. J. (1996). Multi-millennial dendroclimatic studies from the western United States. In Jones, P. D., Bradley, R. S., & Jouzel, J., eds., Climatic Variations and Forcing Mechanisms of the Last 2000 Years. Volume 141. NATO ASI Series, pp. 109–24.Google Scholar
Huang, S. P., Pollack, H. N., & Shen, P. Y. (2008). A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record. Geophysical Research Letters, 35, L13703. doi: 10.1029/2008GL034187.Google Scholar
Hugo, G. & Currey, B. (1989). Famine: As a Geographical Phenomenon. Dordrecht, Springer.Google Scholar
Huntington, E. (1907). The Pulse of Asia: A Journey in Central Asia Illustrating the Geographic Basis of History. Boston: Houghton, Mifflin and Company.Google Scholar
Huntington, E. (1913). Changes of climate and history. American Historical Review, 19, 213–32.Google Scholar
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M., eds.]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. doi: 10.1017/CBO9781107415324.Google Scholar
Issar, A. & Zohar, M. (2004). Climate Change: Environment and Civilization in the Middle East. Berlin: Springer.Google Scholar
Jones, P. (2016). The reliability of global and hemispheric surface temperature records. Advances in Atmospheric Sciences, 33, 269–82.Google Scholar
Jones, P. D., Briffa, K. R. & Osborn, T. J., Loughm, J. M., & van Ommen, T. D. (2009). High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. The Holocene, 19, 349.Google Scholar
Jouzel, J. (2013). A brief history of ice core science over the last 50 yr. Climate of the Past, 9, 2525–47.Google Scholar
Karlén, W. & Kuylenstierna, J. (1996). On solar forcing of Holocene climate: evidence from Scandinavia. The Holocene, 6, 359–36.Google Scholar
Karlén, W. & Larsson, L. (2007). Mid-Holocene climatic and cultural dynamics in Northern Europe. In Anderson, D. G., Maasch, K., & Sandweiss, D. H., eds., Climate Change and Cultural Dynamics: A Global Perspective on Mid-Holocene Transitions. London: Academic Press, pp. 407–34.Google Scholar
Klomp, J. & Bulte, E. (2013). Climate change, weather shocks, and violent conflict: a critical look at the evidence. Agricultural Economics, 44, 6378.Google Scholar
Krämer, D. (2015). Menschen Grasten nun mit dem Vieh. Die Letzte Grosse Hungerkrise der Schweiz 1816/17. Basel: Schwabe [in German].Google Scholar
Kullman, L. (2015). Higher-than-present Medieval pine (Pinus sylvestris L.) treeline along the Swedish Scandes. Landscape Online, 42, 114.Google Scholar
Kuper, R. & Kröpelin, S. (2006). Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science, 313, 803–7.Google Scholar
Laird, K. R., Fritz, S. C., Maasch, K. A., & Cumming, B. F. (1996). Greater drought intensity and frequency before AD 1200 in the northern Great Plains, USA. Nature, 384, 552–4.CrossRefGoogle Scholar
Lamb, H. H. (1972–7). Climate: Present, Past and Future 1–2. London: Methuen.Google Scholar
Larsen, L. B., Vinther, B. M. & Briffa, K. R., Melvin, T. M., Clausen, H. B., Jones, P. D., Andersen, M. L. S., Hammer, C. U., Eronen, M., Grudd, H., Gunnarson, B. E., Hantemirov, R. M., Naurzbaev, M. M., & Nicolussi, K. (2008). New ice core evidence for a volcanic cause of the A.D. 536 dust veil. Geophysical Research Letters, 35, L04708. doi: 10.1029/2007GL032450.Google Scholar
Leduc, G., Schneider, R., Kim, J.-H., & Lohmann, G. (2010). Holocene and Eemian sea surface temperature trends as revealed by Alkenone and Mg/Ca paleothermometry. Quaternary Science Reviews, 29, 9891004.Google Scholar
Lee, H. F. (2014). Climate-induced agricultural shrinkage and overpopulation in late imperial China. Climate Research, 59, 229–42.Google Scholar
Lee, H. F. & Zhang, D. D. (2015). Quantitative analysis of climate change and human crises in history. In Kwan, M.-P., Richardson, D., Wang, D., & Zhou, C., eds., Space-Time Integration in Geography and GIScience: Research Frontiers in the US and China. Dordrecht: Springer, pp. 235–67.Google Scholar
