Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T13:16:52.964Z Has data issue: false hasContentIssue false

1 - Nanotechnologies and FRET imaging in live cells

from Part I - Micro-nano techniques in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Live cells can sense the mechanical characteristics of the microenvironment and translate the mechanical cues to intracellular biochemical signals in physiology and disease. To investigate intracellular signaling transduction during mechanosensing, nanotechnologies, and FRET live-cell imaging technologies have been developed to visualize the output signals in real time, such as intracellular molecular activity. Meanwhile, micropatterned technologies have been applied to modulate the physical and mechanical environment surrounding the cell to fine-tune the input signals in cellular mechanosensing. These advanced technologies can join forces and shed new light into the molecular networks that control mechanotransduction in normal conditions and disease.

Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 3 - 14
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akerman, M. E., Chan, W. C., Laakkonen, P., Bhatia, S. N., and Ruoslahti, E.. (2002). “Nanocrystal targeting in vivo.” Proc Natl Acad Sci USA 99(20): 1261712621.CrossRefGoogle ScholarPubMed
Alivisatos, A. P., Gu, W., and Larabell, C.. (2005). “Quantum dots as cellular probes.” Annu Rev Biomed Eng 7: 5576.CrossRefGoogle ScholarPubMed
Arias-Salgado, E. G., Lizano, S., Sarkar, S., Brugge, J. S., Ginsburg, M. H., and Shattil, S. J.. (2003). “Src kinase activation by direct interaction with the integrin beta cytoplasmic domain.” Proc Natl Acad Sci USA 100(23): 1329813302.CrossRefGoogle ScholarPubMed
Ballou, B., Lagerholm, B. C., Ernst, L. A., Bruchez, M. P., and Waggoner, A. S.. (2004). “Noninvasive imaging of quantum dots in mice.” Bioconjug Chem 15(1): 7986.CrossRefGoogle ScholarPubMed
Bao, X., Clark, C. B., and Frangos, J. A.. (2000). “Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43.” Am J Physiol Heart Circ Physiol 278(5): H15981605.CrossRefGoogle ScholarPubMed
Bao, X., Lu, C., and Frangos, J. A.. (1999). “Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1.” Arterioscler Thromb Vasc Biol 19(4): 9961003.CrossRefGoogle Scholar
Bershadsky, A. D., Balaban, N. Q., and Geiger, B.. (2003). “Adhesion-dependent cell mechanosensitivity.” Annu Rev Cell Dev Biol 19: 677695.CrossRefGoogle ScholarPubMed
Bissell, M. J. and Hines, W. C.. (2011). “Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression.” Nat Med 17(3): 320329.CrossRefGoogle Scholar
Buranachai, C. and Clegg, R. M.. (2008). “Fluorescence lifetime imaging in living cells.” In Methods in Molecular Biology Fluorescent Proteins: Methods and Applications, edited by Rothnagel, J. (Totowa, NJ: Humana Press).Google Scholar
Butler, P. J., Weinbaum, S., Chien, S., and Lemons, D. E.. (2000). “Endothelium-dependent, shear-induced vasodilation is rate-sensitive.” Microcirculation 7(1): 5365.Google ScholarPubMed
Davies, P. F. (1997). “Overview: temporal and spatial relationships in shear stress-mediated endothelial signalling.” J Vasc Res 34(3): 208211.CrossRefGoogle ScholarPubMed
DePaola, N., Gimbrone, M. A. Jr., Davies, P.F., and Dewey, C. F.. (1992). “Vascular endothelium responds to fluid shear stress gradients.” Arterioscler Thromb 12(11): 12541257.CrossRefGoogle ScholarPubMed
Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H., and Libchaber, A.. (2002). “In vivo imaging of quantum dots encapsulated in phospholipid micelles.” Science 298(5599): 17591762.CrossRefGoogle ScholarPubMed
Frangos, J. A., Huang, T. Y., and Clark, C. B.. (1996). “Steady shear and step changes in shear stimulate endothelium via independent mechanisms–superposition of transient and sustained nitric oxide production.” Biochem Biophys Res Commun 224(3): 660665.CrossRefGoogle ScholarPubMed
