Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T01:23:17.548Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 January 2020

Luis E. F. Foa Torres
Affiliation:
Universidad de Chile
Stephan Roche
Affiliation:
ICREA and ICN2
Jean-Christophe Charlier
Affiliation:
Université Catholique de Louvain, Belgium
Get access
Type
Chapter
Information
Introduction to Graphene-Based Nanomaterials
From Electronic Structure to Quantum Transport
, pp. 413 - 456
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abanin, D. A., Lee, P. A., & Levitov, L. S. (2006), “Spin-filtered edge states and quantum Hall effect in graphene,” Phys. Rev. Lett. 96, 176803.Google Scholar
Abanin, D. A., Novoselov, K. S., Zeitler, U., et al. (2007), “Dissipative quantum Hall effect in graphene near the dirac point,” Phys. Rev. Lett. 98(19), 196806.Google Scholar
Abergel, D. S. L. & Chakraborty, T. (2009), “Generation of valley polarized current in bilayer graphene,” Appl. Phys. Lett. 95(6), 062107.Google Scholar
Abrahams, E., Anderson, P. W., Licciardello, D. C., & Ramakrishnan, T. V. (1979), “Scaling theory of localization: Absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673676.CrossRefGoogle Scholar
Abrikosov, A., Gorkov, L., & Dzyaloshinskii, E. (1975), Methods of Quantum Field Theory in Statistical Physics, Dover, New York.Google Scholar
Adam, S., Hwang, E. H., Galitski, V. M., & Sarma, S. D. (2007), “A self-consistent theory for graphene transport,” PNAS 104, 18392.Google Scholar
Adam, S., Jung, S., Klimov, N. N., et al. (2011), “Mechanism for puddle formation in graphene,” Phys. Rev. B 84, 235421.Google Scholar
Adessi, C., Roche, S., & Blase, X. (2006), “Reduced backscattering in potassium-doped nanotubes: Ab initio and semiempirical simulations,” Phys. Rev. B 73(12), 125414.CrossRefGoogle Scholar
Aharonov, Y. & Bohm, D. (1959), “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev. 115(3), 485491.Google Scholar
Ahn, S. J., Moon, P., Kim, T.-H., et al. (2018), “Dirac electrons in a dodecagonal graphene quasicrystal,” Science 361(6404), 782786.Google Scholar
Ajiki, H. & Ando, T. (1993), “Electronic states of carbon nanotubes,” J. Phys. Soc. Jpn. 62(4), 12551266.Google Scholar
Ajiki, H. & Ando, T. (1996), “Energy bands of carbon nanotubes in magnetic fields,” J. Phys. Soc. Jpn. 65(2), 505514.CrossRefGoogle Scholar
Akhmerov, A. (2011), Dirac and Majorana edge states in graphene and topological superconductors, PhD thesis, Leiden University.Google Scholar
Akhmerov, A. R. & Beenakker, C. W. J. (2008), “Boundary conditions for dirac fermions on a terminated honeycomb lattice,” Phys. Rev. B 77, 085423.CrossRefGoogle Scholar
Akkermans, E. & Montambaux, G. (2007), Mesoscopic Physics of Electrons and Photons, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Aleiner, I. L. & Efetov, K. B. (2006), “Effect of disorder on transport in graphene,” Phys. Rev. Lett. 97, 236801.Google Scholar
Alexandrov, A. S. & Capellmann, H. (1991), “Orbital diamagnetism of two-dimensional electrons,” PRL 66(3), 365368.Google Scholar
Alhassid, Y. (2000), “The statistical theory of quantum dots,” Rev. Mod. Phys. 72, 895968.Google Scholar
Allain, P. & Fuchs, J. (2011), “Klein tunneling in graphene: Optics with massless electrons,83(3), 301317.Google Scholar
Allen, M. T., Martin, J., & Yacoby, A. (2012), “Gate-defined quantum confinement in suspended bilayer graphene,” Nat. Commun. 3, 934936.Google Scholar
Alos-Palop, M. & Blaauboer, M. (2011), “Adiabatic quantum pumping in normal-metal-insulator-superconductor junctions in a monolayer of graphene,” Phys. Rev. B 84(7), 073402.CrossRefGoogle Scholar
Altland, A. (2006), “Low-energy theory of disordered graphene,” Phys. Rev. Lett. 97, 236802.Google Scholar
Altshuler, B., Aronov, A., Efros, A. L., & Pollak., M., eds (1985), Electron–Electron Interaction in Disordered Conductors, Elsevier, Amsterdam, pp. 1153.Google Scholar
Altshuler, B. L., Aronov, A. G., & Spivak, B. Z. (1981), “The Aharonov-Bohm effect in disordered conductors,” JETP Lett. 33, 94.Google Scholar
Altshuler, B. L. & Glazman, L. I. (1999), “Pumping electrons,” Science 283(5409), 18641865.Google Scholar
Amara, H., Latil, S., Meunier, V., Lambin, P., & Charlier, J.-C. (2007), “Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction,” Phys. Rev. B 76(11), 115423.Google Scholar
Amorim, R. G., Fazzio, A., Antonelli, A., Novaes, F. D., & da Silva, A. J. R. (2007), “Divacancies in graphene and carbon nanotubes,” Nano Lett. 7(8), 24592462.Google Scholar
An, J., Voelkl, E., Suk, J. W., et al. (2011), “Domain (grain) boundaries and evidence of ‘twinlike’ structures in chemically vapor deposited grown graphene,” ACS Nano 5, 2433.Google Scholar
Anantram, M. P. (2000), “Current-carrying capacity of carbon nanotubes,” Phys. Rev. B 62, R4837R4840.CrossRefGoogle Scholar
Anantram, M. P. & Léonard, F. (2006), “Physics of carbon nanotube electronic devices,” Rep. Progr. Phys. 69(3), 507.CrossRefGoogle Scholar
Anasori, B., Xie, Y., Beidaghi, M., et al. (2015), “Two-dimensional, ordered, double transition metals carbides (MXenes),” ACS Nano 9(10), 95079516.Google Scholar
Anda, E. V., Makler, S., Pastawski, H. M., & Barrera, R. G. (1994), “Electron-phonon effects on transport in mesoscopic heterostructures,” Braz. J. Phys. 24, 330.Google Scholar
Anderson, P. W. (1958), “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 14921505.Google Scholar
Anderson, P. W., Thouless, D. J., Abrahams, E., & Fisher, D. S. (1980), “New method for a scaling theory of localization,” Phys. Rev. B 22(8), 35193526.Google Scholar
Ando, T. (1991), “Quantum point contacts in magnetic fields,” Phys. Rev. B 44, 8017.CrossRefGoogle ScholarPubMed
Ando, T., Nakanishi, T., & Saito, R. (1998), “Berry’s phase and absence of back scattering in carbon nanotubes,” J. Phys. Soc. Jpn. 67(8), 28572862.CrossRefGoogle Scholar
Andrei, E. Y., Li, G., & Du, X. (2012), “Electronic properties of graphene: A perspective from scanning tunneling microscopy and magnetotransport,” Rep. Progr. Phy. 75(5), 056501.Google Scholar
Appenzeller, J., Radosavljević, M., Knoch, J., & Avouris, P. (2004), “Tunneling versus thermionic emission in one-dimensional semiconductors,” Phys. Rev. Lett. 92, 048301.Google Scholar
Areshkin, D. A., Gunlycke, D., & White, C. T. (2007), “Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects,” Nano Lett. 7(1), 204210.Google Scholar
Areshkin, D. A. & White, C. T. (2007), “Building blocks for integrated graphene circuits,” Nano Lett. 7(11), 32533259.Google Scholar
Arrachea, L. & Moskalets, M. (2006), “Relation between scattering-matrix and Keldysh formalisms for quantum transport driven by time-periodic fields,” Phys. Rev. B 74(24), 245322.Google Scholar
Ashcroft, N. W. & Mermin, N. D. (1976a), Solid State Physics, Holt, Rinehart and Winston, New York.Google Scholar
Ashcroft, N. W. & Mermin, N. D. (1976b), Solid State Physics, Holt Saunders, Philadelphia.Google Scholar
Ast, C. R. & Gierz, I. (2012), “sp-Band tight-binding model for the Bychkov-Rashba effect in a two-dimensional electron system including nearest-neighbor contributions from an electric field,” Phys. Rev. B 86, 085105.Google Scholar
Avouris, P., Heinz, T., & Low, T., eds (2017), 2D Materials: Properties and Devices, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Avriller, R. (2008), Contribution à la modélisation théorique et à l’étude du transport quantique dans les dispositifs à base de nanotubes de carbone, PhD thesis, Université Joseph-Fourier.Google Scholar
Avriller, R., Latil, S., Triozon, F., Blase, X., & Roche, S. (2006), “Chemical disorder strength in carbon nanotubes: Magnetic tuning of quantum transport regimes,” Phys. Rev. B 74(12), 121406.Google Scholar
Avriller, R., Roche, S., Triozon, F., Blase, X., & Latil, S. (2007), “Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regimes,” Mod. Phys. Lett. B 21, 1955.Google Scholar
Avsar, A., Lee, J. H., Koon, G. K. W., & Özyilmaz, B. (2015), “Enhanced spin-orbit coupling in dilute fluorinated graphene,” 2D Mater. 2(4), 044009.Google Scholar
Avsar, A., Tan, J. Y., Taychatanapat, T., et al. (2014), “Spin-orbit proximity effect in graphene,” Nat. Commun. 5, 4875.CrossRefGoogle ScholarPubMed
Avsar, A., Yang, T.-Y., Bae, S., et al. (2011), “Toward wafer scale fabrication of graphene based spin valve devices,” Nano Lett. 11(6), 23632368.Google Scholar
Babic, B. & Schönenberger, C. (2004), “Observation of Fano resonances in single-wall carbon nanotubes,” Phys. Rev. B 70, 195408.Google Scholar
Bachelet, G. B., Hamann, D. R., & Schlüter, M. (1982), “Pseudopotentials that work: From H to Pu,” Phys. Rev. B 26, 41994228.Google Scholar
Bachilo, S. M., Strano, M. S., Kittrell, C., et al. (2002), “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298(5602), 23612366.CrossRefGoogle ScholarPubMed
Bachtold, A., Strunk, C., Salvetat, J.-P., et al. (1999), “Aharonov-Bohm oscillations in carbon nanotubes,” Nature 397(6721), 673675.Google Scholar
Bae, S., Kim, H., Lee, Y., et al. (2010), “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574578.Google Scholar
Baibich, M. N., Broto, J. M., Fert, A., et al. (1988), “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, 24722475.Google Scholar
Bajpai, U., Popescu, B. S., Plechác, P., et al. (2019), “Spatio-temporal dynamics of shift current quantum pumping by femtosecond light pulse,” J. Phys.: Mater. 2(2), 025004.Google Scholar
Balakrishnan, J., Gavin, K. W., Jaiswal, M., Neto, A. H. C., & Özyilmaz, B. (2013), “Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene,” Nat. Phys. 9, 284287.Google Scholar
Balakrishnan, J., Koon, G. K. W., Avsar, A., et al. (2014), “Giant spin Hall effect in graphene grown by chemical vapour deposition,” Nat. Commun. 5, 4748.Google Scholar
Balasubramanian, K., Lee, E. J. H., Weitz, R. T., Burghard, M., & Kern, K. (2008), “Carbon nanotube transistors: Chemical functionalization and device characterization,” Phys. Status Solidi (a) 205(3), 633646.CrossRefGoogle Scholar
Baldoni, M., Sgamellotti, A., & Mercuri, F. (2008), “Electronic properties and stability of graphene nanoribbons: An interpretation based on Clar sextet theory,” Chem. Phys. Lett. 464(4–6), 202207.Google Scholar
Banhart, F., Kotakoski, J., & Krasheninnikov, A. V. (2011), “Structural defects in graphene,” ACS Nano 5(1), 2641.Google Scholar
Banszerus, L., Schmitz, M., Engels, S., et al. (2015), “Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper,” Sci. Adv. 1(6), e1500222.Google Scholar
Baranger, H. U. & Stone, A. D. (1989), “Electrical linear-response theory in an arbitrary magnetic field: A new Fermi-surface formation,” Phys. Rev. B 40(12), 81698193.CrossRefGoogle Scholar
Bardarson, J. H., Tworzydło, J., Brouwer, P. W., & Beenakker, C. W. J. (2007), “One-parameter scaling at the dirac point in graphene,” Phys. Rev. Lett. 99, 106801.Google Scholar
Barone, V., Hod, O., & Scuseria, G. E. (2006), “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6(12), 27482754.Google Scholar
Barsoum, M. W. (2000), “The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates,” Prog. Solid State Chem. 28(1), 201281.Google Scholar
Beenakker, C. W. J. (1991), “Theory of Coulomb-blockade oscillations in the conductance of a quantum dot,” Phys. Rev. B 44, 16461656.Google Scholar
Beenakker, C. W. J. (1997), “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731808.Google Scholar
Beenakker, C. W. J. (2008), “Colloquium: Andreev reflection and Klein tunneling in graphene,” Rev. Mod. Phys. 80(4), 13371354.CrossRefGoogle Scholar
Begliarbekov, M., Sasaki, K.-I., Sul, O., Yang, E.-H., & Strauf, S. (2011), “Optical control of edge chirality in graphene,” Nano Lett. 11(11), 48744878.Google Scholar
Benitez, L., Sierra, J., Savero Torres, W., et al. (2018), “Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature,” Nat. Phys. 14(3), 303308.Google Scholar
Benítez, L. A., Sierra, J. F., Torres, W. S., et al. (2018), “Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature,” Nat. Phys. 14(3), 303.Google Scholar
Benítez, L. A., Torres, W. S., Sierra, J. F., et al. (2019), arXiv 1908.07868.Google Scholar
Berdakin, M., Vargas, J. E. B., & Torres, L. E. F. (2018), “Directional control of charge and valley currents in a graphene-based device,” Phys. Chem. Chem. Phys. 20(45), 2872028725.Google Scholar
Berger, C., Song, Z., Li, X., et al. (2006), “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312(5777), 11911196.Google Scholar
Bergman, G. (1984), “Weak localization in thin films: A time-of-flight experiment with conduction electrons,” Phys. Rep. 107(1), 158.CrossRefGoogle Scholar
Bernal, J. D. (1924), “The structure of graphite,” Proc. R. Soc.of Lond. Ser. A 106(740), 749773.Google Scholar
Berry, M. V. (1984), “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392(1802), 4557.Google Scholar
Berry, M. V. & Mondragon, R. J. (1987), “Neutrino billiards: Time-reversal symmetry-breaking without magnetic fields,” Proc. R. Soc. Lond. A Math. Phys. Sci. 412(1842), 5374.Google Scholar
Bethune, D. S., Klang, C. H., de Vries, M. S., et al. (1993), “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature 363(6430), 605607.Google Scholar
Biel, B., Triozon, F., Blase, X., & Roche, S. (2009), “Chemically induced mobility gaps in graphene nanoribbons: A route for upscaling device performances,” Nano Lett. 9(7), 27252729.CrossRefGoogle ScholarPubMed
Biel, B., Triozon, F., Niquet, Y., & Roche, S. (2009), “Anomalous doping effects on charge transport in graphene nanoribbons,” Phys. Rev. Lett. 102, 096803.Google Scholar
Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1988), “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, 4828.Google Scholar
Biró, L. P., Márk, G. I., Koós, A. A., Nagy, J., & Lambin, P. (2002), “Coiled carbon nanotube structures with supraunitary nonhexagonal to hexagonal ring ratio,” Phys. Rev. B 66, 165405.Google Scholar
Blanter, Y. & Büttiker, M. (2000), “Shot noise in mesoscopic conductors,” Phys. Rep. 336(1–2), 1166.Google Scholar
Blase, X., Benedict, L. X., Shirley, E. L., & Louie, S. G. (1994), “Hybridization effects and metallicity in small radius carbon nanotubes,” Phys. Rev. Lett. 72, 18781881.Google Scholar
Blase, X., Rubio, A., Louie, S. G., & Cohen, M. L. (1995), “Quasiparticle band structure of bulk hexagonal boron nitride and related systems,” Phys. Rev. B 51(11), 68686875.Google Scholar
Blöchl, P. E. (1994), “Projector augmented-wave method,” Phys. Rev. B 50, 1795317979.Google Scholar
Bockrath, M., Cobden, D. H., Lu, J., et al. (1999), “Luttinger-liquid behaviour in carbon nanotubes,” Nature 397(6720), 598601.Google Scholar
Boehm, H. P., Clauss, A., Fischer, G. O., & Hofmann, U. (1962), “Das adsorptionsverhalten sehr dünner kohlenstoff-folien,” Z. Anorg. Allg. Chem. 316(3-4), 119127.Google Scholar
Boettger, J. C. & Trickey, S. B. (2007), “Erratum: First-principles calculation of the spin-orbit splitting in graphene,” Phys. Rev. B 75, 121402(R).Google Scholar
Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L., & Kim, P. (2008), “Temperature-dependent transport in suspended graphene,” Phys. Rev. Lett. 101(9), 096802.CrossRefGoogle ScholarPubMed
Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010), “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611622.Google Scholar
Bonča, J. & Trugman, S. A. (1995), “Effect of inelastic processes on tunneling,” Phys. Rev. Lett. 75(13), 25662569.Google Scholar
Born, M. & Oppenheimer, M. (1927), “Zur quantentheorie der molekeln,” Ann. Phys. 84, 457.Google Scholar
Bose, S. K., Winer, K., & Andersen, O. K. (1988), “Electronic properties of a realistic model of amorphous silicon,” Phys. Rev. B 37, 6262.CrossRefGoogle ScholarPubMed
Bostwick, A., McChesney, J. L., Emtsev, K. V., et al. (2009), “Quasiparticle transformation during a metal-insulator transition in graphene,” Phys. Rev. Lett. 103(5), 056404.Google Scholar
Botello-Méndez, A. R., Cruz-Silva, E., Romo-Herrera, J., et al. (2011), “Quantum transport in graphene nanonetworks,” Nano Lett. 11(8), 30583064.Google Scholar
Botello-Mendez, A. R., Declerck, X., Terrones, M., Terrones, H., & Charlier, J.-C. (2011), “One-dimensional extended lines of divacancy defects in graphene,” Nanoscale 3(7), 28682872.Google Scholar
Bourrellier, R., Meuret, S., Tararan, A., et al. (2016), “Bright UV single photon emission at point defects in h-BN,” Nano Lett. 16(7), 43174321.Google Scholar
Boykin, T. B., Bowen, R. C., & Klimeck, G. (2001), “Electromagnetic coupling and gauge invariance in the empirical tight-binding method,” PRB 63(24), 245314.CrossRefGoogle Scholar
Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., & Stokbro, K. (2002), “Density-functional method for nonequilibrium electron transport,” Phys. Rev. B 65(16), 165401.CrossRefGoogle Scholar
Brenner, D. W. (1990), “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Phys. Rev. B 42, 94589471.Google Scholar
Brey, L. & Fertig, H. A. (2006), “Electronic states of graphene nanoribbons studied with the dirac equation,” Phys. Rev. B 73, 235411.CrossRefGoogle Scholar
Britnell, L., Gorbachev, R. V., Jalil, R., et al. (2012), “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947950.Google Scholar
Britnell, L., Ribeiro, R. M., Eckmann, A., et al. (2013), “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 13111314.Google Scholar
Brouwer, P. W. (1998), “Scattering approach to parametric pumping,” Phys. Rev. B 58, R10135R10138.Google Scholar
Bunch, J. S., Yaish, Y., Brink, M., Bolotin, K., & McEuen, P. L. (2005), “Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots,” Nano Lett. 5(2), 287290.Google Scholar
Buscema, M., Groenendijk, D. J., Blanter, S. I., et al. (2014), “Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors,” Nano Lett. 14(6), 33473352.Google Scholar
Busl, M., Platero, G., & Jauho, A.-P. (2012), “Dynamical polarizability of graphene irradiated by circularly polarized AC electric fields,” Phys. Rev. B 85(15), 155449.Google Scholar
Büttiker, M. (1988a), “Absence of backscattering in the quantum Hall effect in multiprobe conductors,” Phys. Rev. B 38, 93759389.Google Scholar
Büttiker, M. (1988b), “Symmetry of electrical conduction,” IBMJ. Res. Dev. 32(3), 317334.Google Scholar
Büttiker, M., Imry, Y., Landauer, R., & Pinhas, S. (1985), “Generalized many-channel conductance formula with application to small rings,” Phys. Rev. B 31, 62076215.Google Scholar
Büttiker, M. & Moskalets, M. (2006), “Scattering theory of dynamic electrical transport,” in Asch, J. & Joye, A., eds, Mathematical Physics of Quantum Mechanics, Vol. 690 of Lecture Notes in Physics, Springer Berlin/Heidelberg, Berlin, pp. 3344, doi:10.1007/3-540-34273-75.Google Scholar
Büttiker, M., Thomas, H., & Pretre, A. (1994), “Current partition in multiprobe conductors in the presence of slowly oscillating external potentials,” Z. Phys. B Condens. Matter 94, 133137.Google Scholar
Bychov, Y. A. & Rashba, E. I. (1984), “Properties of a 2D electron gas with lifted spectral degeneracy,” Pis’ma Eksp. Teor. Fiz. 39, 66.Google Scholar
Cabana, J. & Martel, R. (2007), “Probing the reversibility of sidewall functionalization using carbon nanotube transistors,” J. Am. Chem. Soc. 129(8), 22442245.Google Scholar
Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., & Ciraci, S. (2009), “Two- and one-dimensional honeycomb structures of silicon and germanium,” Phys. Rev. Lett. 102(23), 236804.Google Scholar
Cai, J., Ruffieux, P., Jaafar, R., et al. (2010), “Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466(7305), 470473.Google Scholar
Cai, Y., Zhang, G., & Zhang, Y.-W. (2014), “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4, 6677.Google Scholar
Calandra, M. & Mauri, F. (2007), “Electron-phonon coupling and electron self-energy in electron-doped graphene: Calculation of angular-resolved photoemission spectra,” Phys. Rev. B 76, 205411.Google Scholar
Calvo, H. L., Pastawski, H. M., Roche, S., & Foa Torres, L. E. F. (2011), “Tuning laser-induced band gaps in graphene,” Appl. Phys. Lett. 98(23), 232103.Google Scholar
Calvo, H. L., Perez-Piskunow, P. M., Pastawski, H. M., Roche, S., & Foa Torres, L. E. F. (2013), “Non-perturbative effects of laser illumination on the electrical properties of graphene nanoribbons,” J. Phys.: Condens. Matter 25(14), 144202.Google Scholar
Calvo, H. L., Perez-Piskunow, P. M., Roche, S., & Foa Torres, L. E. F. (2012), “Laser-induced effects on the electronic features of graphene nanoribbons,” Appl. Phys. Lett. 101(25), 253506.Google Scholar
Calzolari, A., Marzari, N., Souza, I., & Buongiorno Nardelli, M. (2004), “Ab initio transport properties of nanostructures from maximally localized Wannier functions,” Phys. Rev. B 69(3), 035108.Google Scholar
Campidelli, S., Ballesteros, B., Filoramo, A., et al. (2008), “Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via click chemistry,” J. Am. Chem. Soc. 130(34), 1150311509.Google Scholar
Campos-Delgado, J., Romo-Herrera, J. M., Jia, X., et al. (2008), “Bulk production of a new form of sp 2 carbon: Crystalline graphene nanoribbons,” Nano Lett. 8(9), 27732778.Google Scholar
Cançado, L. G., Pimenta, M. A., Neves, B. R. A., Dantas, M. S. S., & Jorio, A. (2004), “Influence of the atomic structure on the Raman spectra of graphite edges,” Phys. Rev. Lett. 93(24), 247401.Google Scholar
Cao, Y., Fatemi, V., Demir, A., et al. (2018), “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” Nature 556(7699), 8084.Google Scholar
Cao, Y., Fatemi, V., Fang, S., et al. (2018), “Unconventional superconductivity in magic-angle graphene superlattices,” Nature 556(7699), 4350.Google Scholar
Castellanos-Gomez, A. (2015), “Black phosphorus: Narrow gap, wide applications,” J. Physi. Chem. Lett. 6(21), 42804291.Google Scholar
Castellanos-Gomez, A. (2016), “Why all the fuss about 2D semiconductors?,” Nat. Photonics 10, 202204.Google Scholar
Castro, E. V., Novoselov, K. S., Morozov, S. V., et al. (2007), “Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99, 216802.Google Scholar
Cataldo, F., ed. (2005), Polyynes: Synthesis, Properties, and Applications, Taylor & Francis, London.Google Scholar
Cayssol, J., Dlóra, B., Simon, F., & Moessner, R. (2013), “Floquet topological insulators,” Physica Status Solidi (RRL) - Rapid Res. Lett. 7, 101.Google Scholar
Cazalilla, M. A., Iucci, A., Guinea, F., & Neto, A. H. C. (2012), “Local moment formation and kondo effect in defective graphene,” (unpublished) arXiv:1207.3135 [cond-mat.str-el].Google Scholar
Ceperley, D. M. & Alder, B. J. (1980), “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566569.Google Scholar
Chakravarty, S. & Schmid, A. (1986), “Weak localization: The quasiclassical theory of electrons in a random potential,” Phys. Rep. 140(4), 193236.Google Scholar
Champagne, A., Shi, L., Ouisse, T., Hackens, B., & Charlier, J.-C. (2018), “Electronic and vibrational properties of V2 C-based MXenes: From experiments to first-principles modeling,” Phys. Rev. B 97(11), 115439.Google Scholar
Chang, A. M., Baranger, H. U., Pfeiffer, L. N., West, K. W., & Chang, T. Y. (1996), “Non-Gaussian distribution of Coulomb blockade peak heights in quantum dots,” Phys. Rev. Lett. 76, 1695.Google Scholar
Chappert, C., Fert, A., & Nguyen Van Dau, F. (2007), “The emergence of spin electronics in data storage,” Nat. Mater. 6, 813823.Google Scholar
Charlier, J.-C., Arnaud, L., Avilov, I. V., et al. (2009), “Carbon nanotubes randomly decorated with gold clusters: From nano 2 hybrid atomic structures to gas sensing prototypes,” Nanotechnology 20(37), 375501.Google Scholar
Charlier, J.-C., Blase, X., & Roche, S. (2007), “Electronic and transport properties of nanotubes,” Rev. Mod. Phys. 79, 677732.Google Scholar
Charlier, J.-C., Ebbesen, T. W., & Lambin, P. (1996), “Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes,” Phys. Rev. B 53, 1110811113.Google Scholar
Charlier, J.-C., Gonze, X., & Michenaud, J.-P. (1994a), “First-principles study of the stacking effect on the electronic properties of graphite(s),” Carbon 32(2), 289299.Google Scholar
Charlier, J.-C., Gonze, X., & Michenaud, J.-P. (1994b), “Graphite interplanar bonding: Electronic delocalization and van der Waals interaction,” EPL (Europhysics Letters) 28(6), 403.Google Scholar
Charlier, J.-C., Gonze, X., & Michenaud, J.-P. (1995), “First-principles study of carbon nanotube solid-state packings,” EPL (Europhysics Letters) 29(1), 43.Google Scholar
Charlier, J.-C. & Lambin, P. (1998), “Electronic structure of carbon nanotubes with chiral symmetry,” Phys. Rev. B 57, R15037R15039.Google Scholar
Charlier, J.-C., Michenaud, J.-P., & Gonze, X. (1992), “First-principles study of the electronic properties of simple hexagonal graphite,” Phys. Rev. B 46, 45314539.Google Scholar
Charlier, J.-C., Michenaud, J.-P., Gonze, X., & Vigneron, J.-P. (1991), “Tight-binding model for the electronic properties of simple hexagonal graphite,” Phys. Rev. B 44, 1323713249.Google Scholar
Checkelsky, J. G., Li, L., & Ong, N. P. (2008), “Zero-energy state in graphene in a high magnetic field,” Phys. Rev. Lett. 100(20), 206801.Google Scholar
Cheianov, V. V. & Fal’ko, V. I. (2006), “Selective transmission of dirac electrons and ballistic magnetoresistance of n-p junctions in graphene,” Phys. Rev. B 74(4), 041403(R).Google Scholar
Chen, J., Badioli, M., Alonso-Gonzalez, P., et al. (2012), “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 7781.Google Scholar
Chen, J.-H., Cullen, W. G., Jang, C., Fuhrer, M. S., & Williams, E. D. (2009), “Defect scattering in graphene,” Phys. Rev. Lett. 102, 236805.Google Scholar
Chen, J.-H., Jang, C., Adam, S., et al. (2008), “Charged-impurity scattering in graphene,” Nat. Phys. 4(5), 377381.Google Scholar
Chen, J.-H., Li, L., Cullen, W. G., Williams, E. D., & Fuhrer, M. S. (2011), “Tunable Kondo effect in graphene with defects,” Nat. Phys. 7(7), 535538.Google Scholar
Chen, Z., Lin, Y.-M., Rooks, M., & Avouris, P. (2007), “Graphene nanoribbon electronics,” Physica E: Low Dimens. Syst. Nanostruct. 40(2), 228232.Google Scholar
Chenaiov, V., Falko, V., Altshuler, B. I., & Aleiner, I. (2007), “Random resistor network model of minimal conductivity in graphene,” Phys. Rev. Lett. 99, 176801.Google Scholar
Chico, L., Crespi, V. H., Benedict, L. X., Louie, S. G., & Cohen, M. L. (1996), “Pure carbon nanoscale devices: Nanotube heterojunctions,” Phys. Rev. Lett. 76, 971974.Google Scholar
Choi, H., Ihm, J., Louie, S., & Cohen, M. (2000), “Defects quasibound states, and quantum conductance in metallic carbon nanotubes,” Phys. Rev. Lett. 84, 29172920.Google Scholar
Churchill, H. O. H. & Jarillo-Herrero, P. (2014), “Two-dimensional crystals: Phosphorus joins the family,” Nat. Nanotechnol. 9(5), 330331.Google Scholar
Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A., & Khlobystov, A. N. (2010), “Direct transformation of graphene to fullerene,” Nat. Chem. 2(6), 450453.Google Scholar
Chuvilin, A., Meyer, J. C., Algara-Siller, G., & Kaiser, U. (2009), “From graphene constrictions to single carbon chains,” New J. Phy. 11(8), 083019.Google Scholar
Ci, L., Xu, Z., Wang, L., et al. (2008), “Controlled nanocutting of graphene,” Nano Res. 1, 116122.Google Scholar
Clar, E. (1964), Polycyclic Hydrocarbons, Academic Press, London.Google Scholar
Clar, E. (1972), The Aromatic Sextet, Wiley, New York.Google Scholar
Clark, S. J., Segall, M. D., Pickard, C. J., et al. (2005), “First principles methods using castep,” Z. Kristallog. - Cryst. Mater. 220, 567570.Google Scholar
Chappert, C., Fert, A., & Van Dau, F. N. (2007), “The emergence of spin electronics in data storage,” Nat. Mater. 6, 813.Google Scholar
Cockayne, E., Rutter, G. M., Guisinger, N. P., et al. (2011), “Grain boundary loops in graphene,” Phys. Rev. B 83, 195425.Google Scholar
Collins, A., Kanda, H., Isoya, J., & van Wyk, C. A. J. (1998), “Correlation between optical absorption and EPR in high-pressure diamond grown from a nickel solvent catalyst,” Diam. Relat. Mater. 7, 333338.Google Scholar
Colomés, E. & Franz, M. (2018), “Antichiral edge states in a modified haldane nanoribbon,” Phys. Rev. Lett. 120, 086603.Google Scholar
Connétable, D., Rignanese, G.-M., Charlier, J.-C., & Blase, X. (2005), “Room temperature peierls distortion in small diameter nanotubes,” Phys. Rev. Lett. 94, 015503.Google Scholar
Connolly, M. R., Chiu, K. L., Giblin, S. P., et al. (2013), “Gigahertz quantised charge pumping in graphene quantum dots,” Nat. Nanotechnol. 8, 417420.Google Scholar
Constantinescu, G. C. & Hine, N. D. M. (2016), “Multipurpose black-phosphorus/hBN heterostructures,” Nano Lett. 16(4), 25862594.Google Scholar
Cornaglia, P. S., Usaj, G., & Balseiro, C. A. (2009), “Localized spins on graphene,” Phys. Rev. Lett. 102(4), 046801.Google Scholar
Crespi, A., Corrielli, G., Valle, G. D., Osellame, R., & Longhi, S. (2013), “Dynamic band collapse in photonic graphene,” New J. Phys. 15(1), 013012.Google Scholar
Crespi, V. H., Benedict, L. X., Cohen, M. L., & Louie, S. G. (1996), “Prediction of a pure-carbon planar covalent metal,” Phys. Rev. B 53(20), R13303–R13305.Google Scholar
Cresti, A., Grosso, G., & Parravicini, G. (2007), “Numerical study of electronic transport in gated graphene ribbons,” Phys. Rev. B 76, 205433.Google Scholar
Cresti, A., Lopez-Bezanilla, A., Ordejon, P., & Roche, S. (2011), “Oxygen surface functionalization of graphene nanoribbons for transport gap engineering,” ACS Nano 5(11), 92719277.Google Scholar
Cresti, A., Louvet, T., Ortmann, F., et al. (2013), “Impact of vacancies on diffusive and pseudodiffusive electronic transport in graphene,” Crystals 3, 289305.Google Scholar
Cresti, A., Nemec, N., Biel, B., et al. (2008), “Charge transport in disordered graphene-based low dimensional materials,” Nano Res. 1, 361394.Google Scholar
Cresti, A., Nikolic, B. K., Garcia, J. H., & Roche, S. (2016), “Charge, spin and valley Hall effects in disordered graphene,” Rivista del Nuovo Cimento 12, 587667.Google Scholar
Cresti, A., Ortmann, F., Louvet, T., Van Tuan, D., & Roche, S. (2013), “Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: From supermetallic to insulating regimes,” Phys. Rev. Lett. 110, 196601.Google Scholar
Cresti, A. & Roche, S. (2009), “Edge-disorder-dependent transport length scales in graphene nanoribbons: From Klein defects to the superlattice limit,” Phys. Rev. B 79(23), 233404.Google Scholar
Cruz-Silva, E., Cullen, D. A., Gu, L., et al. (2008), “Heterodoped nanotubes: Theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes,” ACS Nano 2(3), 441448.Google Scholar
Cruz-Silva, E., López-Urías, F., Mun oz-Sandoval, E., et al. (2009), “Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes,” ACS Nano 3(7), 19131921.Google Scholar
Cruz-Silva, E., Lopez-Urias, F., Munoz-Sandoval, E., et al. (2011), “Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection,” Nanoscale 3(3), 10081013.Google Scholar
Cui, X., Lee, G.-H., Kim, Y. D., et al. (2015), “Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform,” Nat. Nanotechnol. 10(6), 534540.Google Scholar
Cummings, A. W., Cresti, A., & Roche, S. (2014), “Quantum Hall effect in polycrystalline graphene: The role of grain boundaries,” Phys. Rev. B 90, 161401.Google Scholar
Cummings, A. W., Duong, D. L., Nguyen, V. L., et al. (2014), “Charge transport in polycrystalline graphene: Challenges and opportunities,” Adv. Mater. 26(30), 50795094.Google Scholar
Cummings, A. W., Garcia, J. H., Fabian, J., & Roche, S. (2017), “Giant spin lifetime anisotropy in graphene induced by proximity effects,” Phys. Rev. Lett. 119, 206601.Google Scholar
Cummings, A. W. & Roche, S. (2016), “Effects of dephasing on spin lifetime in ballistic spin-orbit materials,” Phys. Rev. Lett. 116, 086602.Google Scholar
Curtiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V., & Pople, J. A. (1998), “Gaussian-3 (g3) theory for molecules containing first and second-row atoms,” J. Chem. Phys. 109(18), 77647776.Google Scholar
Dai, S., Fei, Z., Ma, Q., et al. (2014), “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 11251129.Google Scholar
Dai, S., Ma, Q., Liu, M. K., et al. (2015), “Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial,” Nat. Nanotechnol. 10(8), 682686.Google Scholar
Dal Lago, V., Suárez Morell, E., & Foa Torres, L. E. F. (2017), “One-way transport in laser-illuminated bilayer graphene: A Floquet isolator,” Phy. Rev. B 96(23), 235409.Google Scholar
D’Amato, J. L. & Pastawski, H. M. (1990), “Conductance of a disordered linear chain including inelastic scattering events,” Phys. Rev. B 41, 74117420.CrossRefGoogle ScholarPubMed
D’Amato, J. L., Pastawski, H. M., & Weisz, J. F. (1989), “Half-integer and integer quantum-flux periods in the magnetoresistance of one-dimensional rings,” Phys. Rev. B 39(6), 35543562.CrossRefGoogle ScholarPubMed
Dankert, A. & Dash, S. P. (2017), “Electrical gate control of spin current in van der Waals heterostructures at room temperature,” Nat. Commun. 8, 16093.Google Scholar
Das Sarma, S., Adam, S., Hwang, E. H., & Rossi, E. (2011), “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407470.Google Scholar
Das Sarma, S., Hwang, E. H., & Li, Q. (2012), “Disorder by order in graphene,” Phys. Rev. B 85(19), 195451.Google Scholar
Datta, S. (1995), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK.Google Scholar
Datta, S. S., Strachan, D. R., Khamis, S. M., & Johnson, A. T. C. (2008), “Crystallographic etching of few-layer graphene,” Nano Lett. 8(7), 19121915.Google Scholar
Dean, C. R., Wang, L., Maher, P., et al. (2013), “Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices,” Nature 497(7451), 598602.Google Scholar
Dean, C. R., Young, A. F., Meric, I., et al. (2010), “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722726.Google Scholar
Dehghani, H., Oka, T., & Mitra, A. (2015), “Out-of-equilibrium electrons and the Hall conductance of a Floquet topological insulator,” Phys. Rev. B 91(15), 155422.CrossRefGoogle Scholar
Delaney, P., Choi, H. J., Ihm, J., Louie, S. G., & Cohen, M. L. (1998), “Broken symmetry and pseudogaps in ropes of carbon nanotubes,” Nature 391(6666), 466468.Google Scholar
Dery, H., Wu, H., Ciftcioglu, B., et al. (2012), “Nanospintronics based on magnetologic gates,” IEEE Trans. Electron Devices 59, 259262.Google Scholar
Derycke, V., Martel, R., Appenzeller, J., & Avouris, P. (2001), “Carbon nanotube inter- and intramolecular logic gates,” Nano Lett. 1(9), 453456.Google Scholar
Di Ventra, M. (2008), Electrical Transport in Nanoscale Systems, Cambridge University Press, Cambridge, UK.Google Scholar
Dion, M., Rydberg, H., Schróder, E., Langreth, D. C., & Lundqvist, B. I. (2004), “Van der Waals density functional for general geometries,” Phys. Rev. Lett. 92(24), 246401.Google Scholar
Dirac, P. (1928), “The quantum theory of the electron,” Proc. R. Soc. Londn. Ser. A 117, 610.Google Scholar
Dirac, P. A. M. (1930), “Note on exchange phenomena in the Thomas atom,” Math. Proc. Cambr. Philos. Soc. 26(03), 376385.Google Scholar
Dlubak, B., Martin, M.-B., Deranlot, C., et al. (2012), “Highly efficient spin transport in epitaxial graphene on SiC,” Nat. Phys. 8, 557.Google Scholar
Dresselhaus, G., Pimenta, M., Saito, R., et al. (2000), “On the ‘ππ’ overlap energy in carbon nanotubes,” Science and Application of Nanotubes, Kluwer Academic/Plenum Publishers, New York, pp. 275295.Google Scholar
Dresselhaus, M., Dresselhaus, G., & Eklund, P. (1996), Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications, Academic Press, San Diego, CA.Google Scholar
Dresselhaus, M. S. (2011), “On the past and present of carbon nanostructures,” Phys. Status Solidi B 248(7), 15661574.Google Scholar
Dresselhaus, M. S. & Dresselhaus, G. (2002), “Intercalation compounds of graphite,” Adv. Phys. 51(1), 1186.Google Scholar
Dresselhaus, M. S., Dresselhaus, G., & Avouris, P., eds (2001), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Topics in Applied Physics, Vol. 80, Springer, Heidelberg.Google Scholar
Drexler, C., Tarasenko, S. A., Olbrich, P., et al. (2013), “Magnetic quantum ratchet effect in graphene,” Nat. Nanotechnol. 8, 104107.Google Scholar
Drogeler, M., Franzen, C., Volmer, F., et al. (2016), “Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices,” Nano Lett. 16, 3533.Google Scholar
Drogeler, M., Volmer, F., Wolter, M., et al. (2014), “Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature,” Nano Lett. 14(11), 60506055.Google Scholar
Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008), “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3(8), 491495.Google Scholar
Dubois, S. M.-M. (2009), Quantum transport in graphene-based nanostructures, PhD thesis, Université catholique de Louvain.Google Scholar
Dubois, S. M.-M., Lopez-Bezanilla, A., et al. (2010), “Quantum transport in graphene nanoribbons: Effects of edge reconstruction and chemical reactivity,” ACS Nano 4(4), 19711976.Google Scholar
Dubois, S. M.-M., Zanolli, Z., Declerck, X., & Charlier, J.-C. (2009), “Electronic properties and quantum transport in graphene-based nanostructures,” Eur. Phys. J. B 72, 124.Google Scholar
Dunlap, B. I. (1994), “Relating carbon tubules,” Phys. Rev. B 49, 56435651.Google Scholar
Dvila, M. E., Xian, L., Cahangirov, S., Rubio, A., & Lay, G. L. (2014), “Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene,” New J. Phy. 16(9), 095002.Google Scholar
D’yakonov, M. I. & Perel, V. I. (1971a), “Spin orientation of electrons associated with interband absorption of light in semiconductors,” Zh. Eksp. Teor. Fiz. 60, 1954.Google Scholar
D’yakonov, M. I. & Perel, V. I. (1971b), Sov. Phys. Solid State 13, 3023.Google Scholar
D’yakonov, M. I. & Perel, V. I. (1971c), “Current-induced spin orientation of electrons in semiconductors,” Phys. Lett. A 35(6), 459460.Google Scholar
D’yakonov, M. I. & Perel, V. I. (1971d), “Possibility of orienting electron spins with current,” Sov. J. Exp. Theor. Phys. Lett. 13(11), 467469.Google Scholar
Economou, E. N. (2006), Green’s Functions in Quantum Physics, Springer-Verlag, Berlin/Heidelberg.Google Scholar
Egger, R. (1999), “Luttinger liquid behavior in multiwall carbon nanotubes,” Phys. Rev. Lett. 83(26), 55475550.Google Scholar
Egger, R. & Gogolin, A. O. (1997), “Effective low-energy theory for correlated carbon nanotubes,” Phys. Rev. Lett. 79(25), 50825085.Google Scholar
Ehlen, N., Senkovskiy, B. V., Fedorov, A. V., et al. (2016), “Evolution of electronic structure of few-layer phosphorene from angle-resolved photoemission spectroscopy of black phosphorous,” Phys. Rev. B 94(24), 245410.Google Scholar