Liu, Y., Cai, Q. F., Song, H. M., An, Z. S., & Linderholm, H. W. (2011). Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chinese Science Bulletin, 6, 2986–94.Google Scholar
Ljungqvist, F. C. (2009). Global nedkylning: Klimatet och människan under 10 000 år. Stockholm: Norstedts [in Swedish].Google Scholar
Ljungqvist, F. C. (2011). The spatio-temporal pattern of the Mid-Holocene Thermal Maximum. Geografie, 116, 91110.Google Scholar
Ljungqvist, F. C., Krusic, P. J., Brattström, G., & Sundqvist, H. S. (2012). Northern Hemisphere temperature patterns in the last 12 centuries. Climate of the Past, 8, 227–49.Google Scholar
Ljungqvist, F. C., Krusic, P. J. & Sundqvist, H. S., Zorita, E., Brattström, G., & Frank, D. (2016). Northern Hemisphere hydroclimatic variability over the past twelve centuries. Nature, 532, 94–8.Google Scholar
Löwenborg, D. (2012). An Iron Age shock doctrine: did the AD 536–7 event trigger large-scale social changes in the Mälaren valley area? Journal of Archaeology and Ancient History, 4, 129.Google Scholar
Lucero, L. J. (2006). Water and Ritual: The Rise and Fall of Classic Maya Rulers. Austin: University of Texas Press.Google Scholar
Luterbacher, J. & Pfister, C. (2015). The year without a summer. Nature Geoscience, 8, 246–8.Google Scholar
Luterbacher, J., Werner, J. P. & Smerdon, J., Fernández-Donado, L., González-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C, Büntgen, , Zorita, U., Wagner, E., Esper, S., McCarroll, J., Toreti, D., Frank, A., Jungclaus, D., Barriendos, J. H., Bertolin, M., Bothe, C., Brázdil, O., Camuffo, R., Dobrovolný, D., Gagen, P., García-Bustamante, M., Ge, E., Gómez-Navarro, Q., Guiot, J. J., Hao, J., Hegerl, Z., Holmgren, G. C., Klimenko, K., Martín-Chivelet, V. V., Pfister, J., Roberts, C., Schindler, N., Schurer, A., Solomina, A., von Gunten, O., Wahl, L., Wanner, E., Wetter, H., Xoplaki, O., Yuan, E., Zanchettin, N., Zhang, D., , H., & Zerefos, C. (2016). European summer temperatures since Roman times. Environmental Research Letters, 11, 024001. doi: 10.1088/1748–9326/11/1/024001.Google Scholar
Madsen, C. K. (2014) ‘Pastoral Settlement, Farming, and Hierarchy in Norse Vatnahverfi, South Greenland’. Copenhagen: University of Copenhagen, unpublished PhD thesis.Google Scholar
Mann, M. E., Zhang, Z. & Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., & Ni, F. (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences of the United States of America, 105, 13252–7.Google Scholar
Mann, M. E., Zhang, Z. & Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., & Ni, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326, 1256–60.Google Scholar
Matthews, J. A. & Briffa, K. R. (2005). The ‘Little Ice Age’: re-evaluation of an evolving concept. Geografiska Annaler, 87A, 1736.Google Scholar
Mayewski, P. A., Rohling, E. E. & Stager, J. C., Karlén, W., Maasch, , Meeker, K. A., Meyerson, L. D., Gasse, E. A., van Krevels, F., Holmgren, S., Lee-Thorp, K., Rosqvist, J., Rack, G., Staubvasser, F., Schneider, M., , R. R., & Steig, E. J. (2004). Holocene climate variability. Quaternary Research, 62, 243–55.Google Scholar
Mazepa, V. S. (2005). Stand density in the last millennium at the upper tree-line ecotone in the Polar Ural Mountains. Canadian Journal of Forest Research, 35, 2082–91.Google Scholar
McCormick, M., Büntgen, U. & Cane, , , M. A., Cook, , Harper, E. R., Huyers, K., Litt, P., Manning, T., Mayewski, S. W., More, P. A., Nicolussi, A. F. M., , K., & Tegel, W. (2012). Climate change during and after the Roman Empire: reconstructing the past from scientific and historical evidence. Journal of Interdisciplinary History, 4, 169220.Google Scholar
McMichael, A. J. (2012). Insights from past millennia into climatic impacts on human health and survival. Proceedings of the National Academy of Sciences, 109, 4730–7.Google Scholar
