Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T07:38:41.883Z Has data issue: false hasContentIssue false

14 - Modern tree colonisers from Australia into the rest of the world

from Part II - Modern invaders

Published online by Cambridge University Press:  05 February 2014

Trevor H. Booth
Affiliation:
CSIRO Ecosystem Sciences and Climate Adaptation Flagship
Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Iain J. Gordon
Affiliation:
The James Hutton Institute, Scotland
Get access

Summary

Introduction

Australian tree species, particularly eucalypts and acacias, have made a major contribution to plantation forestry around the world. This chapter briefly reviews the introduction of some of the most important plantation species from the Eucalyptus, Acacia and Casuarina genera, into countries outside Australia. It also considers the introduction of Melaleuca quinquenervia (Cav.) S.T. Blake, which is not a major plantation species, but is a serious invasive species, as a special case.

The chapter focuses particularly on identifying the characteristics that have made some Australian species relatively ineffective as invasives, while others have become noxious weeds. The chapter also considers the 11 hypotheses being examined in this book in the light of experiences with the introduction of Australian trees around the world. The process of planned species introduction is in some respects similar to that of biological invasion, and indeed in some cases the latter can follow hard upon the former, so there are some useful ecological lessons relevant to invasion biology to be learnt from the introduction of Australian trees.

Type
Chapter
Information
Invasion Biology and Ecological Theory
Insights from a Continent in Transformation
, pp. 304 - 323
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ArborGen (2010). Freeze tolerant eucalyptus. Available at (accessed 22 April 2012).
Baker, H. G. (1955). Self compatibility and establishment of long-distance dispersal. Evolution 9: 337–349.Google Scholar
Booth, T. H. (1985). A new method to assist species selection. Commonwealth Forestry Review 64: 241–250.Google Scholar
Booth, T. H., ed. (1996). Matching trees and sites. ACIAR Proceedings No. 63. Australian Centre for International Agricultural Research, Canberra.
Booth, T. H., Nix, H. A., Hutchinson, M. F. and Jovanovic, T. (1988). Niche analysis and tree species introduction. Forest Ecology and Management 23: 47–59.CrossRefGoogle Scholar
CAB International (2005). Forestry Compendium CDROM. Wallingford, UK: CABI.
California Invasive Plant Council (2006). California Invasive Plant Inventory. Cal-IPC Publication 2006–2. Berkeley, CA: California Invasive Plant Council.
Castro-Diez, P., Godoy, O., Saldan, A. and Richardson, D. M. (2011). Predicting invasiveness of Australian acacias on the basis of their native climatic affinities, life-history traits and human use. Diversity and Distributions 17: 934–945.CrossRefGoogle Scholar
Cremer, K. W. (1977). Distance of seed dispersal in eucalypts estimated from seed weights. Australian Forest Research 7: 225–8.Google Scholar
Crous, C. J., Jacobs, S. M. and Esler, K. J. (2012). Drought-tolerance of an invasive alien tree, Acacia mearnsii and two native competitors in fynbos riparian ecotones. Biological Invasions 14: 619–631.CrossRefGoogle Scholar
da Silva, P. H. M., Poggiani, F., Sebbenn, A. M. et al. (2011). Can Eucalyptus invade native forest fragments close to commercial stands?Forest Ecology and Management 261: 2075–2080.CrossRefGoogle Scholar
de Wit, M. P., Crookes, D. J. and van Wilgen, B. W. (2001). Conflicts of interest in environmental management: estimating the costs and benefits of a tree invasion. Biological Invasions 3: 167–178.CrossRefGoogle Scholar
Doran, J. C. and Turnbull, J. W., eds. (1997). Australian Trees and Shrubs: Species for land rehabilitation and farm planting in the tropics. ACIAR Monograph No. 24. ACIAR, Canberra.