Geiger, B., Spatz, J. P., and Bershadsky, A. D.. (2009). “Environmental sensing through focal adhesions.” Nat Rev Mol Cell Biol 10(1): 2133.CrossRefGoogle ScholarPubMed
Gimbrone, M. A. Jr. and Garcia-Cardena, G.. (2013). “Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis.” Cardiovasc Pathol 22(1): 915.CrossRefGoogle ScholarPubMed
Kim, T. J., Xu, J., Dong, R., Lu, S., Nuzzo, R., and Wang, Y.. (2009). “Visualizing the effect of microenvironment on the spatiotemporal RhoA and Src activities in living cells by FRET.” Small 5(12): 14531459.CrossRefGoogle ScholarPubMed
Kunkel, M. T., Ni, Q., Tsien, R. Y., Zhang, J., and Newton, A. C.. (2005). “Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter.” J Biol Chem 280(7): 55815587.CrossRefGoogle ScholarPubMed
Lei, L., Lu, S., Wang, Y., Kim, T., Mehta, D., and Wang, Y.. (2014). “The role of mechanical tension on lipid raft dependent PDGF-induced TRPC6 activation.” Biomaterials 35(9): 28682877.CrossRefGoogle ScholarPubMed
Li, S., Butler, P., Wang, Y., Hu, Y., Han, D. C., Unami, S., Guan, J.-L., et al. (2002). “The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells.” Proc Natl Acad Sci USA 99(6): 35463551.CrossRefGoogle ScholarPubMed
Liao, X., Lu, S., Zhuo, Y., Winter, C., Xu, W., and Wang, Y.. (2012). “Visualization of Src and FAK activity during the differentiation process from hMSCs to osteoblasts.” PLoS One 7(8): e42709.CrossRefGoogle ScholarPubMed
Lu, S., Kim, T. J., Chen, C. E., Ouyang, M., Seong, J., Liao, X., and Wang, Y.. (2011). “Computational analysis of the spatiotemporal coordination of polarized PI3 K and Rac1 activities in micro-patterned live cells.” PLoS One 6(6): e21293.CrossRefGoogle Scholar
Luo, B. H., Carman, C. V., and Springer, T. A.. (2007). “Structural basis of integrin regulation and signaling.” Annu Rev Immunol 25: 619647.CrossRefGoogle ScholarPubMed
Makowski, L. and Hotamisligil, G. S.. (2004). “Fatty acid binding proteins–the evolutionary crossroads of inflammatory and metabolic responses.” J Nutr 134(9): 2464S2468S.CrossRefGoogle ScholarPubMed
Medintz, I. L., Clapp, A. R., Mattoussi, H., Goldman, E. R., Fisher, B., and Mauro, J. M.. (2003). “Self-assembled nanoscale biosensors based on quantum dot FRET donors.” Nat Mater 2(9): 630638.CrossRefGoogle ScholarPubMed
Michalet, X., Pinaud, F. F., Bentolilia, L. A., Tsay, J. M., Doose, S., Li, J. J., et al. (2005). “Quantum dots for live cells, in vivo imaging, and diagnostics.” Science 307(5709): 538544.CrossRefGoogle ScholarPubMed
Mitra, S. K., Hanson, D. A., and Schlaepfer, D. D.. (2005). “Focal adhesion kinase: in command and control of cell motility.” Nat Rev Mol Cell Biol 6(1): 5668.CrossRefGoogle ScholarPubMed
Mitra, S. K. and Schlaepfer, D. D.. (2006). “Integrin-regulated FAK-Src signaling in normal and cancer cells.” Curr Opin Cell Biol 18(5): 516523.CrossRefGoogle ScholarPubMed
Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Akiyama, S. K., and Yamada, K. M.. (1995). “Integrin function: molecular hierarchies of cytoskeletal and signaling molecules.” J Cell Biol 131(3): 791805.CrossRefGoogle ScholarPubMed
Miyawaki, A., Llopis, J., Helm, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y.. (1997). “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin.” Nature 388(6645): 882887.CrossRefGoogle ScholarPubMed
Mochizuki, N., Yamashita, S., Kurokawa, K., Obha, Y., Nagai, T., Miyawaki, A., and Matsuda, A.. (2001). “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1.” Nature 411(6841): 10651068.CrossRefGoogle ScholarPubMed
Nagel, T., Resnick, N., Dewey, C. F., and Gimbrone, M. A.. (1999). “Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors.” Arterioscler Thromb Vasc Biol 19(8): 18251834.CrossRefGoogle ScholarPubMed
Ouyang, M., Huang, H., Shaner, N. C., Remacle, A. G., Shiryaev, S. A., Strongin, A. Y., Tsien, R. Y., et al. (2010). “Simultaneous visualization of protumorigenic Src and MT1-MMP activities with fluorescence resonance energy transfer.” Cancer Res 70(6): 22042212.CrossRefGoogle ScholarPubMed
