Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T07:13:26.404Z Has data issue: false hasContentIssue false

2 - Particles and waves

Published online by Cambridge University Press:  05 June 2012

Vladimir V. Mitin
Affiliation:
State University of New York, Buffalo
Viatcheslav A. Kochelap
Affiliation:
National Academy of Sciences, Ukraine
Michael A. Stroscio
Affiliation:
University of Illinois, Chicago
Get access

Summary

Introduction

The evolution of microelectronics toward reduced device sizes has proceeded to a degree that renders conventional models, approaches, and theories inapplicable. Indeed, for objects with sizes of 100 nanometers or less it is frequently the case that the length scales associated with fundamental physical processes are comparable to the geometrical size of the device; also, fundamental time scales associated with physical processes are of the order of the time parameters for nanodevice operation. Therefore, on the nanoscale the theories and models underlying modern nanoelectronics become more complicated, and rely more and more on basic science.

Generally, in the nanoworld the fundamental laws of physics that govern particles and material fields differ from those that apply to familiar macroscopic phenomena such as the motion of a baseball or a train. Instead of classical mechanics, that works so well for macroscopic phenomena, the motion of particles in the nanoworld is determined by the so-called wave mechanics or quantum mechanics. An underlying principle of central importance for nanophysics is the fundamental concept that all matter, including electrons, nuclei, and electromagnetic fields, behaves as both waves and particles, that is, wave–particle duality is a basic characteristic of all matter.

At first glance, wave properties and particle properties for the same physical object are hardly compatible. To understand wave–particle duality, we will briefly review, in the following two subsections, the basic properties of particles and waves known from classical physics.

Type
Chapter
Information
Introduction to Nanoelectronics
Science, Nanotechnology, Engineering, and Applications
, pp. 11 - 32
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×