McNeill, J. R. (2016). Historians, superhistory, and climate change. In Jarrick, A., Myrdal, J., & Bondesson, M. Wallenberg, eds., Methods in World History: A Critical Approach. Lund: Nordic Academic Press, pp. 1943.Google Scholar
Meierding, E. (2013) Climate change and conflict: avoiding small talk about the weather. International Studies Review, 15, 185203.Google Scholar
Melander, E., Pettersson, T., & Themnér, L. (2016). Organized violence, 1989–2015. Journal of Peace Research, 53, 727–42.Google Scholar
Melvin, T. M. & Briffa, K. R. (2008). A ‘signal-free’ approach to dendroclimatic standardisation. Dendrochronologia, 26, 7186.Google Scholar
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., & Karlén, W. (2005). Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433, 613–17.CrossRefGoogle ScholarPubMed
Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres, 117, D08101. doi: 10.1029/2011JD017187.Google Scholar
Nelson, M. C., Ingram, S. E. & Dugmore, A. J., Streeter, R., Peeples, M. A., McGowern, T. H., Hegmin, M., Arneborg, J., Kintigh, K., Brewington, S., Spielmann, K. A., Simpson, I. A., Strawhacker, C., Comeau, L. E. L., Torvinen, A., Madsen, C. K., Hambrecht, G., & Smiarowski, K. (2016). Climate challenges, vulnerabilities, and food security. Proceedings of the National Academy of Sciences of the United States of America, 113, 298303.CrossRefGoogle ScholarPubMed
Newman, L. F., ed. (1990). Hunger in History: Food Shortage, Poverty, and Deprivation. Cambridge/Oxford: Blackwell.Google Scholar
O’Loughlin, J., Linke, A. M., & Witmer, F. D. (2014). Modeling and data choices sway conclusions about climate–conflict links. Proceedings of the National Academy of Sciences of the United States of America, 111, 2054–5.Google Scholar
PAGES 2k Consortium (2013). Continental-scale temperature variability during the past two millennia. Nature Geoscience, 6, 339–46.Google Scholar
Parker, G. (2013). Global Crisis: War, Climate and Catastrophe in the Seventeenth Century. New Haven, CT: Yale University Press.Google Scholar
Parry, M. L. (1978). Climatic Change, Agriculture and Settlement. Folkestone: William Dawson & Sons.Google Scholar
Parry, M. L. & Carter, T. R. (1983). Assessing Impacts of Climatic Change in Marginal Areas: The Search for an Appropriate Methodology. Laxenburg: International Institute for Applied Systems Analysis.Google Scholar
Parry, M. L., Carter, T. R., & Konijn, N. T., eds. (1988a). The Impact of Climatic Variations on Agriculture. Volume 1. Assessments in Cool Temperate and Cold Regions. Dordrecht: Kluwer.Google Scholar
Parry, M. L., Carter, T. R., & Konijn, N. T., eds. (1988b). The Impact of Climatic Variations on Agriculture. Volume 2. Assessments in Semi-arid Regions. Dordrecht: Kluwer.Google Scholar
Payette, S., Filion, L., Delwaide, A., & Begin, C. (1989). Reconstruction of tree-line vegetation response to long-term climate change. Nature, 341, 429–32.Google Scholar
Pettersson, T. & Wallensteen, P. (2015). Armed conflicts, 1946–2014. Journal of Peace Research, 52, 536–50.Google Scholar
Pfister, C. (2007). Climatic extremes, recurrent crises and witch hunts: strategies of European societies in coping with exogenous shocks in the late sixteenth and early seventeenth centuries. Medieval History Journal, 10, 3373.Google Scholar
Pierrehumbert, R. T. (2010). Principles of Planetary Climate. Cambridge: Cambridge University Press.Google Scholar
Post, J. (1985). Food Shortage, Climatic Variability, and Epidemic Disease in Preindustrial Europe: The Mortality Peak in the Early 1740s. Ithaca, NY: Cornell University Press.Google Scholar
Raleigh, C., Linke, A., & O’Loughlin, J. (2014). Extreme temperatures and violence. Nature Climate Change, 4, 76–7.Google Scholar