Ehlert, M., Song, C., Ciorga, M., et al. (2014), “All-electrical detection of spin Hall effect in semiconductors,” Phys. Status Solidi B 251, 1725.Google Scholar
Elias, D. C., Gorbachev, R. V., Mayorov, A. S., et al. (2011), “Dirac cones reshaped by interaction effects in suspended graphene,” Nat. Phys. 7(9), 701704.Google Scholar
Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., et al. (2009), “Control of graphene’s properties by reversible hydrogenation: Evidence for graphane,” Science 323(5914), 610613.Google Scholar
Elliot, R. J. (1954), “Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors,” Phys. Rev. 96, 266.Google Scholar
Enoki, T., Kobayashi, Y., & Fukui, K.-I. (2007), “Electronic structures of graphene edges and nanographene,” Int. Rev. Phys. Chem. 26(4), 609645.Google Scholar
Entin-Wohlman, O., Aharony, A., & Levinson, Y. (2002), “Adiabatic transport in nanostructures,” Phys. Rev. B 65, 195411.Google Scholar
Ernzerhof, M., Perdew, J. P., & Burke, K. (1997), “Coupling-constant dependence of atomization energies,” Int. J. Quantum Chem. 64(3), 285295.Google Scholar
Ernzerhof, M. & Scuseria, G. E. (1999), “Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional,” J. Chem. Phys. 110(11), 50295036.Google Scholar
Ertler, C., Konschuh, S., Gmitra, M., & Fabian, J. (2009), “Electron spin relaxation in graphene: The role of the substrate,” Phys. Rev. B 80, 041405.Google Scholar
Evaldsson, M., Zozoulenko, I. V., Xu, H., & Heinzel, T. (2008), “Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons,” Phys. Rev. B 78, 161407.Google Scholar
Ezawa, M. (2006), “Peculiar width dependence of the electronic properties of carbon nanoribbons,” Phys. Rev. B 73, 045432.Google Scholar
Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P., & Žutić, I. (2007), “Semiconductor spintronics,” Acta Phys. Slovaca 57, 565.Google Scholar
Falko, V. I., Kechedzhi, K., McCann, E., et al. (2007), “Weak localization in graphene,” Solid State Commun. 143, 3338.Google Scholar
Fan, Z., Garcia, J. H., Cummings, A., et al. (2019), “Linear scaling quantum transport methodologies,” Rev. Mod. Phys. (submitted), arXiv:1811.07387Google Scholar
Fan, Z., Uppstu, A., & Harju, A. (2014), “Anderson localization in two-dimensional graphene with short-range disorder: One-parameter scaling and finite-size effects,” Phys. Rev. B 89, 245422.Google Scholar
Fang, H., Battaglia, C., Carraro, C., et al. (2014), “Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. 111(17), 61986202.Google Scholar
Fano, U. (1935), “Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco,” Il Nuovo Cimento 12, 154161.Google Scholar
Farhat, H., Son, H., Samsonidze, G. G., et al. (2007), “Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly,” Phys. Rev. Lett. 99(14), 145506.Google Scholar
Favron, A., Gaufrès, E., Fossard, F., et al. (2015), “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nat. Mater. 14(8), 826832.Google Scholar
Fedorov, G., Tselev, A., Jiménez, D., et al. (2007), “Magnetically induced field effect in carbon nanotube devices,” Nano Lett. 7(4), 960964.Google Scholar
Feng, B., Ding, Z., Meng, S., et al. (2012), “Evidence of silicene in honeycomb structures of silicon on Ag(111),” Nano Lett. 12(7), 35073511.Google Scholar
Feng, B., Zhang, J., Zhong, Q., et al. (2016), “Experimental realization of two-dimensional boron sheets,” Nat. Chem. 8(6), 563568.Google Scholar
Fermi, E. (1927), “Un metodo statistico per la determinazione di alcune prioprietà dell’atomo,” Rend. Accad. Naz. Lincei 6, 602607.Google Scholar
Ferreira, A. & Mucciolo, E. R. (2015), “Critical delocalization of chiral zero energy modes in graphene,” Phys. Rev. Lett. 115, 106601.Google Scholar
Ferreira, A., Xu, X., Tan, C.-L., et al. (2011), “Transport properties of graphene with one-dimensional charge defects,” EPL (Europhysics Letters) 94, 28003.Google Scholar
Fert, A. (2008), “Nobel lecture: Origin, development, and future of spintronics,” Rev. Mod. Phys. 80, 15171530.Google Scholar
Fetter, A. & Walecka, J. (1971), Quantum Theory of Many-Particle Systems, McGraw-Hill, New York.Google Scholar
Fisher, D. S. & Lee, P. A. (1981), “Relation between conductivity and transmission matrix,” Phys. Rev. B 23(12), 68516854.Google Scholar
Floquet, G. (1883), “Sur les équations différentielles linéaires à coefficients périodiques,” Annales scientifiques de l’École Normale Supérieure, S’er. 2 12, 4788.Google Scholar
Foa Torres, L. E. F. (2005), “Mono-parametric quantum charge pumping: Interplay between spatial interference and photon-assisted tunneling,” Phys. Rev. B 72(24), 245339.Google Scholar
Foa Torres, L. E. F., Avriller, R., & Roche, S. (2008), “Nonequilibrium energy gaps in carbon nanotubes: Role of phonon symmetries,” Phys. Rev. B 78(3), 035412.Google Scholar
Foa Torres, L. E. F., Calvo, H. L., Rocha, C. G., & Cuniberti, G. (2011), “Enhancing single-parameter quantum charge pumping in carbon-based devices,” Appl. Phys. Lett. 99(9), 092102.Google Scholar
Foa Torres, L. E. F. & Cuniberti, G. (2009), “Controlling the conductance and noise of driven carbon-based Fabry–Pérot devices,” Appl. Phys. Lett. 94(22), 222103.Google Scholar
Foa Torres, L. E. F., Dal Lago, V., & Suárez Morell, E. (2016), “Crafting zero-bias one-way transport of charge and spin,” Phys. Rev. B 93(7), 075438.Google Scholar
Foa Torres, L. E. F., Lewenkopf, C. H., & Pastawski, H. M. (2003), “Coherent versus sequential electron tunneling in quantum dots,” Phys. Rev. Lett. 91, 116801.Google Scholar
Foa Torres, L. E. F., Perez-Piskunow, P. M., Balseiro, C. A., & Usaj, G. (2014), “Multiterminal conductance of a Floquet topological insulator,” Phys. Rev. Lett. 113, 266801.Google Scholar
Foa Torres, L. E. F. & Roche, S. (2006), “Inelastic quantum transport and Peierls-like mechanism in carbon nanotubes,” Phys. Rev. Lett. 97(7), 076804.Google Scholar
Fogler, M. M., Butov, L. V., & Novoselov, K. S. (2014), “High-temperature superfluidity with indirect excitons in van der Waals heterostructures,” Nat. Commun. 5, 4555.Google Scholar
Franklin, A. D. & Chen, Z. (2010), “Length scaling of carbon nanotube transistors,” Nat. Nanotechnol. 5(12), 858862.Google Scholar
Fujita, T., Jalil, M. B. A., & Tan, S. G. (2010), “Valley filter in strain engineered graphene,” Appl. Phy. Lett. 97(4), 043508.Google Scholar
Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J., & Mueller, T. (2014), “Photovoltaic effect in an electrically tunable van der Waals heterojunction,” Nano Lett. 14(8), 47854791.Google Scholar
Gabor, N. M., Song, J. C. W., Ma, Q., et al. (2011), “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334(6056), 648652.Google Scholar
Gao, B., Komnik, A., Egger, R., Glattli, D. C., & Bachtold, A. (2004), “Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes,” Phys. Rev. Lett. 92(21), 216804.Google Scholar
Garcia, J. H., Cummings, A. W., & Roche, S. (2017), “Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures,” Nano Lett. 17(8), 50785083.Google Scholar
Garcia, J. H., Vila, M., Cummings, A. W., & Roche, S. (2018), “Spin transport in graphene/transition metal dichalcogenide heterostructures,” Chem. Soc. Rev. 47, 33593379.Google Scholar
Garello, K., Yasin, F., Couet, S., et al. (2018), “SOT-MRAM 300mm integration for low power and ultrafast embedded memories,” VLSI2018 Session C8–2, 81–82.Google Scholar
Geim, A. K. (2011), “Nobel lecture: Random walk to graphene,” Rev. Mod. Phys. 83(3), 851862.Google Scholar
Geim, A. K. & Grigorieva, I. V. (2013), “Van der Waals heterostructures,” Nature 499(7459), 419425.Google Scholar
Geim, A. K. & Novoselov, K. S. (2007), “The rise of graphene,” Nat. Mater. 6(3), 183191.Google Scholar
Georgiou, T., Jalil, R., Belle, B. D., et al. (2013), “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8(2), 100103.Google Scholar
Gerlach, W. & Stern, O. (1922), “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Z. Phys. 9(1), 349352.Google Scholar
Gheorghe, M., Gutiérrez, R., Ranjan, N., et al. (2005), “Vibrational effects in the linear conductance of carbon nanotubes,” EPL (Europhysics Letters) 71(3), 438.Google Scholar
Ghiasi, T. S., Ingla-Aynés, J., Kaverzin, A. A., & van Wees, B. J. (2017), “Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures,” Nano Lett. 17(12), 75287532.Google Scholar
Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014), “Conductive two-dimensional titanium carbide clay with high volumetric capacitance,” Nature 516(7529), 7881.Google Scholar
Giaever, I. & Zeller, H. R. (1968), “Superconductivity of small tin particles measured by tunneling,” Phys. Rev. Lett. 20(26), 15041507.Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., et al. (2009), “Quantum espresso: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21(39), 395502.Google Scholar
Giantomassi, M., Stankovski, M., Shaltaf, R., et al. (2011), “Electronic properties of interfaces and defects from many-body perturbation theory: Recent developments and applications,” Phys. Status Solidi (b) 248(2), 275289.Google Scholar
Giesbers, A. J. M., Ponomarenko, L. A., Novoselov, K. S., et al. (2009), “Gap opening in the zeroth Landau level of graphene,” Phys. Rev. B 80(20), 201403.Google Scholar
Girit, C., Meyer, J. C., Erni, R., et al. (2009), “Graphene at the edge: Stability and dynamics,” Science 323(5922), 17051708.Google Scholar
Glazov, M. M. & Ganichev, S. D. (2014), “High frequency electric field-induced nonlinear effects in graphene,” Phys. Rep. 535, 101138.Google Scholar
Gmitra, M. & Fabian, J. (2015), “Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics,” Phys. Rev. B 92(15), 155403.Google Scholar
Gmitra, M., Kochan, D., Högl, P., & Fabian, J. (2016), “Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides,” Phys. Rev. B 93, 155104.Google Scholar
Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C., & Fabian, J. (2009), “Band-structure topologies of graphene: Spin-orbit coupling effects from first principles,” Phys. Rev. B 80(23), 235431.Google Scholar
Godby, R. W. & Needs, R. J. (1989), “Metal-insulator transition in Kohn-Sham theory and quasiparticle theory,” Phys. Rev. Lett. 62, 11691172.Google Scholar
Goerbig, M. (2011), “Electronic properties of graphene in a strong magnetic field,” Rev. Mod. Phys. 83, 1193.Google Scholar
Goldoni, A., Petaccia, L., Lizzit, S., & Larciprete, R. (2010), “Sensing gases with carbon nanotubes: A review of the actual situation,” J. Phys.: Condens. Matter 22(1), 013001.Google Scholar
Gómez-Navarro, C., de Pablo, P., Biel, B., et al. (2005), “Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime,” Nat. Mater. 4, 534.Google Scholar
Gonze, X. (2005), “A brief introduction to the ABINIT software package,” Z. Kristallogr. - Cryst. Mater. 220, 558562.Google Scholar
Gonze, X., Amadon, B., Anglade, P.-M., et al. (2009), “ABINIT: First-principles approach to material and nanosystem properties,” Comput. Phys. Commun. 180(12), 25822615.Google Scholar
Gorbachev, R. V., Geim, A. K., Katsnelson, M. I., et al. (2012), “Strong Coulomb drag and broken symmetry in double-layer graphene,” Nat. Phys. 8(12), 896901.Google Scholar
Gorbachev, R. V., Song, J. C. W., Yu, G. L., et al. (2014), “Detecting topological currents in graphene superlattices,” Science 346(6208), 448451.Google Scholar
Grazianetti, C., Cinquanta, E., & Molle, A. (2016), “Two-dimensional silicon: The advent of silicene,” 2D Mater. 3(1), 012001.Google Scholar
Grichuk, E. & Manykin, E. (2010), “Quantum pumping in graphene nanoribbons at resonant transmission,” EPL (Europhysics Letters) 92(4), 47010.Google Scholar
Grigorenko, A. N., Polini, M., & Novoselov, K. S. (2012), “Graphene plasmonics,” Nat. Photonics 6(11), 749758.Google Scholar
Grossmann, F., Dittrich, T., Jung, P., & Hänggi, P. (1991), “Coherent destruction of tunneling,” Phys. Rev. Lett. 67, 516519.Google Scholar
Grosso, G. & Parravicini, G. P. (2006), Solid State Physics, Elsevier, Amsterdam.Google Scholar
Groth, C. W., Wimmer, M., Akhmerov, A. R., & Waintal, X. (2014), “Kwant: A software package for quantum transport,” New J. Phys. 16(6), 063065.Google Scholar
Grüneis, A., Attaccalite, C., Wirtz, L., et al. (2008), “Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene,” Phys. Rev. B 78(20), 205425.Google Scholar
Grushina, A. L. & Morpurgo, A. F. (2013) “A ballistic pn junction in suspended graphene with split bottom gates,” Appl. Phys. Lett. 102, 223102.Google Scholar
Gu, Z., Fertig, H. A., Arovas, D. P., & Auerbach, A. (2011), “Floquet spectrum and transport through an irradiated graphene ribbon,” Phys. Rev. Lett. 107(21), 216601.Google Scholar
Guan, J., Zhu, Z., & Tománek, D. (2014), “Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study,” Phys. Rev. Lett. 113(4), 046804.Google Scholar
Guimarães, M. H. D., Veligura, A., Zomer, P. J., et al. (2012), “Spin transport in high-quality suspended graphene devices,” Nano Lett. 12, 35123517.Google Scholar
Guimarães, M. H. D., Zomer, P. J., Ingla-Aynés, J., et al. (2014), “Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field,” Phys. Rev. Lett. 113, 086602.Google Scholar
Guinea, F. (2010), “Spin-orbit coupling in a graphene bilayer and in graphite,” New J. Phys. 12, 083063.Google Scholar
Guinea, F., Tejedor, C., Flores, F., & Louis, E. (1983), “Effective two-dimensional hamiltonian at surfaces,” Phys. Rev. B 28(8), 43974402.Google Scholar
Guinea, F. & Vergés, J. A. (1987), “Localization and topological disorder,” Phys. Rev. B 35(3), 979986.Google Scholar
Gunlycke, D. & White, C. T. (2008), “Tight-binding energy dispersions of armchair-edge graphene nanostrips,” Phys. Rev. B 77, 115116.Google Scholar
Gunlycke, D. & White, C. T. (2011), “Graphene valley filter using a line defect,” Phys. Rev. Lett. 106(13), 136806.Google Scholar
Güttinger, J., Molitor, F., Stampfer, C., et al. (2012), “Transport through graphene quantum dots,” Rep. Progr. Phys. 75(12), 126502.Google Scholar
Haeckel, E. (1862), Die Radiolarien, Georg Reimer, Berlin.Google Scholar
Haering, R. R. (1958), “Band structure of rhombohedral graphite,” Canad. J. Phys. 36(3), 352362.Google Scholar
Haigh, S. J., Gholinia, A., Jalil, R., et al. (2012), “Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices,” Nat. Mater. 11(9), 764767.Google Scholar
Haldane, F. D. M. (1988), “Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly’,” Phys. Rev. Lett. 61(18), 20152018.Google Scholar
Hallal, A., Ibrahim, F., Yang, H., Roche, S., & Chshiev, M. (2017), “Tailoring magnetic insulator proximity effects in graphene: First-principles calculations,” 2D Mater. 4(2), 025074.Google Scholar
Hamada, N., Sawada, S.-I., & Oshiyama, A. (1992), “New one-dimensional conductors: Graphitic microtubules,” Phys. Rev. Lett. 68, 15791581.Google Scholar
Hamann, D. R., Schlüter, M., & Chiang, C. (1979), “Norm-conserving pseudopotentials,” Phys. Rev. Lett. 43, 14941497.Google Scholar
Han, M. Y., Özyilmaz, B., Zhang, Y., & Kim, P. (2007), “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98, 206805.Google Scholar
Han, W. & Kawakami, R. K. (2011), “Spin relaxation in single-layer and bilayer graphene,” Phys. Rev. Lett. 107, 047207.Google Scholar
Han, W., Kawakami, R. K., Gmitra, M., & Fabian, J. (2014), “Graphene spintronics,” Nat. Nanotechnol. 9(10), 794807.Google Scholar
Han, W., Pi, K., McCreary, K. M., et al. (2010), “Tunneling spin injection into single layer graphene,” Phys. Rev. Lett. 105, 167202.Google Scholar
Hankiewicz, E. M., Li, J., Jungwirth, T., et al. (2005), “Charge Hall effect driven by spin-chemical potential gradients and onsager relations in mesoscopic systems,” Phys. Rev. B 72, 155305.Google Scholar
Harris, P. (1999), Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century, Cambridge University Press, Cambridge, UK.Google Scholar
Harrison, W. (1989), Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Dover Publications, New York.Google Scholar
Hartree, D. R. (1957), The Calculation of Atomic Structures, John Wiley & Sons, New York.Google Scholar
Hasan, M. Z. & Kane, C. L. (2010), “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 30453067.Google Scholar
Haydock, R., Heine, V., & Kelly, M. J. (1972), “Electronic structure based on the local atomic environment for tight-binding bands,” J. Phys. C: Solid State Phys. 5(20), 2845.Google Scholar
Haydock, R., Heine, V., & Kelly, M. J. (1975), “Electronic structure based on the local atomic environment for tight-binding bands: II,” J. Phys. C: Solid State Phys. 8(20), 2591.Google Scholar
Haydock, R., Heine, V., & Kelly, M. J. (2016), “Determination of the spin-lifetime anisotropy in graphene using oblique spin precession,” Nat. Commun. 7, 11444.Google Scholar
Hedin, L. (1965), “New method for calculating the one-particle Green’s function with application to the electron-gas problem,” Phys. Rev. 139, A796–A823.Google Scholar
Hedin, L. & Lundqvist, S. (1970), “Effects of electron-electron and electron-phonon interactions on the one-electron states of solids,” Solid State Physics, Vol. 23, Academic Press, New York, pp. 1181.Google Scholar
Heimann, R., Evsyukov, S., & Kavan, L. (1999), Carbyne and Carbynoid Structures, Kluwer Academic, Dordrecht.Google Scholar
Heinze, S., Tersoff, J., Martel, R., et al. (2002), “Carbon nanotubes as Schottky barrier transistors,” Phys. Rev. Lett. 89, 106801.Google Scholar
Hemstreet, Louis A., J., Fong, C. Y., & Cohen, M. L. (1970), “Calculation of the band structure and optical constants of diamond using the nonlocal-pseudopotential method,” Phys. Rev. B 2(6), 20542063.Google Scholar
Herrmann, L. G., Delattre, T., Morfin, P., et al. (2007), “Shot noise in Fabry-Perot interferometers based on carbon nanotubes,” Phys. Rev. Lett. 99, 156804.Google Scholar
Hikami, S., Larkin, A. I., & Nagaoka, Y. (1980), “Spin-orbit interaction and magnetoresistance in the two dimensional random system,” Progr. Theor. Phys. 63(2), 707710.Google Scholar
Hirsch, J. E. (1999), “Spin Hall effect,” Phys. Rev. Lett. 83, 18341837.Google Scholar
Hirvonen, P., Ervasti, M. M., Fan, Z., et al. (2016), “Multiscale modeling of polycrystalline graphene: A comparison of structure and defect energies of realistic samples from phase field crystal models,” Phys. Rev. B 94, 035414.Google Scholar
Hjort, M. & Stafström, S. (2001), “Disorder-induced electron localization in metallic carbon nanotubes,” Phys. Rev. B 63(11), 113406.Google Scholar
Hoffmann, A. (2013), “Spin Hall effects in metals,” IEEE Trans. Magn. 49, 5172.Google Scholar
Hofstadter, D. R. (1976), “Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields,” Phys. Rev. B 14, 22392249.Google Scholar
Hohenberg, P. & Kohn, W. (1964), “Inhomogeneous electron gas,” Phys. Rev. 136, B864B871.Google Scholar
Holmström, E., Fransson, J., Eriksson, O., et al. (2011), “Disorder-induced metallicity in amorphous graphene,” Phys. Rev. B 84(20), 205414.Google Scholar
Hong, X., Kim, J., Shi, S.-F., et al. (2014), “Ultrafast charge transfer in atomically thin MoS2 /WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682686.Google Scholar
Horsell, D. W., Tikhonenko, F. V., Gorbachev, R. V., & Savchenko, A. K. (2008), “Weak localization in monolayer and bilayer graphene,” Philos. Trans. R. Soc. A 366, 245.Google Scholar
