Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T14:08:25.124Z Has data issue: false hasContentIssue false

12 - Forces of nature

Understanding the role of mechanotransduction in stem cell differentiation

from Part II - Recent progress in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 205 - 226
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, G. A., Goodman, S. L., Nealey, P. F., Franco, M. and Murphy, C. J. (2000). “Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque.” Cell Tissue Res 299: 3946.CrossRefGoogle ScholarPubMed
Adamo, L., Naveiras, O., Wenzel, P. L., et al. (2009). “Biomechanical forces promote embryonic haematopoiesis.” Nature 459: 11311135.CrossRefGoogle ScholarPubMed
Adams, D. S., Keller, R., and Koehl, M. A. (1990). “The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis.” Development 110: 115130.CrossRefGoogle ScholarPubMed
Anava, S., Greenbaum, A., Ben Jacob, E., Hanein, Y., and Ayali, A. (2009). “The regulative role of neurite mechanical tension in network development.” Biophys J 96: 16611670.CrossRefGoogle ScholarPubMed
Arnold, M., Cavalcanti-Adam, E. A., Glass, R., et al. (2004). “Activation of integrin function by nanopatterned adhesive interfaces.” Chemphyschem 5: 383388.CrossRefGoogle ScholarPubMed
Banerjee, A., Arha, M., Choudhary, S., et al. (2009). “The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells.” Biomaterials 30: 46954699.CrossRefGoogle ScholarPubMed
Beech, D. J. (2005). “TRPC1: store-operated channel and more.” Pflugers Arch 451: 5360.CrossRefGoogle ScholarPubMed
Berry, M. F., Engler, A. J., Woo, Y. J., et al. (2006). “Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance.” Am J Physiol Heart Circ Physiol 290: H2196H2203.CrossRefGoogle ScholarPubMed
Bertet, C., Sulak, L. and Lecuit, T. (2004). “Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation.” Nature 429: 667671.CrossRefGoogle ScholarPubMed
Blanchard, G. B., Kabla, A. J., Schultz, N. L., et al. (2009). “Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation.” Nat Methods 6: 458464.CrossRefGoogle ScholarPubMed
Brehm, P., Kullberg, R. and Moody-Corbett, F. (1984). “Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus laevis.” J Physiol 350: 631648.CrossRefGoogle ScholarPubMed
Breitbach, M., Bostani, T., Roell, W., et al. (2007). “Potential risks of bone marrow cell transplantation into infarcted hearts.” Blood 110: 13621369.CrossRefGoogle ScholarPubMed
Brody, S., Anilkumar, T., Liliensiek, S., et al. (2006). “Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design.” Tissue Eng 12: 413421.CrossRefGoogle ScholarPubMed
Candiello, J., Singh, S. S., Task, K., Kumta, P. N. and Banerjee, I. (2013). “Early differentiation patterning of mouse embryonic stem cells in response to variations in alginate substrate stiffness.” J Biol Eng 7: 9.CrossRefGoogle ScholarPubMed
Chalfie, M. (2009). “Neurosensory mechanotransduction.” Nat Rev Mol Cell Biol 10: 4452.CrossRefGoogle ScholarPubMed
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. and Ingber, D. E. (1997). “Geometric control of cell life and death.” Science 276: 14251428.CrossRefGoogle ScholarPubMed
Chen, W., Villa-Diaz, L. G., Sun, Y., et al. (2012). “Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells.” ACS Nano 6: 40944103.CrossRefGoogle ScholarPubMed
Choi, Y. S., Vincent, L. G., Lee, A. R., et al. (2012a). “Mechanical derivation of functional myotubes from adipose-derived stem cells.” Biomaterials 33: 24822491.CrossRefGoogle ScholarPubMed
Choi, Y. S., Vincent, L. G., Lee, A. R., et al. (2012b). “The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices.” Biomaterials 33: 69436951.CrossRefGoogle ScholarPubMed
Chowdhury, F., et al. (2010a). “Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions.” PLoS One 5: e15655.CrossRefGoogle ScholarPubMed
Chowdhury, F., et al. (2010b). “Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells.” Nat Mater 9: 8288.CrossRefGoogle ScholarPubMed