Raspopov, O. M., Dergachev, V. A. & Esper, J., Kozyreva, O., Frank, D., Ogurtsov, M. G., Kolström, T., & Shao, X. (2008). The influence of the de Vries (~200-year) solar cycle on climate variations: results from the central Asian mountains and their global link. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 616.Google Scholar
Raspopov, O. M., Dergachev, V. A., & Kolström, T. (2004). Periodicity of climate conditions and solar variability derived from dendrochronological and other palaeo-climatic data in high latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 209, 127–39.Google Scholar
Renssen, H., Seppä, H., Heiri, , Roche, O., Goosse, D. M., , H., & Fichefet, T. (2009). The spatial and temporal complexity of Holocene thermal maximum. Nature Geoscience, 2, 411–14.Google Scholar
Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38, 191219.Google Scholar
Rohde, R., Muller, R. A. & Jacobsen, R., Muller, R., Perlmutter, S., Rosefelt, A. Wurtele, J., Groom, D., & Wickham, C. (2013). A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinformatics and Geostatistics: An Overview, 1, 1. doi: 10.4172/gigs.1000101.Google Scholar
Rosen, A. M. (2007). Civilizing Climate: Social Responses to Climate Change in the Ancient Near East. Lanham, MD: Altamira Press.Google Scholar
Rotberg, R. & Rabb, T., eds. (1985). Hunger in History: The Impacts of Changing Food Production and Consumption Patterns on Society. Cambridge: Cambridge University Press.Google Scholar
Sandweiss, D. H., Maasch, K. A., & Anderson, D. G. (1999). Transitions in the mid-Holocene. Science, 283, 499500.Google Scholar
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–6.Google Scholar
Scheffran, J., Brzoska, M., Brauch, H. G., Link, P. M., & Schilling, J. eds. (2012). Climate Change, Human Security and Violent Conflict: Challenges for Societal Stability. Berlin: Springer.Google Scholar
Schneider, T., Bischoff, T., & Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553.Google Scholar
Schönwiese, C. D. (1995). Klimaänderungen – Daten, Analysen, Prognosen. Berlin: Springer Verlag [in German].Google Scholar
Sigl, M., Winstrup, M. & McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, , Chellman, M., Dahl-Jensen, N., Fischer, D., Kipfstuhl, H., Kostick, S., Maselli, C., Mekhaldi, O. J., Mulvaney, F., Muscheler, R., Pasteris, R., Pilcher, D. R., Salzer, J. R., Schüpbach, M., Steffensen, S., Vinther, J. P., , B. M., & Woodruff, T. E. (2015). Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543–9.Google Scholar
Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., & Biswas, J. (2011). The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophysical Research Letters, 38, L15703. doi: 10.1029/2011GL047713.Google Scholar
Slavin, P. (2016). Climate and famines: a historical reassessment. WIREs Climate Change, 7, 433–47.Google Scholar
Solomina, O. N., Bradley, R. S. & Jomelli, V., Geirsdottir, A., Kaufman, D. S., Koch, J., McKay, N. P., Masiokas, M., Miller, G., Nesje, A., Nicolussi, K., Owen, L. A., Putnam, A. E., Wanner, H., Wiles, G., & Yang, B. (2016). Glacier fluctuations during the past 2000 years. Quaternary Science Reviews, 149, 6190.Google Scholar
Sorokin, P. (1975). Hunger as a Factor in Human Affairs Gainesville: University Presses of Florida.Google Scholar
St. George, S. (2014). An overview of tree-ring width records across the Northern Hemisphere. Quaternary Science Reviews, 95, 132–50.Google Scholar
Steinhilber, F., Abreua, J. A. & Beer, J., Brunner, I., Christi, M., Fisher, H., Heikkilä, U., Kubik, , Mann, O. W., McCracken, M., Miller, K., Miyahara, H., Oerter, H., , H., & Wilhelms, F. (2012). 9,400years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences of the United States of America, 109, 5967–71.Google Scholar
Stothers, R. B. (1999). Volcanic dry fogs, climate cooling, and plague pandemics in Europe and the Middle East. Climatic Change, 42, 713–23.Google Scholar