Hoshi, T., Yamamoto, S., Zhang, S.-L., & Fujiwara, T. (2012), “An order-n electronic structure theory with generalized eigenvalue equations and its application to a ten-million-atom system,” J. Phys.: Condens. Matter 24, 165502.Google Scholar
Hossain, M. Z., Johns, J. E., Bevan, K. H., et al. (2012), “Chemically homogeneous and thermally reversible oxidation of epitaxial graphene,” Nat. Chem. 4(4), 305309.Google Scholar
Hu, T., Wang, J., Zhang, H., et al. (2015), “Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: A comparative study,” Phys. Chem. Chem. Phys. 17(15), 999710003.Google Scholar
Huang, B., Clark, G., Klein, D., et al. (2018), “Electrical control of 2D magnetism in bilayer CrI3,” Nat Nanotechnol. 13(7), 544548.Google Scholar
Huang, B., Clark, G., Navarro-Moratalla, E., et al. (2017), “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit,” Nature 546, 270273.Google Scholar
Huang, B., Liu, M., Su, N., et al. (2009), “Quantum manifestations of graphene edge stress and edge instability: A first-principles study,” Phys. Rev. Lett. 102(16), 166404.Google Scholar
Huang, L., Lai, Y.-C., & Grebogi, C. (2010), “Relativistic quantum level-spacing statistics in chaotic graphene billiards,” Phys. Rev. E 81(5), 055203.Google Scholar
Huang, P., Ruiz-Vargas, C. S., van der Zande, A. M., et al. (2011), “Grains and grain boundaries in single-layer graphene atomic patchwork quilts,” Nature 469, 389392.Google Scholar
Huang, Y., Shirodkar, S. N., & Yakobson, B. I. (2017), “Two-dimensional boron polymorphs for visible range plasmonics: A first-principles exploration,” J. Am. Chem. Soc. 139(47), 1718117185.Google Scholar
Huertas-Hernando, D., Guinea, F., & Brataas, A. (2006), “Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps,” Phys. Rev. B 74, 155426.Google Scholar
Huertas-Hernando, D., Guinea, F., & Brataas, A. (2009), “Spin-orbit-mediated spin relaxation in graphene,” Phys. Rev. Lett. 103, 146801.Google Scholar
Hwang, C., Park, C.-H., Siegel, D. A., et al. (2011), “Direct measurement of quantum phases in graphene via photoemission spectroscopy,” Phys. Rev. B 84, 125422.Google Scholar
Hwang, E. H. & Sarma, S. D. (2008), “Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene,” Phys. Rev. B 77, 115449.Google Scholar
Iijima, S. (1991), “Helical microtubules of graphitic carbon,” Nature 354(6348), 5658.Google Scholar
Iijima, S. & Ichihashi, T. (1993), “Single-shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603605.Google Scholar
Iijima, S., Yudasaka, M., Yamada, R., et al. (1999), “Nano-aggregates of single-walled graphitic carbon nano-horns,” Chem. Phys. Lett. 309(3–4), 165170.Google Scholar
Imry, Y. & Landauer, R. (1999), “Conductance viewed as transmission,” Rev. Mod. Phys. 71, S306S312.Google Scholar
Ingaramo, L. H. & Foa Torres, L. E. F. (2013), “Defect assisted adiabatic quantum charge pumping in graphene-based devices,” Appl. Phys. Lett. 103, 123508.Google Scholar
Ingaramo, L. H. & Foa Torres, L. E. F. (2016), “Valley filtering by a line-defect in graphene: Quantum interference and inversion of the filter effect,” J. Phys.: Condens. Matter 28(48), 485302.Google Scholar
Isacsson, A., Cummings, A. W., Colombo, L., et al. (2017), “Scaling properties of polycrystalline graphene: A review,” 2D Mater. 4(1), 012002.Google Scholar
Ishii, H., Roche, S., Kobayashi, N., & Hirose, K. (2010), “Inelastic transport in vibrating disordered carbon nanotubes: Scattering times and temperature-dependent decoherence effects,” Phys. Rev. Lett. 104, 116801.Google Scholar
Ishii, H., Triozon, F., Kobayashi, N., Hirose, K., & Roche, S. (2009), “Charge transport in carbon nanotubes based materials, a Kubo-Greenwood computational approach,” C. R. Phys. 10(4), 283296.Google Scholar
Isobe, H., Yuan, N. F., & Fu, L. (2018), “Unconventional superconductivity and density waves in twisted bilayer graphene,” Phys. Rev. X 8(4), 041041.Google Scholar
Jacob, Z. (2014), “Nanophotonics: Hyperbolic phonon-polaritons,” Nat. Mater. 13(12), 10811083.Google Scholar
Jain, M., Chelikowsky, J. R., & Louie, S. G. (2011), “Reliability of hybrid functionals in predicting band gaps,” Phys. Rev. Lett. 107, 216806.Google Scholar
Jalabert, R. A., Stone, A. D., & Alhassid, Y. (1992), “Statistical theory of Coulomb blockade oscillations: Quantum chaos in quantum dots,” Phys. Rev. Lett. 68(23), 34683471.Google Scholar
Janssen, T. J. B. M., Tzalenchuk, A., Lara-Avila, S., Kubatkin, S., & Fal’leko, V. I. (2013), “Quantum resistance metrology using graphene,” Rep. Prog. Phys. 76(10), 104501.Google Scholar
Jariwala, D., Marks, T. J., & Hersam, M. C. (2017), “Mixed-dimensional van der Waals heterostructures,” Nat. Mater. 16(2), 170181.Google Scholar
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., & Hersam, M. C. (2014), “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano 8(2), 11021120.Google Scholar
Javey, A., Guo, J., Paulsson, M., et al. (2004), “High-field quasiballistic transport in short carbon nanotubes,” Phys. Rev. Lett. 92, 106804.Google Scholar
Javey, A., Guo, J., Wang, Q., Lundstrom, M., & Dai, H. (2003), “Ballistic carbon nanotube field-effect transistors,” Nature 424(6949), 654657.Google Scholar
Jayasekera, T. & Mintmire, J. W. (2007), “Transport in multiterminal graphene nanodevices,” Nanotechnology 18(42), 424033.Google Scholar
Jeong, H. Y., Kim, J. Y., Kim, J. W., et al. (2010), “Graphene oxide thin films for flexible nonvolatile memory applications,” Nano Lett. 10(11), 43814386.Google Scholar
Ji, J., Song, X., Liu, J., et al. (2016), “Two-dimensional antimonene single crystals grown by van der Waals epitaxy,” Nature Commun. 7, 13352.Google Scholar
Jia, X., Campos-Delgado, J., Terrones, M., Meunier, V., & Dresselhaus, M. S. (2011), “Graphene edges: A review of their fabrication and characterization,” Nanoscale 3(1), 8695.Google Scholar
Jia, X., Goswami, P., & Chakravarty, S. (2008), “Dissipation and criticality in the lowest Landau level of graphene,” Phys. Rev. Lett. 101(3), 036805.Google Scholar
Jia, X., Hofmann, M., Meunier, V., et al. (2009), “Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons,” Science 323(5922), 17011705.Google Scholar
Jiang, J., Dong, J., & Xing, D. Y. (2003), “Quantum interference in carbon-nanotube electron resonators,” Phys. Rev. Lett. 91(5), 056802.Google Scholar
Jiang, Z., Zhang, Y., Stormer, H. L., & Kim, P. (2007), “Quantum Hall states near the charge-neutral dirac point in graphene,” Phys. Rev. Lett. 99, 106802.Google Scholar
Jiao, L., Wang, X., Diankov, G., Wang, H., & Dai, H. (2010), “Facile synthesis of high-quality graphene nanoribbons,” Nat. Nanotechnol. 5(5), 321325.Google Scholar
Jiao, L., Zhang, L., Ding, L., Liu, J., & Dai, H. (2010), “Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes,” Nano Res. 3(6), 387394.Google Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G., & Dai, H. (2009), “Narrow graphene nanoribbons from carbon nanotubes,” Nature 458(7240), 877880.Google Scholar
Jin, C., Lan, H., Peng, L., Suenaga, K., & Iijima, S. (2009), “Deriving carbon atomic chains from graphene,” Phys. Rev. Lett. 102(20), 205501.Google Scholar
Johnson, M. & Silsbee, R. H. (1985), “Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals,” Phys. Rev. Lett. 55, 17901793.Google Scholar
Jonson, M. & Grincwajg, A. (1987), “Effect of inelastic scattering on resonant and sequential tunneling in double barrier heterostructures,” Appl. Phys. Lett. 51(21), 17291731.Google Scholar
Jorio, A., Dresselhaus, M. S., Saito, R., & Dresselhaus, G. (2011), Raman Spectroscopy in Graphene Related Systems, Wiley-VCH, Weinheim.Google Scholar
Jorio, A., Souza Filho, A. G., Dresselhaus, G., et al. (2001), “Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant raman scattering,” Phys. Rev. B 63, 245416.Google Scholar
Jotzu, G., Messer, M., Desbuquois, R., et al. (2014), “Experimental realization of the topological Haldane model with ultracold fermions,” Nature 515(7526), 237240.Google Scholar
Kaestner, B., Kashcheyevs, V., Amakawa, S., et al. (2008), “Single-parameter nonadiabatic quantized charge pumping,” Phys. Rev. B 77(15), 153301.Google Scholar
Kane, C. L. & Mele, E. J. (1997), “Size, shape, and low energy electronic structure of carbon nanotubes,” Phys. Rev. Lett. 78, 19321935.Google Scholar
Kane, C. L. & Mele, E. J. (2005a), “Quantum spin hall effect in graphene,” Phys. Rev. Lett. 95, 226801.Google Scholar
Kane, C. L. & Mele, E. J. (2005b), “z2 topological order and the quantum spin Hall effect,” Phys. Rev. Lett. 95, 146802.Google Scholar
Karch, J., Drexler, C., Olbrich, P., et al. (2011), “Terahertz radiation driven chiral edge currents in graphene,” Phys. Rev. Lett. 107(27), 276601.Google Scholar
Karplus, R. & Luttinger, J. M. (1954), “Hall effect in ferromagnetics,” Phys. Rev. 95, 11541160.Google Scholar
Kashcheyevs, V., Aharony, A., & Entin-Wohlman, O. (2004), “Resonance approximation and charge loading and unloading in adiabatic quantum pumping,” Phys. Rev. B 69, 195301.Google Scholar
Kastner, M. A. (1992), “The single-electron transistor,” Rev. Mod. Phys. 64(3), 849858.Google Scholar
Kato, T. & Hatakeyama, R. (2012), “Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars,” Nat. Nanotechnol. 7(10), 651656.Google Scholar
Kato, Y. K., Myers, R. C., Gossard, A. C., & Awschalom, D. D. (2004), “Observation of the spin Hall effect in semiconductors,” Science 306(5703), 19101913.Google Scholar
Katsnelson, M. I. (2012), Graphene: Carbon in Two Dimensions, Cambridge University Press, Cambridge, UK.Google Scholar
Katsnelson, M. I., Novoselov, K. S., & Geim, A. K. (2006), “Chiral tunnelling and the Klein paradox in graphene,” Nat. Phys. 2(9), 620625.Google Scholar
Kavan, L. & Kastner, J. (1994), “Carbyne forms of carbon: Continuation of the story,” Carbon 32(8), 15331536.Google Scholar
Kaverzin, A. A. & van Wees, B. J. (2015), “Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization,” Phys. Rev. B 91, 165412.Google Scholar
Kawai, T., Miyamoto, Y., Sugino, O., & Koga, Y. (2000), “Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities,” Phys. Rev. B 62, R16349R16352.Google Scholar
Kazymyrenko, K. & Waintal, X. (2008), “Knitting algorithm for calculating green functions in quantum systems,” Phys. Rev. B 77(11), 115119.Google Scholar
Kechedzhi, K., McCann, E., I., F. Fal’ko, V. I., et al. (2007), “Weak localization in monolayer and bilayer graphene,” Eur. Phys. J. Spec. Top. 148, 39.Google Scholar
Khokhriakov, D., Cummings, A. W., Song, K., et al. (2018), “Tailoring emergent spin phenomena in dirac material heterostructures,” Sci. Adv. 4(9).Google Scholar
Kibis, O. V. (2010), “Metal-insulator transition in graphene induced by circularly polarized photons,” Phys. Rev. B 81(16), 165433.Google Scholar
Kim, K., Lee, Z., Regan, W., et al. (2011), “Grain boundary mapping in polycrystalline graphene,” ACS Nano 5, 2142.Google Scholar
Kim, K. S., Walter, A. L., Moreschini, L., Seyller, T., Horn, K., Rotenberg, E., & Bostwick, A. (2013), “Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene,” Nat. Mater. 12, 887892.Google Scholar
Kim, N. Y., Recher, P., Oliver, W. D., et al. (2007), “Tomonaga-Luttinger liquid features in ballistic single-walled carbon nanotubes: Conductance and shot noise,” Phys. Rev. Lett. 99, 036802.Google Scholar
Kim, W., Javey, A., Tu, R., et al. (2005), “Electrical contacts to carbon nanotubes down to 1 nm in diameter,” Appl. Phys. Lett. 87(17), 173101.Google Scholar
Kirwan, D. F., Rocha, C. G., Costa, A. T., & Ferreira, M. S. (2008), “Sudden decay of indirect exchange coupling between magnetic atoms on carbon nanotubes,” Phys. Rev. B 77(8), 085432.Google Scholar
Kitagawa, T., Oka, T., Brataas, A., Fu, L., & Demler, E. (2011), “Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels,” Phys. Rev. B 84(23), 235108.Google Scholar
Klein, D. R., MacNeill, D., Lado, J. L., et al. (2018), “Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling,” Science 360(6394), 12181222.Google Scholar
Klein, O. (1929), “Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von dirac,” Z. Phys. A: Hadrons Nuclei 53, 157165.Google Scholar
Kleinman, L. & Bylander, D. M. (1982), “Efficacious form for model pseudopotentials,” Phys. Rev. Lett. 48, 14251428.Google Scholar
Klimeš, J. & Michaelides, A. (2012), “Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory,” J. Chem. Phys. 137(12), 120901.Google Scholar
Klos, J. W. & Zozoulenko, I. V. (2010), “Effect of short- and long-range scattering in the conductivity of graphene: Boltzmann approach vs tight-binding calculations,” Phys. Rev. B 82, 081414.Google Scholar
Kobayashi, Y., Fukui, K.-i., Enoki, T., Kusakabe, K., & Kaburagi, Y. (2005), “Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 71, 193406.Google Scholar
Kochan, D., Gmitra, M., & Fabian, J. (2014), “Spin relaxation mechanism in graphene: Resonant scattering by magnetic impurities,” Phys. Rev. Lett. 112, 116602.Google Scholar
Kochan, D., Irmer, S., & Fabian, J. (2017), “Model spin-orbit coupling Hamiltonians for graphene systems,” Phys. Rev. B 95, 165415.Google Scholar
Kohler, S., Lehmann, J., & Hänggi, P. (2005), “Driven quantum transport on the nanoscale,” Phys. Rep. 406(6), 379443.Google Scholar
Kohmoto, M. (1985), “Topological invariant and the quantization of the Hall conductance,” Ann. Phys. 160(2), 343354.Google Scholar
Kohn, W. (1959a), “Image of the Fermi surface in the vibration spectrum of a metal,” Phys. Rev. Lett. 2(9), 393394.Google Scholar
Kohn, W. (1959b), “Theory of bloch electrons in a magnetic field: The effective Hamiltonian,” PR 115(6), 14601478.Google Scholar
Kohn, W. & Luttinger, J. M. (1957), “Quantum theory of electrical transport phenomena,” Phys. Rev. 108, 590611.Google Scholar
Kohn, W. & Sham, L. J. (1965), “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133A1138.Google Scholar
Komatsu, K., Morita, Y., Watanabe, E., et al. (2018), “Observation of the quantum valley Hall state in ballistic graphene superlattices,” Sci. Adv. 4(5), eaaq0194.Google Scholar
Konschuh, S., Gmitra, M., & Fabian, J. (2010), “Tight-binding theory of the spin-orbit coupling in graphene,” Phys. Rev. B 82(24), 245412.Google Scholar
Konstantatos, G., Badioli, M., Gaudreau, L., et al. (2012), “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7(6), 363368.Google Scholar
Koppens, F. H. L., Chang, D. E., & Garcia de Abajo, F. J. (2011), “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 33703377.Google Scholar
Koppens, F. H. L., Mueller, T., Avouris, P., et al. (2014), “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780793.Google Scholar
Koskinen, P., Malola, S., & Häkkinen, H. (2008), “Self-passivating edge reconstructions of graphene,” Phys. Rev. Lett. 101, 115502.Google Scholar
Kostyrko, T., Bartkowiak, M., & Mahan, G. D. (1999), “Localization in carbon nanotubes within a tight-binding model,” Phys. Rev. B 60(15), 1073510738.Google Scholar
Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., et al. (2009), “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature 458(7240), 872876.Google Scholar
Kotakoski, J., Krasheninnikov, A. V., Kaiser, U., & Meyer, J. C. (2011), “From point defects in graphene to two-dimensional amorphous carbon,” Phys. Rev. Lett. 106, 105505.Google Scholar
Kotakoski, J. & Meyer, J. C. (2012), “Mechanical properties of polycrystalline graphene based on a realistic atomistic model,” Phys. Rev. B 85, 195447.Google Scholar
Kouwenhoven, L. & Glazman, L. (2001), “Revival of the Kondo effect,” Phys. World January, 33–38.Google Scholar
Kouwenhoven, L. P., Marcus, C. M., McEuen, P. L., et al. (1997), “Electron transport in quantum dots,” in Nato ASI Conference Proceedings, Kluwer Academic, Dordrecht, pp. 105214.Google Scholar
Kowalczyk, P., Holyst, R., Terrones, M., & Terrones, H. (2007), “Hydrogen storage in nanoporous carbon materials: Myth and facts,” Phys. Chem. Chem. Phys. 9(15), 17861792.Google Scholar
Kramer, B. & MacKinnon, A. (1993), “Localization: Theory and experiment,” Rep. Progr. Phys. 56(12), 14691564.Google Scholar
Krasheninnikov, A. V. & Banhart, F. (2007), “Engineering of nanostructured carbon materials with electron or ion beams,” Nat. Mater. 6(10), 723733.Google Scholar
Kresse, G. & Furthmüller, J. (1996a), “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6(1), 1550.Google Scholar
Kresse, G. & Furthmüller, J. (1996b), “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54(16), 1116911186.Google Scholar
Krishnan, A., Dujardin, E., Treacy, M. M. J., et al. (1997), “Graphitic cones and the nucleation of curved carbon surfaces,” Nature 388(6641), 451454.Google Scholar
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985), “C60: Buckminsterfullerene,” Nature 318(6042), 162163.Google Scholar
Kroto, H. W. & McKay, K. (1988), “The formation of quasi-icosahedral spiral shell carbon particles,” Nature 331(6154), 328331.Google Scholar
Kubo, R. (1966), “The fluctuation-dissipation theorem,” Rep. Progr. Phys. 29(1), 255.Google Scholar
Kümmel, S. & Kronik, L. (2008), “Orbital-dependent density functionals: Theory and applications,” Rev. Mod. Phys. 80, 360.Google Scholar
Kundu, A., Fertig, H. A., & Seradjeh, B. (2014), “Effective theory of Floquet topological transitions,” Phys. Rev. Lett. 113(23), 236803.Google Scholar
Kurasch, S., Kotakoski, J., Lehtinen, O., et al. (2012), “Atom-by-atom observation of grain boundary migration in graphene,” Nano Lett. 12(6), 31683173.Google Scholar
Kurganova, E. V., van Elferen, H. J., McCollam, A., et al. (2011), “Spin splitting in graphene studied by means of tilted magnetic-field experiments,” Phys. Rev. B 84(12), 121407.Google Scholar
Kwon, Y.-K. & Tománek, D. (1998), “Electronic and structural properties of multiwall carbon nanotubes,” Phys. Rev. B 58, R16001R16004.Google Scholar
Lagow, R. J., Kampa, J. J., Wei, H.-C., et al. (1995), “Synthesis of linear acetylenic carbon: The ‘sp’ carbon allotrope,” Science 267(5196), 362367.Google Scholar
Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I., & Batzill, M. (2010), “An extended defect in graphene as a metallic wire,” Nat. Nanotechnol. 5(5), 326329.Google Scholar
Lambin, P., Fonseca, A., Vigneron, J., Nagy, J., & Lucas, A. (1995), “Structural and electronic properties of bent carbon nanotubes,” Chem. Phys. Lett. 245(1), 8589.Google Scholar
Lambin, P., Philippe, L., Charlier, J., & Michenaud, J. (1994), “Electronic band structure of multilayered carbon tubules,” Comput. Mater. Sci. 2(2), 350356.Google Scholar
Lanczos, C. (1950), “Solution of systems of linear equations by minimized iterations,” J. Res. Natl. Bur. Stand. 45, 255.Google Scholar
Landau, L. & Lifschitz, E. (1980), Statistical Physics Part II, Pergamon, Oxford.Google Scholar
Landauer, R. (1957), “Spatial variation of currents and fields due to localized scatterers in metallic conduction,” IBMJ. Res. Dev. 1, 223.Google Scholar
Landauer, R. (1970), “Electrical resistance of disordered one-dimensional lattices,” Philos. Mag. 21, 863867.Google Scholar
Latil, S. & Henrard, L. (2006), “Charge carriers in few-layer graphene films,” Phys. Rev. Lett. 97, 036803.Google Scholar
