Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T06:47:40.506Z Has data issue: false hasContentIssue false

5 - Useful intermediates and end-products obtained from biocatalysed carbon–carbon, carbon–oxygen, carbonnitrogen and carbon–chalcogen bond-forming reactions

Published online by Cambridge University Press:  04 August 2010

S. M. Roberts
Affiliation:
University of Exeter
Nicholas J. Turner
Affiliation:
University of Exeter
Andrew J. Willetts
Affiliation:
University of Exeter
Michael K. Turner
Affiliation:
University College London
Get access

Summary

Introduction

This chapter deals with three important classes of biotransformations. Firstly, those enzymes that catalyse the stereoselective formation of carbon-carbon bonds will be examined. These enzymes, whose natural functions often are to degrade carbohydrate-like molecules, have proved to be versatile catalysts for C—C bond synthesis. Secondly, we shall look at those enzymes that mediate the formation of C—X bonds, where X = O, N, S, Hal (halogen). These enzymes are termed lyases (see Table 2.1) and often carry out very simple reactions (e.g. the addition of water to a double bond) with very high stereoselectivity and regioselectivity. Finally, the application of a range of enzymes (including C—C bond formation) to carbohydrate synthesis will be examined. This chapter will conclude with some examples of the ways in which multienzyme reactions can be constructed to enable highly complex molecules to be assembled in an efficient manner.

Enzyme–catalysed asymmetric carbon–carbon bond formation

Aldolases

The synthesis of carbon–carbon bonds, particularly with control of stereochemistry, has been an area of intense activity in recent years. Much attention has been focussed on the asymmetric aldol reaction, principally using stoichiometric quantities of a chiral auxiliary, but more recently in the catalytic mode. The use of aldolases for the asymmetric construction of carbon-carbon bonds presents a potentially useful complementary methodology.

The aldolases are a diverse class of enzymes that catalyse the coupling of a carbonyl-containing compound (nucleophile), containing one, two or three carbons, with an aldehyde (electrophile). In most cases the nucleophile is either pyruvic acid or dihydroxyacetone phosphate, whereas the electrophilic aldehyde is much more variable in structure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×