Dray, F. A., Bennett, B. C. and Center, T. D. (2006). Invasion history of Melaleuca quinquenervia (Cav.) S.T. Blake in Florida. Castanea 71: 210–225.CrossRefGoogle Scholar
Dye, P. and Jarmain, C., (2004). Water use by black wattle (Acacia mearnsii) and implications for the link between removal of invading trees and catchment streamflow response. South African Journal of Science 100: 40–44.Google Scholar
Florence, R. G. (2004). Ecology and Silviculture of Eucalypt Forests. Melbourne, Australia: CSIRO.Google Scholar
Forrester, D. I., Schortemeyer, M., Stock, W. D. et al. (2007). Assessing nitrogen fixation in mixed- and single- species plantations of Eucalyptus globulus and Acacia mearnsii. Tree Physiology 27: 1319–1328.CrossRefGoogle ScholarPubMed
Fuller, D. O. (2005). Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida with multispectral IKONOS imagery. International Journal of Remote Sensing 26: 1057–1063.CrossRefGoogle Scholar
Geary, T. F. and Woodall, S. L. (1990). Melaleuca. In Burns, R. M. and Honkala, B. H. (eds) Silvics of North America: Vol. 2 Hardwoods. Agricultural Handbook 654. Washington DC: US Department of Agric. (USDA), Forest Service.Google Scholar
Gill, A. M. (1981). Adaptive responses of Australian vascular plant species to fire. In Gill, A. M., Groves, R. H. and Noble, I. R. (eds) Fire and the Australian Biota. Canberra, Australia: Australian Academy of Science, pp. 243–272.Google Scholar
GIT Consulting (2010). Eucalyptus Universalis: Cultivated Eucalypt Forests Global Map.Available at: (accessed 22 April 2012).
Glen, M., Alfenas, A. C., Zauza, E. A. V., Wingfield, M. J. and Mohammed, C., (2007). Puccinia psidii: a threat to the Australian environment and economy: a review. Australasian Plant Pathology 36: 1–16.CrossRefGoogle Scholar
Griffin, A. R. (1980). Floral phenology of a stand of mountain ash (Eucalyptus regnans F. Muell.) in Gippsland, Victoria. Australian Journal of Botany 28: 393–404.CrossRefGoogle Scholar
Griffin, A. R., Midgley, S. J., Bush, D., Cunningham, P. J. and Rinaudo, T. (2011). Global uses of Australian acacias: trends and future prospects. Diversity and Distributions 17: 837–847.CrossRefGoogle Scholar
Grose, R. J. (1960). Effective seed supply for the natural regeneration of Eucalyptus delegatensis R.T. Baker, syn. Eucalyptus gigantean Hook. F. Journal of the Australian Pulp and Paper Industry Association 13: 131–47.Google Scholar
Hardner, C. M. and Potts, B. M. (1995). Inbreeding depression and changes in variation after selfing in Eucalyptus globulus ssp. globulus. Silvae Genetica 44: 46–54.Google Scholar
Harwood, C. (2011). Introductions: doing it right. In Walker, J. (ed.) Developing a Eucalypt Resource: Learning from Australia and Elsewhere. Canterbury, New Zealand: Wood Technology Research Centre, University of Canterbury, pp. 43–54.Google Scholar
Haysom, K. A. and Murphy, S. T. (2003). The status of invasiveness of forest tree species outside their natural habitat: a global review and discussion paper. Forest Health and Biosecurity Working Paper FBS/3E. Rome: FAO.
Hofstetter, R. L. (1991). The current status of Melaleuca quinquenervia in southern Florida. In Center, T. D., Doren, R. F., Hofstetter, R. L., Myers, R. L. and Whiteaker, L. D. (eds) Proceedings of the Symposium on Exotic Pest Plants National Park Service, Denver, pp. 159–176.Google Scholar
Hong, Y. (2001) Frost prediction for Australian tree species in China. PhD thesis. Australian National University, Canberra.
House, S. M. (1997). Reproductive biology of eucalypts. In Williams, J. and Woinarski, J. (eds) Eucalypt Ecology. Cambridge: Cambridge University Press, pp. 30–55.Google Scholar
Hui, C., Richardson, D. M., Robertson, M. P., Wilson, J. R. U. and Yates, C. J. (2011). Macroecology meets invasion ecology: linking the native distributions of Australia acacias to invasiveness. Diversity and Distributions 17: 872–883.CrossRefGoogle Scholar
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbour Symposium. Quantitative Biology 22: 415–427.CrossRefGoogle Scholar