Latil, S., Meunier, V., & Henrard, L. (2007), “Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints,” Phys. Rev. B 76, 201402.Google Scholar
Latil, S., Roche, S., & Charlier, J.-C. (2005), “Electronic transport in carbon nanotubes with random coverage of physisorbed molecules,” Nano Lett. 5(11), 22162219.Google Scholar
Latil, S., Roche, S., Mayou, D., & Charlier, J.-C. (2004), “Mesoscopic transport in chemically doped carbon nanotubes,” Phys. Rev. Lett. 92, 256805.Google Scholar
Laughlin, R. B. (1983), “Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett. 50(18), 13951398.Google Scholar
Lazzeri, M. & Mauri, F. (2006), “Coupled dynamics of electrons and phonons in metallic nanotubes: Current saturation from hot-phonon generation,” Phys. Rev. B 73, 165419.Google Scholar
Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C., & Robertson, J. (2006), “Phonon linewidths and electron-phonon coupling in graphite and nanotubes,” Phys. Rev. B 73, 155426.Google Scholar
Leconte, N., Lherbier, A., Varchon, F., et al. (2011), “Quantum transport in chemically modified two-dimensional graphene: From minimal conductivity to Anderson localization,” Phys. Rev. B 84, 235420.Google Scholar
Leconte, N., Moser, J., Ordejon, P., et al. (2010), “Damaging graphene with ozone treatment: A chemically tunable metal-insulator transition,” ACS Nano 4(7), 40334038.Google Scholar
Leconte, N., Ortmann, F., Cresti, A., & Roche, S. (2016), “Unconventional features in the quantum Hall regime of disordered graphene: Percolating impurity states and Hall conductance quantization,” Phys. Rev. B 93, 115404.Google Scholar
Lee, C.-H., Lee, G.-H., van der Zande, A. M., et al. (2014), “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9(9), 676681.Google Scholar
Lee, G.-D., Wang, C. Z., Yoon, E., et al. (2005), “Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers,” Phys. Rev. Lett. 95, 205501.Google Scholar
Lee, H., Son, Y.-W., Park, N., Han, S., & Yu, J. (2005), “Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states,” Phys. Rev. B 72, 174431.Google Scholar
Lee, P. A. & Ramakrishnan, T. V. (1985), “Disordered electronic systems,” Rev. Mod. Phys. 57, 287337.Google Scholar
Lee, P. A. & Stone, A. D. (1985), “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55(15), 16221625.Google Scholar
Lee, Y.-S. & Marzari, N. (2006), “Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes,” Phys. Rev. Lett. 97(11), 116801.Google Scholar
Leek, P. J., Buitelaar, M. R., Talyanskii, V. I., et al. (2005), “Charge pumping in carbon nanotubes,” Phys. Rev. Lett. 95, 256802.Google Scholar
Lefebvre, J., Homma, Y., & Finnie, P. (2003), “Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 217401.Google Scholar
Leghrib, R., Felten, A., Demoisson, F., et al. (2010), “Room-temperature, selective detection of benzene at trace levels using plasma-treated metal-decorated multiwalled carbon nanotubes,” Carbon 48(12), 34773484.Google Scholar
Lehtinen, P. O., Foster, A. S., Ayuela, A., Vehviläinen, T. T., & Nieminen, R. M. (2004), “Structure and magnetic properties of adatoms on carbon nanotubes,” Phys. Rev. B 69(15), 155422.Google Scholar
Lehtinen, P. O., Foster, A. S., Ma, Y., Krasheninnikov, A. V., & Nieminen, R. M. (2004), “Irradiation-induced magnetism in graphite: A density functional study,” Phys. Rev. Lett. 93(18), 187202.Google Scholar
Leonard, F. & Talin, A. A. (2011), “Electrical contacts to one- and two-dimensional nanomaterials,” Nat. Nanotechnol. 6(12), 773783.Google Scholar
Léonard, F. & Tersoff, J. (1999), “Novel length scales in nanotube devices,” Phys. Rev. Lett. 83, 51745177.Google Scholar
Léonard, F. & Tersoff, J. (2000a), “Negative differential resistance in nanotube devices,” Phys. Rev. Lett. 85, 47674770.Google Scholar
Léonard, F. & Tersoff, J. (2000b), “Role of fermi-level pinning in nanotube schottky diodes,” Phys. Rev. Lett. 84, 46934696.Google Scholar
Léonard, F. & Tersoff, J. (2002), “Multiple functionality in nanotube transistors,” Phys. Rev. Lett. 88, 258302.Google Scholar
Lepro, X., Vega-Cantu, Y., Rodriguez-Macias, F., et al. (2007), “Production and characterization of coaxial nanotube junctions and networks of CNx/CNT,” Nano Lett. 7(8), 22202226.Google Scholar
Leutenantsmeyer, J. C., Ingla-Aynés, J., Fabian, J., & van Wees, B. J. (2018), “Observation of spin-valley-coupling-induced large spin-lifetime anisotropy in bilayer graphene,” Phys. Rev. Lett. 121, 127702.Google Scholar
Leutenantsmeyer, J. C., Kaverzin, A. A., Wojtaszek, M., & van Wees, B. J. (2017), “Proximity induced room temperature ferromagnetism in graphene probed with spin currents,” 2D Mater. 4, 014001.Google Scholar
Lherbier, A. (2008), Étude des propriétés électroniques et des propriétés de transport de nanofils semiconducteurs et de plans de graphène, PhD thesis, Université Joseph-Fourier.Google Scholar
Lherbier, A., Biel, B., Niquet, Y.-M., & Roche, S. (2008), “Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects,” Phys. Rev. Lett. 100, 036803.Google Scholar
Lherbier, A., Blase, X., Niquet, Y. M., Triozon, F., & Roche, S. (2008), “Charge transport in chemically doped 2D graphene,” Phys. Rev. Lett. 101(3), 036808.Google Scholar
Lherbier, A., Botello-Méndez, A. R., & Charlier, J.-C. (2016), “Electronic and optical properties of pristine and oxidized borophene,” 2D Mater. 3(4), 045006.Google Scholar
Lherbier, A., Dubois, S. M.-M., Declerck, X., et al. (2012), “Transport properties of graphene containing structural defects,” Phys. Rev. B 86(7), 075402.Google Scholar
Lherbier, A., Dubois, S. M. M., Declerck, X., et al. (2011), “Two-dimensional graphene with structural defects: Elastic mean free path, minimum conductivity, and Anderson transition,” Phys. Rev. Lett. 106(4), 046803.Google Scholar
Lherbier, A., Roche, S., Restrepo, O. A., et al. (2013), “Highly defective graphene: A key prototype of two-dimensional Anderson insulators,” Nano Res. 6, 326.Google Scholar
Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008), “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3(2), 101105.Google Scholar
Li, G., Luican, A., & Andrei, E. Y. (2009), “Scanning tunneling spectroscopy of graphene on graphite,” Phys. Rev. Lett. 102(17), 176804.Google Scholar
Li, G., Luican, A., Lopes dos Santos, J. M. B., et al. (2010), “Observation of Van Hove singularities in twisted graphene layers,” Nat. Phys. 6(2), 109113.Google Scholar
Li, L., Yu, Y., Ye, G. J., et al. (2014), “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372377.Google Scholar
Li, W., Sevincli, H., Roche, S., & Cuniberti, G. (2011), “Efficient linear scaling method for computing the thermal conductivity of disordered materials,” Phys. Rev. B 83, 155416.Google Scholar
Li, W., Sevinçli, H., Cuniberti, G., & Roche, S. (2010), “Phonon transport in large scale carbon-based disordered materials: Implementation of an efficient order-n and real-space Kubo methodology,” Phys. Rev. B 82, 041410.Google Scholar
Li, X., Wang, X., Zhang, L., Lee, S., & Dai, H. (2008), “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867), 12291232.Google Scholar
Liang, W., Bockrath, M., Bozovic, D., et al. (2001), “Fabry-Perot interference in a nanotube electron waveguide,” Nature 411(6838), 665669.Google Scholar
Libisch, F., Stampfer, C., & Burgdörfer, J. (2009), “Graphene quantum dots: Beyond a dirac billiard,” Phys. Rev. B 79(11), 115423.Google Scholar
Lieb, E. H. (1989), “Two theorems on the hubbard model,” Phys. Rev. Lett. 62, 12011204.Google Scholar
Lin, Y.-C., Ghosh, R. K., Addou, R., et al. (2015), “Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures,” Nat. Commun. 6, 7311.Google Scholar
Lindner, N. H., Refael, G., & Galitski, V. (2011), “Floquet topological insulator in semiconductor quantum wells,” Nat. Phys. 7(6), 490495.Google Scholar
Lipson, H. & Stokes, A. R. (1942), “The structure of graphite,” Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 181(984), 101105.Google Scholar
Liu, H., Neal, A. T., Zhu, Z., et al. (2014), “Phosphorene: An unexplored 2D semiconductor with a high hole mobility,” ACS Nano 8(4), 40334041.Google Scholar
Liu, J., Dai, H., Hafner, J. H., et al. (1997), “Fullerene ‘crop circles’,” Nature 385(6619), 780781.Google Scholar
Liu, K., Avouris, P., Martel, R., & Hsu, W. K. (2001), “Electrical transport in doped multiwalled carbon nanotubes,” Phys. Rev. B 63(16), 161404.Google Scholar
Liu, X., Oostinga, J. B., Morpurgo, A. F., & Vandersypen, L. M. K. (2009), “Electrostatic confinement of electrons in graphene nanoribbons,” Phys. Rev. B 80(12), 121407.Google Scholar
Liu, Y., Bian, G., Miller, T., & Chiang, T.-C. (2011), “Visualizing electronic chirality and berry phases in graphene systems using photoemission with circularly polarized light,” Phys. Rev. Lett. 107(16), 166803.Google Scholar
Liu, Z., Suenaga, K., Harris, P. J. F., & Iijima, S. (2009), “Open and closed edges of graphene layers,” Phys. Rev. Lett. 102, 015501.Google Scholar
Locatelli, N., Cros, V., & Grollier, J. (2014), “Spin-torque building blocks,” Nat. Mater. 13, 1120.Google Scholar
Lohrmann, D. (1989), “Shallow and deep impurity levels in multivalley semiconductors: A green-function study of a cubic model by the recursion method,” Phys. Rev. B 40, 8404.Google Scholar
Lopez-Bezanilla, A. (2009), Étude à partir des premiers principes de l’effet de la fonctionnalisatiron sur le transport de charge dans les systèmes à base de carbone à l’échelle mésoscopique, PhD thesis, Université Joseph Fourier.Google Scholar
López-Bezanilla, A., Blase, X., & Roche, S. (2010), “Quantum transport properties of chemically functionalized long semiconducting carbon nanotubes,” Nano Res. 3, 288295.Google Scholar
Lopez-Bezanilla, A., Froufe-Pérez, L. S., Roche, S., & Sáenz, J. J. (2018), “Unequivocal signatures of the crossover to Anderson localization in realistic models of disordered quasi-one-dimensional materials,” Phys. Rev. B 98, 235423.Google Scholar
López-Bezanilla, A., Triozon, F., & Roche, S. (2009), “Chemical functionalization effects on armchair graphene nanoribbons transport,” Nano Lett. 9, 2527.Google Scholar
López-Bezanilla, A., Triozon, F., Latil, S., Blase, X., & Roche, S. (2009), “Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale,” Nano Lett. 9(3), 940944.Google Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., & Kis, A. (2013), “Ultrasensitive photodetectors based on monolayer MoS2 ,” Nat. Nanotechnol. 8(7), 497501.Google Scholar
Lopez Sancho, M. P., Sancho, J. M. L., Sancho, J. M. L., & Rubio, J. (1985), “Highly convergent schemes for the calculation of bulk and surface green functions,” J. Phys. F: Metal Phys. 15(4), 851.Google Scholar
Low, T., Jiang, Y., Katsnelson, M., & Guinea, F. (2012), “Electron pumping in graphene mechanical resonators,” Nano Lett. 12(2), 850854.Google Scholar
Lukatskaya, M. R., Mashtalir, O., Ren, C. E., et al. (2013), “Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide,” Science 341(6153), 15021505.Google Scholar
Luryi, S. (1989), “Coherent versus incoherent resonant tunneling and implications for fast devices,” Superlattice. Microstruct. 5(3), 375382.Google Scholar
Luttinger, J. M. (1951), “The effect of a magnetic field on electrons in a periodic potential,” Phys. Rev. 84(4), 814817.Google Scholar
Luttinger, J. M. (1963), “An exactly soluble model of a many-fermion system,” J. Math. Phys. 4(9), 11541162.Google Scholar
Ma, R., Huan, Q., Wu, L., et al. (2017), “Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene,” Nano Lett. 17(9), 52915296.Google Scholar
Maassen, J., Zahid, F., & Guo, H. (2009), “Effects of dephasing in molecular transport junctions using atomistic first principles,” Phys. Rev. B 80, 125423.Google Scholar
Maassen, T., van den Berg, J. J., Huisman, E. H., et al. (2013), “Localized states influence spin transport in epitaxial graphene,” Phys. Rev. Lett. 110, 067209.Google Scholar
Maassen, T., van den Berg, J. J., Ijbema, N., et al. (2012), “Long spin relaxation times in wafer scale epitaxial graphene on SiC(0001),” Nano Lett. 12(3), 14981502.Google Scholar
MacKinnon, A. & Kramer, B. (1981), “One-parameter scaling of localization length and conductance in disordered systems,” Phys. Rev. Lett. 47, 15461549.Google Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., & Heinz, T. F. (2010), “Atomically thin MoS2 : A new direct-gap semiconductor,” Phys. Rev. Lett. 105(13), 136805.Google Scholar
Mak, K. F., Lui, C. H., Shan, J., & Heinz, T. F. (2009), “Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy,” Phys. Rev. Lett. 102, 256405.Google Scholar
Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. (2018), “Borophene as a prototype for synthetic 2D materials development,” Nat. Nanotechnol. 13(6), 444.Google Scholar
Mannix, A. J., Zhou, X.-F., Kiraly, B., et al. (2015), “Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs,” Science 350(6267), 15131516.Google Scholar
Marconcini, P. & Macucci, M. (2011), “The k·p method and its application to graphene, carbon nanotubes and graphene nanoribbons: The dirac equation,” La Rivista del Nuovo Cimento 34, 489584.Google Scholar
Margine, E. R., Bocquet, M.-L., & Blase, X. (2008), “Thermal stability of graphene and nanotube covalent functionalization,” Nano Lett. 8(10), 33153319.Google Scholar
Marmolejo-Tejada, J. M., García, J. H., Petrović, M. D., et al. (2018), “Deciphering the origin of nonlocal resistance in multiterminal graphene on hexagonal-boron-nitride with ab initio quantum transport: Fermi surface edge currents rather than Fermi sea topological valley currents,” J. Phys.: Mater. 1(1), 015006.Google Scholar
Martel, R., Derycke, V., Lavoie, C., et al. (2001), “Ambipolar electrical transport in semiconducting single-wall carbon nanotubes,” Phys. Rev. Lett. 87, 256805.Google Scholar
Martinez, D. F. (2003), “Floquet-green function formalism for harmonically driven Hamiltonians,” J. Phys. A: Math. Gen. 36(38), 9827.Google Scholar
Marx, D. & Hutter, J. (2000), “Ab initio molecular dynamics: Theory and Implementation,” Modern Methods and Algorithms of Quantum Chemistry, Proceedings, 2nd edn, NIC Series, Vol. 3, John von Neumann Institute for Computing, Jülich, pp. 329477.Google Scholar
Marzari, N. & Vanderbilt, D. (1997), “Maximally localized generalized wannier functions for composite energy bands,” Phys. Rev. B 56(20), 1284712865.Google Scholar
Matsumura, H. & Ando, T. (2001), “Conductance of carbon nanotubes with a stone-wales defect,” J. Phys. Soc. Jpn. 70(9), 26572665.Google Scholar
Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., et al. (2011), “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11(6), 23962399.Google Scholar
McCann, E., Abergel, D. S., & Fal’ko, V. I. (2007), “The low energy electronic band structure of bilayer graphene,” Eur. Phys. J. Spec. Top. 148(1), 91103.Google Scholar
McCann, E. & Falko, V. I. (2006), “Landau-level degeneracy and quantum Hall effect in a graphite bilayer,” Phys. Rev. Lett. 96(8), 086805.Google Scholar
McCann, E. & Fal’ko, V. I. (2012), “z → −z Symmetry of spin-orbit coupling and weak localization in graphene,” Phys. Rev. Lett. 108, 166606.Google Scholar
McCann, E., Kechedzhi, K., Fal’ko, V. I., et al. (2006), “Weak-localization magnetoresistance and valley symmetry in graphene,” Phys. Rev. Lett. 97, 146805.Google Scholar
McClure, J. (1969), “Electron energy band structure and electronic properties of rhombohedral graphite,” Carbon 7(4), 425432.Google Scholar
McClure, J. W. (1956), “Diamagnetism of graphite,” Phys. Rev. 104(3), 666671.Google Scholar
McClure, J. W. (1957), “Band structure of graphite and de Haas-van Alphen effect,” Phys. Rev. 108, 612618.Google Scholar
McCreary, K. M., Swartz, A. G., Han, W., Fabian, J., & Kawakami, R. K. (2012), “Magnetic moment formation in graphene detected by scattering of pure spin currents,” Phys. Rev. Lett. 109(18), 186604.Google Scholar
McIver, J. W., Schulte, B., Stein, F.-U., et al. (2018), “Light-induced anomalous Hall effect in graphene,” arXiv:1811.03522 [cond-mat]. arXiv: 1811.03522.Google Scholar
Meir, Y. & Wingreen, N. S. (1992), “Landauer formula for the current through an interacting electron region,” Phys. Rev. Lett. 68(16), 25122515.Google Scholar
Mello, P. A., Pereyra, P., & Kumar, N. (1988), “Macroscopic approach to multichannel disordered conductors,” Ann. Phys. (N.Y.) 181, 290317.Google Scholar
Mermin, N. D. & Wagner, H. (1966), “Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic heisenberg models,” Phys. Rev. Lett. 17, 11331136.Google Scholar
Messiah, A. (1999), Quantum Mechanics (2 Volumes in 1), Dover Publications, Mineola.Google Scholar
Meyer, J. C., Girit, C. O., Crommie, M. F., & Zettl, A. (2008), “Imaging and dynamics of light atoms and molecules on graphene,” Nature 454(7202), 319322.Google Scholar
Meyer, J. C., Kisielowski, C., Erni, R., et al. (2008), “Direct imaging of lattice atoms and topological defects in graphene membranes,” Nano Lett. 8(11), 35823586.Google Scholar
Miao, F., Wijeratne, S., Zhang, Y., et al. (2007), “Phase-coherent transport in graphene quantum billiards,” Science 317(5844), 15301533.Google Scholar
Min, H., Hill, J. E., Sinitsyn, N. A., et al. (2006), “Intrinsic and Rashba spin-orbit interactions in graphene sheets,” Phys. Rev. B 74, 165310.Google Scholar
Mingo, N. & Han, J. (2001), “Conductance of metallic carbon nanotubes dipped into metal,” Phys. Rev. B 64, 201401.Google Scholar
Mingo, N., Yang, L., Han, J., & Anantram, M. (2001), “Resonant versus anti-resonant tunneling at carbon nanotube ABA heterostructures,” Phys. Status Solidi (b) 226(1), 7985.Google Scholar
Mintmire, J. W., Dunlap, B. I., & White, C. T. (1992), “Are fullerene tubules metallic?,” Phys. Rev. Lett. 68, 631634.Google Scholar
Mintmire, J. W. & White, C. T. (1998), “Universal density of states for carbon nanotubes,” Phys. Rev. Lett. 81, 25062509.Google Scholar
Miroshnichenko, A. E., Flach, S., & Kivshar, Y. S. (2010), “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 22572298.Google Scholar
Mishchenko, A., Tu, J. S., Cao, Y., et al. (2014), “Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures,” Nat. Nanotechnol. 9(10), 808813.Google Scholar
Miyake, T. & Saito, S. (2003), “Quasiparticle band structure of carbon nanotubes,” Phys. Rev. B 68, 155424.Google Scholar
Miyamoto, Y., Nakada, K., & Fujita, M. (1999), “First-principles study of edge states of h-terminated graphitic ribbons,” Phys. Rev. B 59, 98589861.Google Scholar
Miyamoto, Y., Saito, S., & Tománek, D. (2001), “Electronic interwall interactions and charge redistribution in multiwall nanotubes,” Phys. Rev. B 65, 041402.Google Scholar
Molle, A., Goldberger, J., Houssa, M., et al. (2017), “Buckled two-dimensional Xene sheets,” Nat. Mater. 16(2), 163169.Google Scholar
Monkhorst, H. J. & Pack, J. D. (1976), “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 51885192.Google Scholar
Monteverde, M., Ojeda-Aristizabal, C., Weil, R., et al. (2010), “Transport and elastic scattering times as probes of the nature of impurity scattering in single-layer and bilayer graphene,” Phys. Rev. Lett. 104, 126801.Google Scholar
Moon, P., Koshino, M., & Son, Y.-W. (2019), “Quasicrystalline electronic states in 30◦ rotated twisted bilayer graphene,” Phys. Rev. B 99, 165430.Google Scholar