Su, Y., Liu, L., Fang, X. Q., & Ma, Y. N. (2016). The relationship between climate change and wars waged between nomadic and farming groups from the Western Han Dynasty to the Tang Dynasty period. Climate of the Past, 12, 137–50.Google Scholar
Taricco, C., Mancuso, S., Ljungqvist, F. C., Alessio, S., & Ghil, M. (2015). Multispectral analysis of Northern Hemisphere temperature records over the last five millennia. Climate Dynamics, 45, 83104.Google Scholar
Tierney, J. E., Pausata, F. S. R., & deMenocal, P. B. (2017). Rainfall regimes of the Green Sahara. Science Advances, 3, e1601503. doi: 10.1126/sciadv.1601503.Google Scholar
Toohey, M., Krüger, K. & Sigl, , , M., Stordal, , , F., & Svensen, H. (2016). Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Climatic Change, 136, 401–12.Google Scholar
Tvauri, A. (2014). The impact of the climate catastrophe of 536–537 AD in Estonia and neighbouring areas. Estonian Journal of Archaeology, 18, 3056.Google Scholar
Wagner, G., Beer, J. & Masarik, J., Muscheler, R., Kubik, P. W., Mende, W., Laj, C., Raisbeck, G. M., & Yiou, F. (2001). Presence of the solar de Vries cycle (~205 years) during the last ice age. Geophysical Research Letters, 28, 303–6.Google Scholar
Walter, J. & Schofield, R., eds. (1989). Famine, Disease and the Social Order in Early Modern Society. Cambridge: Cambridge University Press.Google Scholar
Wanner, H., Beer, J. & Bütikofer, J., Crowley, T. J., Cubasch, U., Flückinger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M. & Widmann, M. (2008). Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews, 27, 17911828.Google Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S., & Jetel, M. (2011). Structure and origin of Holocene cold events. Quaternary Science Reviews, 30, 3109–23.Google Scholar
Widgren, M. (2012). Climate and causation in the Swedish Iron Age: learning from the present to understand the past. Geografisk Tidskrift, 112, 126–34.Google Scholar
Willard, D. A., Bernhardt, C. E., Korejwo, D. A., & Meyers, S. R. (2005). Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems: pollen-based climatic reconstruction. Global and Planetary Change, 47, 1735.Google Scholar
Wilson, R., Anchukaitis, K. & Briffa, K. R., Büntgen, U., Cook, , D’Arrigo, E., Davi, R., Esper, N., Frank, J., Gunnarsson, D., Hegerl, B., Helama, G., Klesse, S., Krusic, S., Linderholm, P. J., Myglan, H. W., Osborn, V., Rydval, T. J., Schneider, M., Schurer, L., Wiles, A., Zhang, G., , P., & Zorita, E. (2016). Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 134, 118.Google Scholar
Yang, B., Kang, S., Ljungqvist, F. C., Zhao, Y., He, M., & Qin, C. (2014). Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia. Climate Dynamics, 43, 845–59.Google Scholar
Zhang, D., Lee, H. F., Wang, C., Lie, B., Pei, Q., Zhang, J., & An, Y. (2011). The causality analysis of climate change and large-scale human crisis. Proceedings of the National Academy of Sciences of the United States of America, 108, 17296–301.Google Scholar
Zhang, D. D., Pei, Q. & Lee, H. F., Zhang, J., Chan, C. Q., Li, B., Li, J., & Zhang, X. (2015). The pulse of imperial China: a quantitative analysis of long-term geopolitical and climatic cycles. Global Ecology and Biogeography, 24, 187–96.Google Scholar
Zhang, D. D., Zhang, J., Lee, H. F., & He, Y. (2007). Climate change and war frequency in eastern China over the last millennium. Human Ecology, 35, 403–14.Google Scholar
Zhang, P., Cheng, H. & Edwards, E., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, J., An, C., Dai, Z., Zhou, J., Zhang, D., Jia, J., Jin, L., & Johnson, K. R. (2008). A test of climate, sun, and culture. Science, 322, 940–2.Google Scholar
Zhang, Z., Tian, H. & Cazelles, B., Kausrud, K. L., Bräuning, A., Guo, , , F., & Stenseth, C. (2010). Periodic climate cooling enhanced natural disasters and wars in China during AD 10–1900. Proceedings of the Royal Society B: Biological Sciences, 277, 3745–53.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×