Hutchinson, G. E. (1965). The niche: an abstractly inhabited hypervolume. In The Ecological Theatre and the Evolutionary Play. New Haven CT: Yale University Press, pp. 26–78.Google Scholar
Impson, F. A. C, Kleinjan, C. A., Hoffman, J. H. and Post, J. A. (2008). Dasineura rubiformis (Diptera: Cecidomyiidae), a new biological control agent for Acacia mearnsii in South Africa. South African Journal of Science 104: 247–249.Google Scholar
ISSG (2010). Global Invasive Species Database. Invasive Species Specialist Group of the International Union for the Conservation of Nature (IUCN) Species Survival Commission. Available at (accessed 2 April 2012).
Jacobs, M. R. (1981). Eucalypts for Planting, 2nd edn. Rome: FAO.Google Scholar
Keane, P. J., Kile, G. A., Podger, F. D. and Brown, B. N., eds. (2000). Diseases and Pathogens of Eucalypts. Melbourne, Australia: CSIRO.
Le Maitre, D. C, Gaertner, M., Marchante, E. et al. (2011). Impacts of invasive Australian acacias: implications for management and restoration. Diversity and Distributions 17: 1015–1029.CrossRefGoogle Scholar
Lowe, S., Browne, M., Budjelas, S. and De Poorter, M. (2000). 100 of the World’s Worst Invasive Alien Species. Auckland, New Zealand: Invasive Species Specialist Group. School of Geography, University of Auckland.Google Scholar
MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M. et al. (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.CrossRefGoogle Scholar
Maslin, B. R. (2001). Introduction to Acacia. In Orchard, A. E. and Wilson, A. J. G. (eds) Flora of Australia, volume 11A, Mimosaceae, Acacia Part 1. Canberra and Melbourne, Australia: Australian Biological Resources Study and CSIRO, pp. 3–13.Google Scholar
Maslin, B. R. and McDonald, M. W. (2004). AcaciaSearch. Report to the Joint Venture Agroforestry Program, Canberra. Publication No. 03/017.
Midgley, S. J. and Turnbull, J. W. (2003) Domestication and use of Australian acacias: an overview. Australian Systematic Botany 16: 89–102.CrossRefGoogle Scholar
Milton, S. J., Dean, R. J. and Richardson, D. M. (2003) Economic incentives for restoring natural capital in southern African rangelands. Frontiers in Ecology and the Environment 1: 247–254.CrossRefGoogle Scholar
Moore, B. A. (2005) Alien invasive species: impacts on forests and forestry. Forest Resources Development Service Working Paper FBS/8E. Rome: FAO.
Mulvaney, M. J. (1991) Far from the garden path: an identikit picture of woody ornamental plants invading south-eastern Australian bushland. PhD thesis. Department Biogeography and Geomorphology, Research School of Pacific Studies. Australian National University.
Munger, G. T. (2005) Melaleuca quinquenervia. In Fire Effects Information System, [Online]. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Available at: (accessed 22 April 2012).
Myers, R. L. (1983). Site susceptibility to invasion by the exotic tree Melaleuca quinquenervia in southern Florida. Journal of Applied Ecology 20: 645–658.CrossRefGoogle Scholar
National Research Council (1984). Casuarinas: Nitrogen-Fixing Trees for Adverse Sites. Washington DC: National Academy Press.Google Scholar
O’Hare, N. K. and Dalrymple, G. H. (1997). Wildlife in southern Everglades wetlands invaded by Melaleuca (Melaleuca quinquenervia). Bulletin of the Florida Museum of Natural History 41: 1–68.Google Scholar
Padovan, A., Keszei, A., Köllner, T. G., Degenhardt, J. and Foley, F. J. (2010). The molecular basis of host plant selection in Melaleuca quinquenervia by a successful biological control agent. Phytochemistry 71: 1237–1244.CrossRefGoogle ScholarPubMed
Pinyopusarerk, K., Williams, E. R., Wasuwasnich, P. and Luangviriyasaeng, V. (1995). International Provenance Trials ofCasuarina equisetifolia. Canberra, Australia: CSIRO Division of Forestry.Google Scholar
Pratt, P. D., Rayamajhi, M. B., Van, T. K., Center, T. D. and Tipping, P. W. (2005). Herbivory alters resource allocation and compensation in the invasive tree Melaleuca quinquenervia. Economic Entomology 30: 316–326.CrossRefGoogle Scholar