Moore, A. (1974), “Highly oriented pyrolytic graphite,” Walker, P. L. and Thrower, P. A., eds, Chemistry and Physics of Carbon, Vol. 11, Marcel Dekker Inc., New York.Google Scholar
Morita, A. (1986), “Semiconducting black phosphorus,” Appl. Phys. A 39(4), 227242.Google Scholar
Moser, J., Tao, H., Roche, S., et al. (2010), “Magnetotransport in disordered graphene exposed to ozone: From weak to strong localization,” Phys. Rev. B 81, 205445.Google Scholar
Moskalets, M. & Büttiker, M. (2002), “Floquet scattering theory of quantum pumps,” Phys. Rev. B 66(20), 205320.Google Scholar
Mott, N. F. (1990), Metal-insulator Transitions, 2nd edn, Taylor & Francis, London.Google Scholar
Mounet, N., Gibertini, M., Schwaller, P., et al. (2018), “Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds,” Nat. Nanotechnol. 13(3), 246.Google Scholar
Mucciolo, E. R., Castro Neto, A. H., & Lewenkopf, C. H. (2009), “Conductance quantization and transport gaps in disordered graphene nanoribbons,” Phys. Rev. B 79, 075407.Google Scholar
Munoz, E. (2012), “Phonon-limited transport coefficients in extrinsic graphene,” J. Phys.: Condens. Matter 24, 195302.Google Scholar
Muscat, J., Wander, A., & Harrison, N. (2001), “On the prediction of band gaps from hybrid functional theory,” Chem. Phys. Lett. 342(34), 397401.Google Scholar
Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014), “25th anniversary article: MXenes: A new family of two-dimensional materials,” Adv. Mater. 26(7), 9921005.Google Scholar
Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1996), “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 1795417961.Google Scholar
Nam, Y., Sun, J., Lindvall, N., et al. (2013), “Quantum Hall effect in graphene decorated with disordered multilayer patches,” Appl. Phys. Lett. 103(23), 233110.Google Scholar
Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M., & Terrones, H. (2017), “Electronic and optical properties of strained graphene and other strained 2D materials: A review,” Rep. Progr. Phys. 80(9), 096501.Google Scholar
Nemec, N., Tománek, D., & Cuniberti, G. (2006), “Contact dependence of carrier injection in carbon nanotubes: An ab initio study,” Phys. Rev. Lett. 96, 076802.Google Scholar
Nogueira, F., Castro, A., & Marques, M. A. L. (2003), “A tutorial on density functional theory,” A Primer in Density-Functional Theory, Lecture Notes in Physics, Vol. 620, Springer, Berlin, pp. 218256.Google Scholar
Nomura, K. & MacDonald, A. H. (2006), “Quantum Hall ferromagnetism in graphene,” Phys. Rev. Lett. 96, 256602.Google Scholar
Nomura, K. & MacDonald, A. H. (2007), “Quantum transport of massless dirac fermions,” Phys. Rev. Lett. 98, 076602.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2005), “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197200.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004), “Electric field effect in atomically thin carbon films,” Science 306(5696), 666669.Google Scholar
Novoselov, K. S., Jiang, D., Schedin, F., et al. (2005), “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 1045110453.Google Scholar
Novoselov, K. S., Jiang, Z., Zhang, Y., et al. (2007), “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379.Google Scholar
Novoselov, K. S., Mishchenko, A., Carvalho, A., & Neto, A. H. C. (2016), “2D materials and van der Waals heterostructures,” Science 353(6298), aac9439.Google Scholar
Nozaki, D., Girard, Y., & Yoshizawa, K. (2008), “Theoretical study of long-range electron transport in molecular junctions,” J. Phy. Chem. C 112(44), 1740817415.Google Scholar
Oberlin, A., Endo, M., & Koyama, T. (1976), “Filamentous growth of carbon through benzene decomposition,” J. Cryst. Growth 32(3), 335349.Google Scholar
Ochoa, H., Castro Neto, A. H., & Guinea, F. (2012), “Elliot-Yafet mechanism in graphene,” Phys. Rev. Lett. 108(20), 206808.Google Scholar
O’Connell, M. J., Bachilo, S. M., Huffman, C. B., et al. (2002), “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297(5581), 593596.Google Scholar
Odom, T. W., Huang, J.-L., Kim, P., & Lieber, C. M. (1998), “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature 391(6662), 6264.Google Scholar
Odom, T. W., Huang, J.-L., & Lieber, C. M. (2002), “STM studies of single-walled carbon nanotubes,” J. Phys.: Condens. Matter 14(6), R145.Google Scholar
Oezyilmaz, B., Jarillo-Herrero, P., Efetov, D., et al. (2007), “Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions,” Phys. Rev. Lett. 99, 166804.Google Scholar
Offidani, M. & Ferreira, A. (2018), “Microscopic theory of spin relaxation anisotropy in graphene with proximity-induced spin-orbit coupling,” Phys. Rev. B 98(24), 245408.Google Scholar
Oganov, A. R., Chen, J., Gatti, C., et al. (2009), “Ionic high-pressure form of elemental boron,” Nature 457(7231), 863867.Google Scholar
Oka, T. & Aoki, H. (2009), “Photovoltaic Hall effect in graphene,” Phys. Rev. B 79(8), 081406.Google Scholar
Okada, S. & Oshiyama, A. (2001), “Magnetic ordering in hexagonally bonded sheets with first-row elements,” Phys. Rev. Lett. 87, 146803.Google Scholar
Oksanen, M., Uppstu, A., Laitinen, A., Cox, D. J., et al. (2014), “Single-mode and multimode Fabry-Pérot interference in suspended graphene,” Phys. Rev. B 89, 121414(R).Google Scholar
Omar, S. & van Wees, B. J. (2017), “Graphene-WS2 heterostructures for tunable spin injection and spin transport,” Phys. Rev. B 95, 081404.Google Scholar
Onida, G., Reining, L., & Rubio, A. (2002), “Electronic excitations: Density-functional versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74, 601659.Google Scholar
Orellana, P. A. & Pacheco, M. (2007), “Photon-assisted transport in a carbon nanotube calculated using Green’s function techniques,” Phys. Rev. B 75, 115427.Google Scholar
Ortmann, F., Cresti, A., Montambaux, G., & Roche, S. (2011), “Magnetoresistance in disordered graphene: The role of pseudospin and dimensionality effects unraveled,” EPL (Europhysics Letters) 94(4), 47006.Google Scholar
Ortmann, F. & Roche, S. (2011), “Polaron transport in organic crystals: Temperature tuning of disorder effects,” Phys. Rev. B 84(18), 180302.Google Scholar
Ortmann, F. & Roche, S. (2013), “Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene,” Phys. Rev. Lett. 110(8), 086602.Google Scholar
Ostrovsky, P. M., Gornyi, I. V., & Mirlin, A. D. (2006), “Electron transport in disordered graphene,” Phys. Rev. B 74, 235443.Google Scholar
Ostrovsky, P. M., Gornyi, I. V., & Mirlin, A. D. (2008), “Theory of anomalous quantum Hall effects in graphene,” Phys. Rev. B 77(19), 195430.Google Scholar
Ostrovsky, P. M., Titov, M., Bera, S., Gornyi, I. V., & Mirlin, A. D. (2010), “Diffusion and criticality in undoped graphene with resonant scatterers,” Phys. Rev. Lett. 105, 266803.Google Scholar
Ouyang, M., Huang, J.-L., Cheung, C. L., & Lieber, C. M. (2001a), “Atomically resolved single-walled carbon nanotube intramolecular junctions,” Science 291(5501), 97100.Google Scholar
Ouyang, M., Huang, J.-L., Cheung, C. L., & Lieber, C. M. (2001b), “Energy gaps in ‘metallic’ single-walled carbon nanotubes,” Science 292(5517), 702705.Google Scholar
Ouyang, Y., Dai, H., & Guo, J. (2010), “Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material,” Nano Res. 3(1), 815.Google Scholar
Paier, J., Marsman, M., Hummer, K., et al. (2006), “Screened hybrid density functionals applied to solids,” J. Chem. Phy. 124(15), 154709.Google Scholar
Palacios, J. J., Pérez-Jiménez, A. J., Louis, E., SanFabián, E., & Vergés, J. A. (2003), “First-principles phase-coherent transport in metallic nanotubes with realistic contacts,” Phys. Rev. Lett. 90(10), 106801.Google Scholar
Park, H., Zhao, J., & Lu, J. P. (2006), “Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes,” Nano Lett. 6(5), 916919.Google Scholar
Park, J.-Y., Rosenblatt, S., Yaish, Y., et al. (2004), “Electron-phonon scattering in metallic single-walled carbon nanotubes,” Nano Lett. 4(3), 517520.Google Scholar
Pastawski, H. M. (1991), “Classical and quantum transport from generalized Landauer-Büttiker equations,” Phys. Rev. B 44(12), 63296339.Google Scholar
Pastawski, H. M. & Medina, E. (2001), “Tight binding methods in quantum transport through molecules and small devices: From the coherent to the decoherent description,” Rev. Mex. Fis. 47(S1), 123.Google Scholar
Pastawski, H. M., Weisz, J. F., & Albornoz, S. (1983), “Matrix continued-fraction calculation of localization length,” Phys. Rev. B 28(12), 68966903.Google Scholar
Patel, S. R., Stewart, D. R., Marcus, C. M., et al. (1998), “Non-Gaussian distribution of Coulomb blockade peak heights in quantum dots,” Phys. Rev. Lett. 81, 5900.Google Scholar
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., & Joannopoulos, J. D. (1992), “Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients,” Rev. Mod. Phys. 64(4), 10451097.Google Scholar
Peierls, R. (1933), “On the theory of the diamagnetism of conduction electrons,” Z. Phys. 80, 763.Google Scholar
Peltonen, T. J., Ojajärvi, R., & Heikkilä, T. T. (2018), “Mean-field theory for superconductivity in twisted bilayer graphene,” Phys. Rev. B 98(22), 220504.Google Scholar
Penev, E. S., Bhowmick, S., Sadrzadeh, A., & Yakobson, B. I. (2012), “Polymorphism of two-dimensional boron,” Nano Lett. 12(5), 24412445.Google Scholar
Peng, S. & Cho, K. (2003), “Ab initio study of doped carbon nanotube sensors,” Nano Lett. 3(4), 513517.Google Scholar
Perdew, J. P. (1991), Electronic Structure of Solids’91, Akademie Verlag, Berlin, p. 11.Google Scholar
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996), “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868.Google Scholar
Perdew, J. P. & Zunger, A. (1981), “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B 23, 50485079.Google Scholar
Pereira, V. M., dos Santos, L., & Neto, A. H. C. (2008), “Modeling disorder in graphene,” Phys. Rev. B 77(11), 115109.Google Scholar
Perez-Piskunow, P. M., Foa Torres, L. E. F., & Usaj, G. (2015), “Hierarchy of Floquet gaps and edge states for driven honeycomb lattices,” Phys. Rev. A 91(4), 043625.Google Scholar
Perez-Piskunow, P. M., Usaj, G., Balseiro, C. A., & Foa Torres, L. E. F. (2014), “Floquet chiral edge states in graphene,” Phys. Rev. B 89(12), 121401(R).Google Scholar
Perfetto, E., Stefanucci, G., & Cini, M. (2010), “Time-dependent transport in graphene nanoribbons,” Phys. Rev. B 82(3), 035446.Google Scholar
Persson, M. P., Lherbier, A., Niquet, Y.-M., Triozon, F., & Roche, S. (2008), “Orientational dependence of charge transport in disordered silicon nanowires,” Nano Lett. 8(12), 41464150.Google Scholar
Phillips, J. C. (1958), “Energy-band interpolation scheme based on a pseudopotential,” Phys. Rev. 112, 685695.Google Scholar
Pi, K., Han, W., McCreary, K. M., et al. (2010), “Manipulation of spin transport in graphene by surface chemical doping,” Phys. Rev. Lett. 104, 187201.Google Scholar
Piquemal-Banci, M., Galceran, R., Caneva, S., et al. (2016), “Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers,” Appl. Phys. Lett. 108(10), 102404.Google Scholar
Piquemal-Banci, M., Galceran, R., Godel, F., et al. (2018), “Insulator-to-metallic spin-filtering in 2D-magnetic tunnel junctions based on hexagonal boron nitride,” ACS Nano 12(5), 47124718.Google Scholar
Pisana, S., Lazzeri, M., Casiraghi, C., et al. (2007), “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nat. Mater. 6(3), 198201.Google Scholar
Platero, G. & Aguado, R. (2004), “Photon-assisted transport in semiconductor nanostructures,” Phys. Rep. 395(12), 1157.Google Scholar
Po, H. C., Zou, L., Vishwanath, A., & Senthil, T. (2018), “Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene,” Phys. Rev. X 8(3), 031089.Google Scholar
Poncharal, P., Berger, C., Yi, Y., Wang, Z. L., & de Heer, W. A. (2002), “Room temperature ballistic conduction in carbon nanotubes,” J. Phys. Chem. B 106(47), 1210412118.Google Scholar
Ponomarenko, L. A., Geim, A. K., Zhukov, A. A., et al. (2011), “Tunable metal-insulator transition in double-layer graphene heterostructures,” Nat. Phys. 7(12), 958961.Google Scholar
Ponomarenko, L. A., Gorbachev, R. V., Yu, G. L., et al. (2013), “Cloning of Dirac fermions in graphene superlattices,” Nature 497(7451), 594597.Google Scholar
Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., et al. (2008), “Chaotic Dirac billiard in graphene quantum dots,” Science 320(5874), 356358.Google Scholar
Poumirol, J.-M., Cresti, A., Roche, S., et al. (2010), “Edge magnetotransport fingerprints in disordered graphene nanoribbons,” Phys. Rev. B 82(4), 041413.Google Scholar
Prada, E., San-Jose, P., & Schomerus, H. (2009), “Quantum pumping in graphene,” Phys. Rev. B 80, 245414.Google Scholar
Pumera, M. & Sofer, Z. (2017), “2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus,” Adv. Mater. 29(21), 1605299.Google Scholar
Purewal, M. S., Hong, B. H., Ravi, A., et al. (2007), “Scaling of resistance and electron mean free path of single-walled carbon nanotubes,” Phys. Rev. Lett. 98, 186808.Google Scholar
Qiao, Z., Jiang, H., Li, X., Yao, Y., & Niu, Q. (2012), “Microscopic theory of quantum anomalous Hall effect in graphene,” Phys. Rev. B 85, 115439.Google Scholar
Qiu, D. Y., da Jornada, F. H., & Louie, S. G. (2017), “Environmental screening effects in 2D materials: Renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus,” Nano Lett. 17(8), 47064712.Google Scholar
Querlioz, D., Apertet, Y., Valentin, A., et al. (2008), “Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder,” Appl. Phys. Lett. 92(4), 042108.Google Scholar
Radchenko, T. M., Shylau, A. A., & Zozoulenko, I. V. (2012), “Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space Kubo approach,” Phys. Rev. B 86, 035418.Google Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011), “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147150.Google Scholar
Raes, B., Cummings, A. W., Bonell, F., et al. (2017), “Spin precession in anisotropic media,” Phys. Rev. B 95, 085403.Google Scholar
Ralph, D. C. & Stiles, M. D. (2008), “Spin transfer torques,” J. Magn. Magn. Mater. 320(7), 11901216.Google Scholar
Raquet, B., Avriller, R., Lassagne, B., et al. (2008), “Onset of Landau-level formation in carbon-nanotube-based electronic Fabry-Perot resonators,” Phys. Rev. Lett. 101(4), 046803.Google Scholar
Rashba, E. I. (2009), “Graphene with structure-induced spin-orbit coupling: Spin-polarized states, spin zero modes, and quantum Hall effect,” Phys. Rev. B 79, 161409(R).Google Scholar
Ravagnan, L., Piseri, P., Bruzzi, M., et al. (2007), “Influence of cumulenic chains on the vibrational and electronic properties of sp-sp2 amorphous carbon,” Phys. Rev. Lett. 98(21), 216103.Google Scholar
Ravagnan, L., Siviero, F., Lenardi, C., et al. (2002), “Cluster-beam deposition and in situ characterization of carbyne-rich carbon films,” Phys. Rev. Lett. 89(28), 285506.Google Scholar
Rechtsman, M. C., Zeuner, J. M., Plotnik, Y., et al. (2013), “Photonic Floquet topological insulators,” Nature 496(7444), 196200.Google Scholar
Reich, S., Maultzsch, J., Thomsen, C., & Ordejón, P. (2002), “Tight-binding description of graphene,” Phys. Rev. B 66, 035412.Google Scholar
Reis, F., Li, G., Dudy, L., et al. (2017), “Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material,” Science 357(6348), 287290.Google Scholar
Resta, R. (2000), “Manifestations of berry phase in molecules and condensed matter,” J. Phys.: Condens. Matter 12(9), R107R143.Google Scholar
Ribeiro-Palau, R., Lafont, F., Brun-Picard, J., et al. (2015), “Quantum Hall resistance standard in graphene devices under relaxed experimental conditions,” Nat. Nanotechnol. 10(11), 965971.Google Scholar
Ribeiro-Palau, R., Zhang, C., Watanabe, K., et al. (2018), “Twistable electronics with dynamically rotatable heterostructures,” Science 361(6403), 690693.Google Scholar
Ribeiro, R., Poumirol, J.-M., Cresti, A., et al. (2011), “Unveiling the magnetic structure of graphene nanoribbons,” Phys. Rev. Lett. 107(8), 086601.Google Scholar
Ribeiro-Soares, J., Almeida, R. M., Barros, E. B., et al. (2014), “Group theory analysis of phonons in two-dimensional transition metal dichalcogenides,” Phys. Rev. B 90(11), 115438.Google Scholar
Rickhaus, P., Maurand, R., Liu, M.-H., et al. (2013), “Ballistic interferences in suspended graphene,” Nat. Commun. 4, 2342.Google Scholar
Rignanese, G.-M. (1998), First-principles molecular dynamics study of SiO 2 : Surface and interface with Si, PhD thesis, Université Catholique de Louvain.Google Scholar
Ritter, K. A. & Lyding, J. W. (2009), “The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons,” Nat. Mater. 8(3), 235242.Google Scholar
Rivera, P., Schaibley, J. R., Jones, A. M., et al. (2015), “Observation of long-lived interlayer excitons in monolayer MoSe2 WSe2 heterostructures,” Nat. Commun. 6, 6242.Google Scholar
Rocha, A. R. (2007), Theoretical and computational aspects of electronic transport at the nanoscale, PhD thesis, University of Dublin, Trinity College.Google Scholar
Rocha, A. R., García-Suárez, V. M., Bailey, S., et al. (2006), “Spin and molecular electronics in atomically generated orbital landscapes,” Phys. Rev. B 73(8), 085414.Google Scholar
Rocha, A. R., Garcia-Suarez, V. M., Bailey, S. W., et al. (2005), “Towards molecular spintronics,” Nat. Mater. 4(4), 335339.Google Scholar
Rocha, C. G., Foa Torres, L. E. F., & Cuniberti, G. (2010), “ac transport in graphene-based Fabry-Pérot devices,” Phys. Rev. B 81(11), 115435.Google Scholar
Roche, S. (1996), Contribution à l’étude théorique du transport électronique dan les quasicristaux, PhD thesis, Université Joseph-Fourier.Google Scholar
Roche, S. (1999), “Quantum transport by means of o(n) real-space methods,” Phys. Rev. B 59(3), 22842291.Google Scholar
Roche, S. (2011), “Nanoelectronics: Graphene gets a better gap,” Nat. Nanotechnol. 6(1), 89.Google Scholar
Roche, S., Akerman, J., Beschoten, B., et al. (2015), “Graphene spintronics: The European flagship perspective,” 2D Mater. 2(3), 030202.Google Scholar
Roche, S., Akkermans, E., Chauvet, O., et al. (2006), “Transport properties,” Understanding Carbon Nanotubes, from Basics to Application, Lecture Notes on Physics, Berlin, Heidelberg, Springer-Verlag, pp. 335437.Google Scholar
Roche, S., Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (2000), “Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes,” Phys. Rev. B 62, 1609216099.Google Scholar
Roche, S., Jiang, J., Triozon, F., & Saito, R. (2005), “Quantum dephasing in carbon nanotubes due to electron-phonon coupling,” Phys. Rev. Lett. 95(7), 076803.Google Scholar
Roche, S., Leconte, N., Ortmann, F., et al. (2012), “Quantum transport in disordered graphene: A theoretical perspective,” Solid State Commun. 152(15), 14041410.Google Scholar
Roche, S. & Mayou, D. (1997), “Conductivity of quasiperiodic systems: A numerical study,” Phys. Rev. Lett. 79, 25182521.Google Scholar
Roche, S. & Saito, R. (2001), “Magnetoresistance of carbon nanotubes: From molecular to mesoscopic fingerprints,” Phys. Rev. Lett. 87, 246803.Google Scholar
Roche, S., Triozon, F., Rubio, A., & Mayou, D. (2001), “Conduction mechanisms and magnetotransport in multiwalled carbon nanotubes,” Phys. Rev. B 64(12), 121401.Google Scholar
