Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T03:30:25.854Z Has data issue: false hasContentIssue false

1 - Equations of motion

Published online by Cambridge University Press:  14 January 2010

E. M. Greitzer
Affiliation:
Massachusetts Institute of Technology
C. S. Tan
Affiliation:
Massachusetts Institute of Technology
M. B. Graf
Affiliation:
Mars & Co
Get access

Summary

Introduction

This is a book about the fluid motions which set the performance of devices such as propulsion systems and their components, fluid machinery, ducts, and channels. The flows addressed can be broadly characterized as follows:

  1. There is often work or heat transfer. Further, this energy addition can vary between streamlines, with the result that there is no “uniform free stream”. Stagnation conditions therefore have a spatial (and sometimes a temporal) variation which must be captured in descriptions of the component behavior.

  2. There are often large changes in direction and in velocity. For example, deflections of over 90° are common in fluid machinery, with no one obvious reference direction or velocity. Concepts of lift and drag, which are central to external aerodynamics, are thus much less useful than ideas of loss and flow deflection in describing internal flow component performance. Deflection of the non-uniform flows mentioned in (1) also creates (three-dimensional) motions normal to the mean flow direction which transport mass, momentum, and energy across ducts and channels.

  3. There is often strong swirl, with consequent phenomena that are different than for flow without swirl. For example, static pressure rise can be associated almost entirely with the circumferential (swirl) velocity component and thus essentially independent of whether the flow is forward (radially outward) or separated (radially inward). In addition the upstream influence of a fluid component, and hence the interaction between fluid components in a given system, can be qualitatively different than that in a flow with no swirl.

  4. […]

Type
Chapter
Information
Internal Flow
Concepts and Applications
, pp. 1 - 47
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×