Ouyang, M., Lu, S., Kim, T., Chen, C. E., Seong, J., Leckband, D. E., Wang, F., et al. (2013). “N-cadherin regulates spatially polarized signals through distinct p120ctn and beta-catenin-dependent signalling pathways.” Nat Commun 4: 1589.CrossRefGoogle ScholarPubMed
Ouyang, M., Sun, J., Chien, S., and Wang, Y.. (2008). “Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors.” Proc Natl Acad Sci USA 105(38): 1435314358.CrossRefGoogle ScholarPubMed
Pertz, O., Hodgson, L., Klemke, R. L., and Hahn, K. M.. (2006). “Spatiotemporal dynamics of RhoA activity in migrating cells.” Nature 440(7087): 10691072.CrossRefGoogle ScholarPubMed
Prasuhn, D. E., Feltz, A., Blanco-Canosa, J., Susumo, K., Stewart, M. H., Mei, B. C., Yakoviev, A. V., et al. (2010). “Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions.” ACS Nano 4(9): 54875497.CrossRefGoogle ScholarPubMed
Reiss, P., Bleuse, J., and Pron, A.. (2002). “Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion.” Nano Lett 2(7): 781784.CrossRefGoogle Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nunn, T.. (2008). “Quantum dots versus organic dyes as fluorescent labels.” Nat Methods 5(9): 763775.CrossRefGoogle ScholarPubMed
Seong, J., Ouyang, M., Kim, T., Sun, J., Wen, P.-C., et al. (2011). “Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer.” Nat Commun 2: 406.CrossRefGoogle ScholarPubMed
Seong, J., Tajik, A., Sun, J., Guan, J.-L., Humphries, M. J., Craig, S. E., Shekaran, A., et al. (2013). “Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins.” Proc Natl Acad Sci USA 110(48): 1937219377.CrossRefGoogle ScholarPubMed
Smith, A. M., Duan, H., Mohs, A. M., and Nie, S.. (2008). “Bioconjugated quantum dots for in vivo molecular and cellular imaging.” Adv Drug Deliv Rev 60(11): 12261240.CrossRefGoogle ScholarPubMed
Song, Y., Madahar, V., and Liao, J.. (2011). “Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions.” Ann Biomed Eng 39(4): 12241234.CrossRefGoogle ScholarPubMed
Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., Klinov, D., et al. (2004). “Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells.” Anal Biochem 324(1): 6067.CrossRefGoogle ScholarPubMed
Tardy, Y., Resnick, N., Gimbone, M. A., and Dewey, C. F.. (1997). “Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle.” Arterioscler Thromb Vasc Biol 17(11): 31023106.CrossRefGoogle Scholar
Thomas, S. M. and Brugge, J. S.. (1997). “Cellular functions regulated by Src family kinases.” Annu Rev Cell Dev Biol 13: 513609.CrossRefGoogle ScholarPubMed
Ting, A. Y., Kain, K. H., Klemke, R. L., and Tsien, R. Y.. (2001). “Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells.” Proc Natl Acad Sci USA 98(26): 1500315008.CrossRefGoogle ScholarPubMed
Violin, J. D., Zhang, J., Tsien, R. Y., and Newton, A. C.. (2003). “A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C.” J Cell Biol 161(5): 899909.CrossRefGoogle ScholarPubMed
Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y., and Chien, S.. (2005). “Visualizing the mechanical activation of Src.” Nature 434(7036): 10401045.CrossRefGoogle ScholarPubMed
Wang, Y., Shyy, J. Y., and Chien, S.. (2008). “Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing.” Annu Rev Biomed Eng 10: 138.CrossRefGoogle ScholarPubMed
Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y.. (2002). “Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.” Science 296(5569): 913916.CrossRefGoogle ScholarPubMed
Zhang, J., Hupfeld, C. J., Taylor, S. S., Olefsky, J. M., and Tsien, R. Y.. (2005). “Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes.” Nature 437(7058): 569573.CrossRefGoogle ScholarPubMed
Zhang, J., Ma, Y., Taylor, S. S., and Tsien, R. Y.. (2001). “Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering.” Proc Natl Acad Sci USA 98(26): 1499715002.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×