Roche, S. & Valenzuela, S. O. (2014), “Graphene spintronics: Puzzling controversies and challenges for spin manipulation,” J. Phys. D: Appl. Phys. 47, 094011.Google Scholar
Rodriguez-Vega, M., Schwiete, G., Sinova, J., & Rossi, E. (2017), “Giant Edelstein effect in topological-insulator–graphene heterostructures,” Phys. Rev. B 96, 235419.Google Scholar
Rohlfing, M., Wang, N.-P., Krüger, P., & Pollmann, J. (2003), “Image states and excitons at insulator surfaces with negative electron affinity,” Phys. Rev. Lett. 91, 256802.Google Scholar
Romo-Herrera, J. M., Terrones, M., Terrones, H., Dag, S., & Meunier, V. (2006), “Covalent 2D and 3D networks from 1D nanostructures: Designing new materials,” Nano Lett. 7(3), 570576.Google Scholar
Romo-Herrera, J. M., Terrones, M., Terrones, H., & Meunier, V. (2008), “Guiding electrical current in nanotube circuits using structural defects: A step forward in nanoelectronics,” ACS Nano 2(12), 25852591.Google Scholar
Ross, J. S., Klement, P., Jones, A. M., et al. (2014), “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol. 9(4), 268272.Google Scholar
Rudner, M. S., Lindner, N. H., Berg, E., & Levin, M. (2013), Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems. Phys. Rev. X 3, 031005.Google Scholar
Ruffieux, P., Wang, S., Yang, B., et al. (2016), “On-surface synthesis of graphene nanoribbons with zigzag edge topology,” Nature 531(7595), 489492.Google Scholar
Rycerz, A., Tworzydlo, J., & Beenakker, C. (2007a), “Valley filter and valley valve in graphene,” Nat. Phys. 3, 172175.Google Scholar
Rycerz, A., Tworzydo, J., & Beenakker, C. W. J. (2007b), “Anomalously large conductance fluctuations in weakly disordered graphene,” Europhys. Lett. 79, 57003.Google Scholar
Safeer, C. K., Ingla-Aynés, J., Herling, F., et al. (2019), “Room-temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures,” Nano Lett. 19(2), 10741082.Google Scholar
Saito, R., Dresselhaus, G., & Dresselhaus, M. (1998), Physical Properties of Carbon Nanotubes, Imperial College Press, London.Google Scholar
Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (1994), “Magnetic energy bands of carbon nanotubes,” Phys. Rev. B 50(19), 1469814701.Google Scholar
Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (1996), “Tunneling conductance of connected carbon nanotubes,” Phys. Rev. B 53, 20442050.Google Scholar
Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (2000), “Trigonal warping effect of carbon nanotubes,” Phys. Rev. B 61, 29812990.Google Scholar
Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1992a), “Electronic structure of chiral graphene tubules,” Appl. Phys. Lett. 60(18), 22042206.Google Scholar
Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. (1992b), “Electronic structure of graphene tubules based on C60,” Phys. Rev. B 46(3), 18041811.Google Scholar
Salemi, L., Lherbier, A., & Charlier, J.-C. (2018), “Spin-dependent properties in zigzag graphene nanoribbons with phenyl-edge defects,” Phys. Rev. B 98(21), 214204.Google Scholar
Sambe, H. (1973), “Steady states and quasienergies of a quantum-mechanical system in an oscillating field,” Phys. Rev. A 7, 22032213.Google Scholar
San-Jose, P., Prada, E., Kohler, S., & Schomerus, H. (2011), “Single-parameter pumping in graphene,” Phys. Rev. B 84(15), 155408.Google Scholar
San-Jose, P., Prada, E., Schomerus, H., & Kohler, S. (2012), “Laser-induced quantum pumping in graphene,” Appl. Phys. Lett. 101, 153506.Google Scholar
Sanvito, S., Lambert, C. J., Jefferson, J. H., & Bratkovsky, A. M. (1999), “General Green’s-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers,” Phys. Rev. B 59(18), 1193611948.Google Scholar
Sasaki, K., Murakami, S., & Saito, R. (2006), “Stabilization mechanism of edge states in graphene,” Appl. Phys. Lett. 88(11), 113110.Google Scholar
Savelev, S. E. & Alexandrov, A. S. (2011), “Massless dirac fermions in a laser field as a counterpart of graphene superlattices,” Phys. Rev. B 84(3), 035428.Google Scholar
Savelev, S. E., Häusler, W., & Hänggi, P. (2012), “Current resonances in graphene with time-dependent potential barriers,” Phys. Rev. Lett. 109(22), 226602.Google Scholar
Scholz, A., López, A., & Schliemann, J. (2013), “Interplay between spin-orbit interactions and a time-dependent electromagnetic field in monolayer graphene,” Phys. Rev. B 88(4), 045118.Google Scholar
Schrödinger, E. (1926), “An undulatory theory of the mechanics of atoms and molecules,” Phys. Rev. 28, 10491070.Google Scholar
Schwierz, F. (2010), “Graphene transistors,” Nat. Nanotechnol. 5(7), 487496.Google Scholar
Segall, M. D., Lindan, P. J. D., Probert, M. J., et al. (2002), “First-principles simulation: Ideas, illustrations and the CASTEP code,” J. Phys.: Condens. Matter 14(11), 2717.Google Scholar
Seifert, M., Vargas, J. E. B., Bobinger, M., et al. (2015), “Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization,” 2D Mater. 2(2), 024008.Google Scholar
Sela, I. & Cohen, D. (2008), “Quantum stirring in low-dimensional devices,” Phys. Rev. B 77(24), 245440.Google Scholar
Semenoff, G. W. (1984), “Condensed-matter simulation of a three-dimensional anomaly,” Phys. Rev. Lett. 53, 24492452.Google Scholar
Seneor, P., Dlubak, B., Martin, M.-B., et al. (2012), “Spintronics with graphene,” MRS Bull. 37(12), 12451254.Google Scholar
Sergeeva, A. P., Popov, I. A., Piazza, Z. A., et al. (2014), “Understanding Boron through size-selected clusters: Structure, chemical bonding, and fluxionality,” Acc. Chem. Res. 47(4), 13491358.Google Scholar
Settnes, M., Garcia, J. H., & Roche, S. (2018), “Valley-polarized quantum transport generated by gauge fields in graphene,” 2D Mater. 4(3), 031006.Google Scholar
Sevincli, H., Li, W., Mingo, N., Cuniberti, G., & Roche, S. (2011), “Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets,” Phys. Rev. B 84, 205444.Google Scholar
Sheng, D. N., Sheng, L., & Weng, Z. Y. (2006), “Quantum Hall effect in graphene: Disorder effect and phase diagram,” Phys. Rev. B 73(23), 233406.Google Scholar
Shevtsov, O., Carmier, P., Petitjean, C., et al. (2012), “Graphene-based heterojunction between two topological insulators,” Phys. Rev. X 2(3), 031004.Google Scholar
Shibayama, Y., Sato, H., Enoki, T., & Endo, M. (2000), “Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials,” Phys. Rev. Lett. 84(8), 17441747.Google Scholar
Shimazaki, Y., Yamamoto, M., Borzenets, I. V., et al. (2015), “Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene,” Nat. Phys. 11(12), 10321036.Google Scholar
Shimizu, T., Haruyama, J., Marcano, D., et al. (2011), “Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons,” Nat. Nanotechnol. 6(1), 4550.Google Scholar
Shirley, J. H. (1965), “Solution of the Schrödinger equation with a Hamiltonian periodic in time,” Phys. Rev. 138, B979B987.Google Scholar
Shon, N. H. & Ando, T. (1998), “Quantum transport in two-dimensional graphite system,” J. Phys. Soc. Jpn. 67(7), 24212429.Google Scholar
Shytov, A. V., Rudner, M. S., & Levitov, L. S. (2008), “Klein backscattering and Fabry-Perot interference in graphene heterojunctions,” Phys. Rev. Lett. 101(15), 156804.Google Scholar
Siegel, D. A., Park, C.-H., Hwang, C., et al. (2011), “Many-body interactions in quasi-freestanding graphene,” Proc. Natl. Acad. Sci. 108(28), 1136511369.Google Scholar
Simmons, J. M., In, I., Campbell, V. E., et al. (2007), “Optically modulated conduction in chromophore-functionalized single-wall carbon nanotubes,” Phys. Rev. Lett. 98(8), 086802.Google Scholar
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H., & Jungwirth, T. (2015), “Spin Hall effects,” Rev. Mod. Phys. 87, 12131260.Google Scholar
Skylaris, C.-K., Haynes, P. D., Mostofi, A. A., & Payne, M. C. (2005), “Introducing ONETEP: Linear-scaling density functional simulations on parallel computers,” J. Chem. Phys. 122(8), 084119.Google Scholar
Slonczewski, J. C. & Weiss, P. R. (1958), “Band structure of graphite,” Phys. Rev. 109, 272279.Google Scholar
Sluiter, M. H. F. & Kawazoe, Y. (2003), “Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene,” Phys. Rev. B 68(8), 085410.Google Scholar
Smith, B. W., Monthioux, M., & Luzzi, D. E. (1998), “Encapsulated C60 in carbon nanotubes,” Nature 396(6709), 323324.Google Scholar
Sofo, J. O., Chaudhari, A. S., & Barber, G. D. (2007), “Graphane: A two-dimensional hydrocarbon,” Phys. Rev. B 75(15), 153401.Google Scholar
Soler, J. M., Artacho, E., Gale, J. D., et al. (2002), “The SIESTA method for ab initio order-n materials simulation,” J. Phys.: Condens. Matter 14(11), 2745.Google Scholar
Son, Y.-W., Cohen, M. L., & Louie, S. G. (2006a), “Energy gaps in graphene nanoribbons,” Phys. Rev. Lett. 97, 216803.Google Scholar
Son, Y.-W., Cohen, M. L., & Louie, S. G. (2006b), “Half-metallic graphene nanoribbons,” Nature 444(7117), 347349.Google Scholar
Song, K., Soriano, D., Cummings, A. W., et al. (2018), “Spin proximity effects in graphene/topological insulator heterostructures,” Nano Lett. 18(3), 20332039.Google Scholar
Soriano, D., Leconte, N., Ordejón, P., et al. (2011), “Magnetoresistance and magnetic ordering fingerprints in hydrogenated graphene,” Phys. Rev. Lett. 107, 016602.Google Scholar
Soriano, D., Tuan, D. V., Dubois, S. M.-M., et al. (2015), “Spin transport in hydrogenated graphene,” 2D Mater. 2(2), 022002.Google Scholar
Spataru, C. D., Ismail-Beigi, S., Benedict, L. X., & Louie, S. G. (2004), “Excitonic effects and optical spectra of single-walled carbon nanotubes,” Phys. Rev. Lett. 92, 077402.Google Scholar
Splendiani, A., Sun, L., Zhang, Y., et al. (2010), “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10(4), 12711275.Google Scholar
Sponza, L., Amara, H., Attaccalite, C., et al. (2018), “Direct and indirect excitons in boron nitride polymorphs: A story of atomic configuration and electronic correlation,” Phys. Rev. B 98(12), 125206.Google Scholar
Sprinkle, M., Ruan, M., Hu, Y., et al. (2010), “Scalable templated growth of graphene nanoribbons on SiC,” Nat. Nanotechnol. 5(10), 727731.Google Scholar
Stampfer, C., Güttinger, J., Hellmüller, S., et al. (2009), “Energy gaps in etched graphene nanoribbons,” Phys. Rev. Lett. 102, 056403.Google Scholar
Stampfer, C., Guttinger, J., Molitor, F., et al. (2008), “Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92(1), 012102.Google Scholar
Stander, N., Huard, B., & Goldhaber-Gordon, D. (2009), “Evidence for Klein tunneling in graphene pn junctions,” Phys. Rev. Lett. 102, 026807.Google Scholar
Star, A., Gabriel, J.-C. P., Bradley, K., & Grüner, G. (2003), “Electronic detection of specific protein binding using nanotube fet devices,” Nano Lett. 3(4), 459463.Google Scholar
Stauber, T., Peres, N. M. R., & Guinea, F. (2007), “Electronic transport in graphene: A semiclas-sical approach including midgap states,” Phys. Rev. B 76, 205423.Google Scholar
Stefanucci, G., Kurth, S., Rubio, A., & Gross, E. K. U. (2008), “Time-dependent approach to electron pumping in open quantum systems,” Phys. Rev. B 77, 075339.Google Scholar
Stegmann, T. & Szpak, N. (2016), “Current flow paths in deformed graphene: From quantum transport to classical trajectories in curved space,” New J. Phys. 18(5), 053016.Google Scholar
Stegmann, T. & Szpak, N. (2018), “Current splitting and valley polarization in elastically deformed graphene,” 2D Mater. 6(1), 015024.Google Scholar
Stern, A., Aharonov, Y., & Imry, Y. (1990), “Phase uncertainty and loss of interference: A general picture,” Phys. Rev. A 41(7), 34363448.Google Scholar
Stojetz, B., Miko, C., Forró, L., & Strunk, C. (2005), “Effect of band structure on quantum interference in multiwall carbon nanotubes,” Phys. Rev. Lett. 94(18), 186802.Google Scholar
Stone, A. & Wales, D. (1986), “Theoretical studies of icosahedral C60 and some related species,” Chem. Phys. Lett. 128(56), 501503.Google Scholar
Strano, M. S., Dyke, C. A., Usrey, M. L., et al. (2003), “Electronic structure control of single-walled carbon nanotube functionalization,” Science 301(5639), 15191522.Google Scholar
Strunk, C., Stojetz, B., & Roche, S. (2006), “Quantum interference in multiwall carbon nan-otubes,” Semicond. Sci. Technol. 21(11), S38.Google Scholar
Suárez Morell, E. & Foa Torres, L. E. F. (2012), “Radiation effects on the electronic properties of bilayer graphene,” Phys. Rev. B 86(12), 125449.Google Scholar
Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M., & Barticevic, Z. (2010), “Flat bands in slightly twisted bilayer graphene: Tight-binding calculations,” Phys. Rev. B 82(12), 121407.Google Scholar
Suenaga, K., Wakabayashi, H., Koshino, M., et al. (2007), “Imaging active topological defects in carbon nanotubes,” Nat. Nanotechnol. 2(6), 358360.Google Scholar
Sun, J., Lee, H.-W., Pasta, M., et al. (2015), “A phosphorenegraphene hybrid material as a high-capacity anode for sodium-ion batteries,” Nat. Nanotechnol. 10(11), 980985.Google Scholar
Sun, X., Lin, L., Sun, L., et al. (2018), “Low-temperature and rapid growth of large single-crystalline graphene with ethane,” Small 14(3), 1702916.Google Scholar
Suzuura, H. & Ando, T. (2002), “Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice,” Phys. Rev. Lett. 89, 266603.Google Scholar
Svensson, J. & Campbell, E. E. B. (2011), “Schottky barriers in carbon nanotube-metal contacts,” J. Appl. Phys. 110(11), 111101.Google Scholar
Switkes, M., Marcus, C. M., Campman, K., & Gossard, A. C. (1999), “An adiabatic quantum electron pump,” Science 283(5409), 19051908.Google Scholar
Syzranov, S. V., Fistul, M. V., & Efetov, K. B. (2008), “Effect of radiation on transport in graphene,” Phys. Rev. B 78(4), 045407.Google Scholar
Takayama, R., Hoshi, T., & Fujiwara, T. (2004), “Krylov subspace method for molecular dynamics simulation based on large-scale electronic structure theory,” J. Phys. Soc. Jpn 73, 1519.Google Scholar
Tamura, R. & Tsukada, M. (1994), “Disclinations of monolayer graphite and their electronic states,” Phys. Rev. B 49(11), 76977708.Google Scholar
Tan, Y.-W., Zhang, Y., Bolotin, K., et al. (2007), “Measurement of scattering rate and minimum conductivity in graphene,” Phys. Rev. Lett. 99, 246803.Google Scholar
Tang, Z. K., Zhang, L., Wang, N., et al. (2001), “Superconductivity in 4 angstrom single-walled carbon nanotubes,” Science 292(5526), 24622465.Google Scholar
Tao, L., Cinquanta, E., Chiappe, D., et al. (2015), “Silicene field-effect transistors operating at room temperature,” Nat. Nanotechnol 10(3), 227231.Google Scholar
Tapaszto, L., Dobrik, G., Lambin, P., & Biro, L. P. (2008), “Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography,” Nat. Nanotechnol. 3(7), 397401.Google Scholar
Tarnopolsky, G., Kruchkov, A. J., & Vishwanath, A. (2019), “Origin of magic angles in twisted bilayer graphene,” Phys. Rev. Lett. 122(10), 106405.Google Scholar
Terrones, H. & Terrones, M. (2003), “Curved nanostructured materials,” New J. Phys. 5(1), 126.Google Scholar
Terrones, H., Terrones, M., Hernández, E., et al. (2000), “New metallic allotropes of planar and tubular carbon,” Phys. Rev. Lett. 84, 17161719.Google Scholar
Terrones, M. (2009), “Materials science: Nanotubes unzipped,” Nature 458(7240), 845846.Google Scholar
Terrones, M., Banhart, F., Grobert, N., et al. (2002), “Molecular junctions by joining single-walled carbon nanotubes,” Phys. Rev. Lett. 89, 075505.Google Scholar
Terrones, M., Botello-Méndez, A. R., Campos-Delgado, J., et al. (2010), “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,” Nano Today 5(4), 351372.Google Scholar
Terrones, M., Terrones, H., Banhart, F., Charlier, J.-C., & Ajayan, P. M. (2000), “Coalescence of single-walled carbon nanotubes,” Science 288(5469), 12261229.Google Scholar
Tersoff, J. (2003), “Nanotechnology: A barrier falls,” Nature 424(6949), 622623.Google Scholar
Thess, A., Lee, R., Nikolaev, P., et al. (1996), “Crystalline ropes of metallic carbon nanotubes,” Science 273(5274), 483487.Google Scholar
Thomas, L. (1927), “On the capture of electrons by swiftly moving electrified particles,” Proc. R. Soc. Lond. Ser. A 114, 561576.Google Scholar
Thomas, L. H. (1926), “The motion of the spinning electron,” Nature 117, 514.Google Scholar
Thouless, D. (1998), Topological Quantum Numbers in Nonrelativistic Physics, World Scientific, Singapore.Google Scholar
Thouless, D. J. (1973), “Localization distance and mean free path in one-dimensional disordered systems,” J. Phys. C: Solid State Phys. 6(3), L49.Google Scholar
Thouless, D. J. (1977), “Maximum metallic resistance in thin wires,” Phys. Rev. Lett. 39, 11671169.Google Scholar
Thouless, D. J. (1983), “Quantization of particle transport,” Phys. Rev. B 27, 60836087.Google Scholar
Tielrooij, K. J., Song, J. C. W., Jensen, S. A., et al. (2013), “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9, 248252.Google Scholar
Tien, P. K. & Gordon, J. P. (1963), “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films,” Phys. Rev. 129, 647651.Google Scholar
Tikhonenko, F. V., Horsell, D. W., Gorbachev, R. V., & Savchenko, A. K. (2008), “Weak localization in graphene flakes,” Phys. Rev. Lett. 100, 056802.Google Scholar
Tikhonenko, F. V., Kozikov, A. A., Savchenko, A. K., & Gorbachev, R. V. (2009), “Transition between electron localization and antilocalization in graphene,” Phys. Rev. Lett. 103, 226801.Google Scholar
Todd, K., Chou, H.-T., Amasha, S., & Goldhaber-Gordon, D. (2009), “Quantum dot behavior in graphene nanoconstrictions,” Nano Lett. 9(1), 416421.Google Scholar
Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T., & van Wees, B. J. (2007), “Electronic spin transport and spin precession in single graphene layers at room temperature,” Nature (London) 448, 571.Google Scholar
Torres, W. S., Sierra, J. F., Benitez, L. A., Bonell, F., Costache, M. V., & Valenzuela, S. O. (2017), “Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures,” 2D Mater. 4(4), 041008.Google Scholar
Tournus, F., Latil, S., Heggie, M. I., & Charlier, J.-C. (2005), “π-stacking interaction between carbon nanotubes and organic molecules,” Phys. Rev. B 72(7), 075431.Google Scholar
Trambly de Laissardière, G. & Mayou, D. (2013), “Conductivity of graphene with resonant and nonresonant adsorbates,” Phys. Rev. Lett. 111, 146601.Google Scholar
Trevisanutto, P. E., Giorgetti, C., Reining, L., Ladisa, M., & Olevano, V. (2008), “Ab initio GW many-body effects in graphene,” Phys. Rev. Lett. 101, 226405.Google Scholar
Triozon, F. (2002), Diffusion quantique et conductivité dans les systèmes apériodiques, PhD thesis, Université Joseph-Fourier.Google Scholar
Triozon, F., Lambin, P., & Roche, S. (2005), “Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions,” Nanotechnology 16(2), 230.Google Scholar
Triozon, F., Roche, S., Rubio, A., & Mayou, D. (2004), “Electrical transport in carbon nanotubes: Role of disorder and helical symmetries,” Phys. Rev. B 69, 121410.Google Scholar
Triozon, F. & Roche, S. (2005), “Efficient linear scaling method for computing the Landauer-Büttiker conductance,” Eur. Phys. J. B - Condens. Matter Complex Syst. 46, 427431.Google Scholar
Troullier, N. & Martins, J. L. (1991), “Efficient pseudopotentials for plane-wave calculations,” Phys. Rev. B 43, 19932006.Google Scholar
Tsen, A. W., Brown, L., Levendorf, M. P., et al. (2012), “Tailoring electrical transport across grain boundaries in polycrystalline graphene,” Science 336, 1143.Google Scholar