Rambuda, T. D. and Johnson, S. D. (2004). Breeding systems of invasive alien plants in South Africa: does Baker’s rule apply?Diversity and Distributions 10: 409–416.CrossRefGoogle Scholar
Randall, R. P. (2002). A Global Compendium of Weeds. Ecosystems at Risk (HEAR) project, Hawaii. Available at (accessed 22 April 2012).
Rayamajhi, M. B., Van, T. K., Center, T. D. et al. (2002). Biological attributes of the canopy-held Melaleuca seeds in Australia and Florida, US. Journal of Aquatic Plant Management 40: 87–91.Google Scholar
Reichard, S. H. and Hamilton, C. W. (1997). Predicting invasions of woody plants introduced into North America. Conservation Biology 11: 193–203.CrossRefGoogle Scholar
Rejmánek, M. (2000). Invasive plants: approaches and predictions. Austral Ecology 25: 497–506.CrossRefGoogle Scholar
Rejmánek, M and Richardson, D. M. (1996). What attributes make some plant species more invasive?Ecology 77: 1655–1661.CrossRefGoogle Scholar
Rejmánek, M and Richardson, D. M. (2011). Eucalypts. In Simberloff, D. and Rejmánek, M. (eds), Encyclopedia of Biological Invasions. Berkeley, CA: University of California Press, pp. 203–209.Google Scholar
Rejmánek, M, Richardson, D. M., Higgins, S. I. et al. (2005). Ecology of invasive plants: state of the art. In Mooney, H. A., Mack, R. N., McNeely, J. A. et al. (eds), Invasive Alien Species. Washington DC: Island Press. pp. 104–161.Google Scholar
Richardson, D. M. (1998). Forestry trees as invasive aliens. Conservation Biology 12: 18–26.CrossRefGoogle Scholar
Richardson, D. M. and Rejmánek, M. (2011). Trees and shrubs as invasive alien species: a global review. Diversity and Distributions 17: 788–809.CrossRefGoogle Scholar
Richardson, D. M., Carruthers, J., Cang, H. et al. (2011). Human-mediated introductions of Australian acacias: a global experiment in biogeography. Diversity and Distributions 17: 771–787.CrossRefGoogle Scholar
Rodriguez-Echeverria, S., LeRoux, J. J., Crisóstom, J. A. and Ndlovu, J. (2011). Jack-of-all-trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian acacia species?Diversity and Distributions 17: 946–957.CrossRefGoogle Scholar
Serbesoff-King, K. (2003). Melaleuca in Florida: a literature review on the taxonomy, distribution, biology, ecology, economic importance and control measures. Journal of Aquatic Plant Management 41: 98–112.Google Scholar
Stohlgren, T. J., Barnett, D. T., Jarnevich, C. S., Flather, C. and Katesz, J. (2008). The myth of plant saturation. Ecology Letters 11: 313–326.CrossRefGoogle ScholarPubMed
Turner, C. E., Center, T. D., Burrows, D. W. and Buckingham, G. R. (1998). Ecology and management of Melalecuca quinquenervia, an invader of wetlands in Florida, USA. Wetlands Ecology and Management 5: 165–178.CrossRefGoogle Scholar
Underwood, E. C., Ustin, S. L. and Ramirez, C. M. (2007). A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California. Environmental Management 39: 63–83.CrossRefGoogle ScholarPubMed
Varmola, M. and Del Lungo, A. eds, (2002). Tropical Forest Plantation Areas. Forestry Plantations Working Papers, FP/18. Rome: FAO.
Watt, M. S., Kriticos, D. J. and Manning, L. K. (2009). The current and future potential distribution of Melaleuca quinquenervia. Weed Research 49: 381–390.CrossRefGoogle Scholar
Wellington, A. B. and Noble, I. R. (1985). Seed dynamics and factors affecting recruitment of the mallee Eucalyptus incrassata in semi-arid, south-eastern Australia. Journal of Ecology 73: 657–666.CrossRefGoogle Scholar
White, M. E. (1986). The Greening of Gondwana. Frenchs Forest, Australia: Reed Books.Google Scholar
Zacharin, R. F. (1978). Emigrant Eucalypts. Melbourne, Australia: Melbourne University Press.Google Scholar
Zedler, J. B. and Kercher, S. (2004). Causes and consequences of invasive plants in wetlands: opportunities, opportunists and outcomes. Critical Reviews in Plant Sciences 23: 431–52.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×