Tsui, D. C., Stormer, H. L., & Gossard, A. C. (1982), “Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett. 48(22), 15591562.Google Scholar
Tworzydło, J., Trauzettel, B., Titov, M., Rycerz, A., & Beenakker, C. W. J. (2006), “Sub-poissonian shot noise in graphene,” Phys. Rev. Lett. 96, 246802.Google Scholar
Ugarte, D. (1992), “Curling and closure of graphitic networks under electron-beam irradiation,” Nature 359(6397), 707709.Google Scholar
Ugeda, M. M., Brihuega, I., Guinea, F., & Rodríguez, J. M. G. (2010), “Missing atom as a source of carbon magnetism,” Phys. Rev. Lett. 104, 096804.Google Scholar
Ugeda, M. M., Brihuega, I., Hiebel, F., et al. (2012), “Electronic and structural characterization of divacancies in irradiated graphene,” Phys. Rev. B 85, 121402.Google Scholar
Usaj, G. (2009), “Edge states interferometry and spin rotations in zigzag graphene nanoribbons,” Phys. Rev. B 80(8), 081414.Google Scholar
Usaj, G., Perez-Piskunow, P. M., Foa Torres, L. E. F., & Balseiro, C. A. (2014), “Irradiated graphene as a tunable Floquet topological insulator,” Phys. Rev. B 90(11), 115423.Google Scholar
Valenzuela, S. O. (2009), “Nonlocal electronic spin detection, spin accumulation and the spin Hall effect,” Int. J. Mod. Phys. B 23(11), 24132438.Google Scholar
Valenzuela, S. O. & Tinkham, M. (2006), “Direct electronic measurement of the spin hall effect,” Nature 442, 176179.Google Scholar
Van Troeye, B., Lherbier, A., Charlier, J.-C., & Gonze, X. (2018), “Large phosphorene in-plane contraction induced by interlayer interactions in graphene-phosphorene heterostructures,” Phys. Rev. Mater. 2(7), 074001.Google Scholar
Van Tuan, D. (2016), Charge and Spin Transport in Disordered Graphene-Based Materials, Springer International Publishing, Cham.Google Scholar
Van Tuan, D., Kotakoski, J., Louvet, T., et al. (2013), “Scaling properties of charge transport in polycrystalline graphene,” Nano Lett. 13(4), 17301735.Google Scholar
Van Tuan, D., Ortmann, F., Cummings, A. W., Soriano, D., & Roche, S. (2016), “Spin dynamics and relaxation in graphene dictated by electron-hole puddles,” Sci. Rep. 6, 21046.Google Scholar
Van Tuan, D., Ortmann, F., Soriano, D., Valenzuela, S., & Roche, S. (2014), “Pseudospin-driven spin relaxation mechanism in graphene,” Nat. Phys. 10, 857.Google Scholar
Vanderbilt, D. (1990), “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B 41, 78927895.Google Scholar
Varchon, F., Feng, R., Hass, J., et al. (2007), “Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate,” Phys. Rev. Lett. 99, 126805.Google Scholar
Venema, L. C., Wildöer, J. W. G., Janssen, J. W., et al. (1999), “Imaging electron wave functions of quantized energy levels in carbon nanotubes,” Science 283(5398), 5255.Google Scholar
Venezuela, P., Muniz, R. B., Costa, A. T., et al. (2009), “Emergence of local magnetic moments in doped graphene-related materials,” Phys. Rev. B 80(24), 241413.Google Scholar
Vila, M., Hung, N., Roche, S., & Saito, R. (2019), “Tunable circular dichroism and valley polarization in the modified haldane model,” Phys. Rev. R (Rapid Comm.) 99, 161404(R).Google Scholar
Vogt, P., De Padova, P., Quaresima, C., et al. (2012), “Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon,” Phys. Rev. Lett. 108(15), 155501.Google Scholar
Völkl, T., Kochan, D., Ebnet, T., et al. (2019), “Absence of a giant spin Hall effect in plasma-hydrogenated graphene,” Phys. Rev. B 99, 085401.Google Scholar
Völkl, T., Rockinger, T., Drienovsky, M., et al. (2017), “Magnetotransport in heterostructures of transition metal dichalcogenides and graphene,” Phys. Rev. B - Condens. Matter Mater. Phys. 96(12), 125405.Google Scholar
von Klitzing, K. (2005), “Chapter 25: Years of quantum Hall effect (QHE): A personal view on the discovery, physics and applications of this quantum effect,” in The Quantum Hall Effect, New York, Springer, pp. 121.Google Scholar
von Klitzing, K., Dorda, G., & Pepper, M. (1980), “New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance,” Phys. Rev. Lett. 45(6), 494– 497.Google Scholar
Wakabayashi, K., Fujita, M., Ajiki, H., & Sigrist, M. (1999), “Electronic and magnetic properties of nanographite ribbons,” Phys. Rev. B 59, 82718282.Google Scholar
Wakamura, T., Reale, F., Palczynski, P., et al. (2018), “Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS2,” Phys. Rev. Lett. 120, 106802.Google Scholar
Wallace, P. R. (1947), “The band theory of graphite,” Phys. Rev. 71, 622634.Google Scholar
Wallbank, J. R., Patel, A. A., Mucha-Kruczynski, M., Geim, A. K., & Fal’ko, V. I. (2013), “Generic miniband structure of graphene on a hexagonal substrate,” Phys. Rev. B 87(24), 245408.Google Scholar
Wang, G., Chernikov, A., Glazov, M. M., et al. (2018), “Colloquium: Excitons in atomically thin transition metal dichalcogenides,” Rev. Mod. Phys. 90(2), 021001.Google Scholar
Wang, N., Tang, Z. K., Li, G. D., & Chen, J. S. (2000), “Materials science: Single-walled 4 A carbon nanotube arrays,” Nature 408(6808), 5051.Google Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012), “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699712.Google Scholar
Wang, S., Talirz, L., Pignedoli, C. A., et al. (2016), “Giant edge state splitting at atomically precise graphene zigzag edges,” Nat. Commun. 7, 11507.Google Scholar
Wang, X. & Dai, H. (2010), “Etching and narrowing of graphene from the edges,” Nat. Chem. 2(8), 661665.Google Scholar
Wang, X., Ouyang, Y., Jiao, L., et al. (2011), “Graphene nanoribbons with smooth edges behave as quantum wires,” Nat. Nanotechnol. 6(9), 563567.Google Scholar
Wang, X., Ouyang, Y., Li, X., et al. (2008), “Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Phys. Rev. Lett. 100, 206803.Google Scholar
Wang, Y., Cai, X., Reutt-Robey, J., & Fuhrer, M. S. (2015), “Neutral-current Hall effects in disordered graphene,” Phys. Rev. B 92, 161411.Google Scholar
Wang, Y. H., Steinberg, H., Jarillo-Herrero, P., & Gedik, N. (2013), “Observation of Floquet-Bloch states on the surface of a topological insulator,” Science 342(6157), 453457.Google Scholar
Wang, Z., Ki, D.-K., Chen, H., et al. (2015), “Strong interface-induced spin-orbit interaction in graphene on WS2 ,” Nat. Commun. 6, 8339.Google Scholar
Wang, Z., Ki, D.-K., Khoo, J. Y., et al. (2016), “Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides,” Phys. Rev. X 6, 041020.Google Scholar
Wassmann, T., Seitsonen, A. P., Saitta, A. M., Lazzeri, M., & Mauri, F. (2008), “Structure, stability, edge states, and aromaticity of graphene ribbons,” Phys. Rev. Lett. 101, 096402.Google Scholar
Watanabe, K., Taniguchi, T., Niiyama, T., Miya, K., & Taniguchi, M. (2009), “Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride,” Nature Photonics 3(10), 591594.Google Scholar
Weil, T. & Vinter, B. (1987), “Equivalence between resonant tunneling and sequential tunneling in double-barrier diodes,” Appl. Phys. Lett. 50(18), 12811283.Google Scholar
Weisse, A., Wellein, G., Alvermann, A., & Fehske, H. (2006), “The kernel polynomial method,” Rev. of Mod. Phys. 78, 275.Google Scholar
White, C. T., Li, J., Gunlycke, D., & Mintmire, J. W. (2007), “Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips,” Nano Lett. 7(3), 825830.Google Scholar
White, C. T. & Mintmire, J. W. (1998), “Density of states reflects diameter in nanotubes,” Nature 394(6688), 2930.Google Scholar
White, C. T. & Todorov, T. N. (1998), “Carbon nanotubes as long ballistic conductors,” Nature 393(6682), 240242.Google Scholar
White, I. D., Godby, R. W., Rieger, M. M., & Needs, R. J. (1998), “Dynamic image potential at an Al(111) surface,” Phys. Rev. Lett. 80, 42654268.Google Scholar
Wilder, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., & Dekker, C. (1998), “Electronic structure of atomically resolved carbon nanotubes,” Nature 391(6662), 5962.Google Scholar
Wilson, J. A. & Yoffe, A. D. (1969), “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys. 18(73), 193335.Google Scholar
Wimmer, M. (2009), Quantum transport in nanostructures: From computational concepts to spintronics in graphene and magnetic tunnel junctions, PhD thesis, Universität Regensburg.Google Scholar
Wimmer, M., Adagideli, I., Berber, S., Tománek, D., & Richter, K. (2008), “Spin currents in rough graphene nanoribbons: Universal fluctuations and spin injection,” Phys. Rev. Lett. 100, 177207.Google Scholar
Withers, F., Del Pozo-Zamudio, O., Mishchenko, A., et al. (2015), “Light-emitting diodes by band-structure engineering in van der Waals heterostructures,” Nat. Mater. 14(3), 301306.Google Scholar
Woessner, A., Lundeberg, M. B., Gao, Y., et al. (2015), “Highly confined low-loss plasmons in graphene-boron nitride heterostructures,” Nat. Mater. 14(4), 421425.Google Scholar
Wu, F., MacDonald, A., & Martin, I. (2018), “Theory of phonon-mediated superconductivity in twisted bilayer graphene,” Phys. Rev. Lett. 121(25), 257001.Google Scholar
Wu, F., Queipo, P., Nasibulin, A., et al. (2007), “Shot noise with interaction effects in single-walled carbon nanotubes,” Phys. Rev. Lett. 99, 156803.Google Scholar
Wu, Y., Perebeinos, V., Lin, Y.-m., et al. (2012), “Quantum behavior of graphene transistors near the scaling limit,” Nano Lett. 12(3), 14171423.Google Scholar
Wunderlich, J., Kaestner, B., Sinova, J., & Jungwirth, T. (2005), “Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system,” Phys. Rev. Lett. 94, 047204.Google Scholar
Xia, F., Farmer, D. B., Lin, Y.-m., & Avouris, P. (2010), “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715718.Google Scholar
Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A., & Avouris, P. (2009), “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839843.Google Scholar
Xia, F., Perebeinos, V., Lin, Y.-m., Wu, Y., & Avouris, P. (2011), “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6(3), 179184.Google Scholar
Xiao, D., Chang, M.-C., & Niu, Q. (2010), “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 19592007.Google Scholar
Xiao, D., Liu, G.-B., Feng, W., Xu, X., & Yao, W. (2012), “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108(19), 196802.Google Scholar
Xiao, D., Yao, W., & Niu, Q. (2007), “Valley-contrasting physics in graphene: Magnetic moment and topological transport,” Phys. Rev. Lett. 99, 236809.Google Scholar
Xu, C. & Balents, L. (2018), “Topological superconductivity in twisted multilayer graphene,” Phys. Rev. Lett. 121(8), 087001.Google Scholar
Xu, J., Zhu, T., Luo, Y. K., Lu, Y.-M., & Kawakami, R. K. (2018), “Strong and tunable spin-lifetime anisotropy in dual-gated bilayer graphene,” Phys. Rev. Lett. 121, 127703.Google Scholar
Yacoby, A. (2011), “Graphene: Tri and tri again,” Nat. Phys. 7(12), 925926.Google Scholar
Yan, J. & Fuhrer, M. S. (2011), “Correlated charged impurity scattering in graphene,” Phys. Rev. Lett. 107, 206601.Google Scholar
Yan, W., Txoperena, O., Llopis, R., et al. (2016), “A two-dimensional spin field-effect switch,” Nat. Commun. 7, 13372.Google Scholar
Yang, B., Lohmann, M., Barroso, D., et al. (2017), “Strong electron-hole symmetric Rashba spin-orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures,” Phys. Rev. B - Condens. Matter Mater. Phys. 96(4), 041409.Google Scholar
Yang, B., Tu, M.-F., Kim, J., et al. (2016), “Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS2,” 2D Mater. 3, 031012.Google Scholar
Yang, H. X., Hallal, A., Terrade, D., et al. (2013), “Proximity effects induced in graphene by magnetic insulators: First-principles calculations on spin filtering and exchange-splitting gaps,” Phys. Rev. Lett. 110, 046603.Google Scholar
Yang, L., Park, C.-H., Son, Y.-W., Cohen, M. L., & Louie, S. G. (2007), “Quasiparticle energies and band gaps in graphene nanoribbons,” Phys. Rev. Lett. 99, 186801.Google Scholar
Yang, T.- Y., Balakrishnan, J., Volmer, F., et al. (2011), “Observation of long spin-relaxation times in Bilayer Graphene at Room Temperature,” Phys. Rev. Lett. 107, 047206.Google Scholar
Yankowitz, M., Chen, S., Polshyn, H., et al. (2019), “Tuning superconductivity in twisted bilayer graphene,” Science 363(6431), 10591064.Google Scholar
Yao, Y., Ye, F., Qi, X.-L., Zhang, S.-C., & Fang, Z. (2007), “Spin-orbit gap of graphene: First-principles calculations,” Phys. Rev. B 75, 041401.Google Scholar
Yao, Z., Kane, C. L., & Dekker, C. (2000), “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett. 84, 29412944.Google Scholar
Yao, Z., Postma, H. W. C., Balents, L., & Dekker, C. (1999), “Carbon nanotube intramolecular junctions,” Nature 402(6759), 273276.Google Scholar
Yazyev, O. & Louie, S. (2010a), “Electronic transport in polycrystalline graphene,” Nat. Mater. 9, 806.Google Scholar
Yazyev, O. V. (2008), “Magnetism in disordered graphene and irradiated graphite,” Phys. Rev. Lett. 101, 037203.Google Scholar
Yazyev, O. V. (2010), “Emergence of magnetism in graphene materials and nanostructures,” Rep. Progr. Phys. 73(5), 056501.Google Scholar
Yazyev, O. V. & Helm, L. (2007), “Defect-induced magnetism in graphene,” Phys. Rev. B 75(12), 125408.Google Scholar
Yazyev, O. V. & Louie, S. G. (2010b), “Topological defects in graphene: Dislocations and grain boundaries,” Phys. Rev. B 81(19), 195420.Google Scholar
Young, A. F. & Kim, P. (2009), “Quantum interference and Klein tunnelling in graphene heterojunctions,” Nat. Phys. 5(3), 222226.Google Scholar
Young, A. F. & Kim, P. (2011), “Electronic transport in graphene heterostructures,” Ann. Rev. Condens. Matter Phys. 2(1), 101120.Google Scholar
Young, A. F., Zhang, Y., & Kim, P. (2014), Experimental Manifestation of Berry Phase in Graphene, Springer International Publishing, Cham, pp. 327.Google Scholar
Yu, Q., Jauregui, L. A., Wu, W., et al. (2011), “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443449.Google Scholar
Yuan, S., De Raedt, H., & Katsnelson, M. I. (2010), “Modeling electronic structure and transport properties of graphene with resonant scattering centers,” Phys. Rev. B 82(11), 115448.Google Scholar
Zak, J. (1989), “Berry’s phase for energy bands in solids,” Phys. Rev. Lett. 62(23), 27472750.Google Scholar
Zanolli, Z. & Charlier, J.-C. (2009), “Defective carbon nanotubes for single-molecule sensing,” Phys. Rev. B 80(15), 155447.Google Scholar
Zanolli, Z. & Charlier, J.-C. (2010), “Spin transport in carbon nanotubes with magnetic vacancy-defects,” Phys. Rev. B 81(16), 165406.Google Scholar
Zanolli, Z. & Charlier, J.-C. (2012), “Single-molecule sensing using carbon nanotubes decorated with magnetic clusters,” ACS Nano 6(12), 1078610791.Google Scholar
Zanolli, Z., Leghrib, R., Felten, A., et al. (2011), “Gas sensing with Au-decorated carbon nanotubes,” ACS Nano 5(6), 45924599.Google Scholar
Zaric, S., Ostojic, G. N., Kono, J., et al. (2004), “Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes,” Science 304(5674), 11291131.Google Scholar
Zhang, C., Li, M.-Y., Tersoff, J., et al. (2018), “Strain distributions and their influence on electronic structures of WSe2 -MoS2 laterally strained heterojunctions,” Nat. Nanotechnol. 13(2), 152.Google Scholar
Zhang, L., Zhang, Y., Khodas, M., Valla, T., & Zaliznyak, I. A. (2010), “Metal to insulator transition on the N = 0 Landau level in graphene,” Phys. Rev. Lett. 105(4), 046804.Google Scholar
Zhang, P. & Wu, M. (2012), “Electron spin relaxation in graphene with random Rashba field: Comparison of the D’yakonov-Perel’ and Elliott-Yafet-like mechanisms,” New J. Phys. 14(3), 033015.Google Scholar
Zhang, S. (2000), “Spin Hall effect in the presence of spin diffusion,” Phys. Rev. Lett. 85, 393396.Google Scholar
Zhang, S., Yan, Z., Li, Y., Chen, Z., & Zeng, H. (2015), “Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions,” Angew. Chem. Int. Ed. 54(10), 31123115.Google Scholar
Zhang, Y., Jiang, Z., Small, J. P., et al. (2006), “Landau-level splitting in graphene in high magnetic fields,” Phys. Rev. Lett. 96, 136806.Google Scholar
Zhang, Y., Rubio, A., & Lay, G. L. (2017), “Emergent elemental two-dimensional materials beyond graphene,” J. Phys. D: Appl. Phys. 50(5), 053004.Google Scholar
Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005), “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201204.Google Scholar
Zhang, Y., Tang, T.-T., Girit, C., et al. (2009), “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820823.Google Scholar
Zhang, Y.-Y., Hu, J., Bernevig, B. A., et al. (2009), “Localization and the Kosterlitz-Thouless transition in disordered graphene,” Phys. Rev. Lett. 102, 106401.Google Scholar
Zhao, J., Park, H., Han, J., & Lu, J. P. (2004), “Electronic properties of carbon nanotubes with covalent sidewall functionalization,” J. Phys. Chem. B 108(14), 42274230.Google Scholar
Zhao, M., Ye, Y., Han, Y., Xia, Y., et al. (2016), “Large-scale chemical assembly of atomically thin transistors and circuits,” Nat. Nanotechnol. 11(11), 954959.Google Scholar
Zhao, P. & Guo, J. (2009), “Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods,” J. Appl. Phys. 105, 034503.Google Scholar
Zhao, Y., Cadden-Zimansky, P., Ghahari, F., & Kim, P. (2012), “Magnetoresistance measurements of graphene at the charge neutrality point,” Phys. Rev. Lett. 108(10), 106804.Google Scholar
Zheng, L. X., O’Connell, M. J., Doorn, S. K., et al. (2004), “Ultralong single-wall carbon nanotubes,” Nat. Mater. 3(10), 673676.Google Scholar
Zhou, S. Y., Gweon, G.-H., Fedorov, A. V., et al. (2007), “Substrate-induced bandgap opening in epitaxial graphene,” Nat. Mater. 6(10), 770775.Google Scholar
Zhou, X.-F., Dong, X., Oganov, A. R., et al. (2014), “Semimetallic two-dimensional boron allotrope with massless Dirac fermions,” Phys. Rev. Lett. 112(8), 085502.Google Scholar
Zhou, Y. & Wu, M. W. (2011), “Optical response of graphene under intense terahertz fields,” Phys. Rev. B 83(24), 245436.Google Scholar
Zhou, Y. & Wu, M. W. (2012), “Single-parameter quantum charge and spin pumping in armchair graphene nanoribbons,” Phys. Rev. B 86, 085406.Google Scholar
Zhu, F.-F., Chen, W.-J., Xu, Y., et al. (2015), “Epitaxial growth of two-dimensional stanene,” Nat. Mater. 14(10), 10201025.Google Scholar
Zhu, R. & Chen, H. (2009), “Quantum pumping with adiabatically modulated barriers in graphene,” Appl. Phys. Lett. 95(12), 122111.Google Scholar
Zhu, W., Li, W., Shi, Q. W., et al. (2012), “Vacancy-induced splitting of the dirac nodal point in graphene,” Phys. Rev. B 85, 073407.Google Scholar
Zhu, Z., Cai, X., Yi, S., et al. (2017), “Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study,” Phys. Rev. Lett. 119(10), 106101.Google Scholar
Zhu, Z. & Tománek, D. (2014), “Semiconducting layered blue phosphorus: A computational study,” Phys. Rev. Lett. 112(17), 176802.Google Scholar
Zihlmann, S., Cummings, A. W., Garcia, J. H., et al. (2018), “Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h-BN heterostructures,” Phys. Rev. B 97, 075434.Google Scholar
Zomer, P. J., Guimaraes, M. H. D., Tombros, N., & van Wees, B. J. (2012), “Long-distance spin transport in high-mobility graphene on hexagonal boron nitride,” Phys. Rev. B 86, 161416(R).Google Scholar
Zurek, W. H. (2003), “Decoherence and the transition from quantum to classical – Revisited,” arXiv:quant-ph/0306072.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×