Christopherson, G. T., Song, H. and Mao, H. Q. (2009). “The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation.” Biomaterials 30: 556564.CrossRefGoogle ScholarPubMed
Connelly, J. T., Gautrot, J. E., Trappmann, B., et al. (2010). “Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions.” Nat Cell Biol 12: 711718.CrossRefGoogle ScholarPubMed
D’Amour, K. A., Agulnick, A. D., Eliazer, S., et al. (2005). “Efficient differentiation of human embryonic stem cells to definitive endoderm.” Nat Biotechnol 23: 15341541.CrossRefGoogle ScholarPubMed
Dado-Rosenfeld, D., Tzchori, I., Fine, A., Chen-Konak, L. and Levenberg, S. (2014). “Tensile forces applied on a cell-embedded three-dimensional scaffold can direct early differentiation of embryonic stem cells toward the mesoderm germ layer.” Tissue Eng Part A 21(1–2): 124143.CrossRefGoogle ScholarPubMed
Dalby, M. J., Gadegaard, N., Tare, R., et al. (2007). “The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder.” Nat Mater 6: 9971003.CrossRefGoogle ScholarPubMed
Daniels, B. R., Masi, B. C. and Wirtz, D. (2006). “Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos.” Biophys J 90: 47126719.CrossRefGoogle ScholarPubMed
del Rio, A., Perez-Jimenez, R., Liu, R., et al. (2009). “Stretching single talin rod molecules activates vinculin binding.” Science 323: 638641.CrossRefGoogle ScholarPubMed
Deng, J., Petersen, B. E., Steindler, D. A., Jorgensen, M. L. and Laywell, E. D. (2006). “Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation.” Stem Cells 24: 10541064.CrossRefGoogle ScholarPubMed
Desprat, N., Supatto, W., Pouille, P. A., Beaurepaire, E. and Farge, E. (2008). “Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos.” Dev Cell 15: 470477.CrossRefGoogle ScholarPubMed
Discher, D. E., Janmey, P., and Wang, Y. L. (2005). “Tissue cells feel and respond to the stiffness of their substrate.” Science 310: 11391143.CrossRefGoogle Scholar
Dobson, J., Cartmell, S. H., Keramane, A. and El Haj, A. J. (2006). “Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening.” IEEE Trans Nanobioscience 5: 173177.CrossRefGoogle ScholarPubMed
Downing, T. L., Soto, J., Morez, C., et al. (2013). “Biophysical regulation of epigenetic state and cell reprogramming.” Nat Mater 12: 11541162.CrossRefGoogle ScholarPubMed
Dupont, S., Morsut, L., Aragona, M., et al. (2011). “Role of YAP/TAZ in mechanotransduction.” Nature 474: 179183.CrossRefGoogle ScholarPubMed
Engler, A. J., Carag-Krieger, C., Johnson, C. P., et al. (2008). “Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating.” J Cell Sci 121: 37943802.CrossRefGoogle Scholar
Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. (2006). “Matrix elasticity directs stem cell lineage specification.” Cell 126: 677689.CrossRefGoogle ScholarPubMed
Eroshenko, N., Ramachandran, R., Yadavalli, V. K. and Rao, R. R. (2013). “Effect of substrate stiffness on early human embryonic stem cell differentiation.” J Biol Eng 7: 7.CrossRefGoogle ScholarPubMed
Evans, N. D., Minelli, C., Gentleman, E., et al. (2009). “Substrate stiffness affects early differentiation events in embryonic stem cells.” Eur Cell Mater 18: 113, discussion 1314.CrossRefGoogle ScholarPubMed
Farge, E. (2003). “Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium.” Curr Biol 13: 13651377.CrossRefGoogle ScholarPubMed
Finley, M. F., Devata, S. and Huettner, J. E. (1999). “BMP-4 inhibits neural differentiation of murine embryonic stem cells.” J Neurobiol 40: 271287.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Fiorio Pla, A., Maric, D., Brazer, S. C., et al. (2005). “Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation.” J Neurosci 25: 26872701.Google Scholar
Flanagan, L. A., Ju, Y. E., Marg, B., Osterfield, M., and Janmey, P. A. (2002). “Neurite branching on deformable substrates.” Neuroreport 13: 24112415.CrossRefGoogle ScholarPubMed
Folkman, J., and Moscona, A. (1978). “Role of cell shape in growth control.” Nature 273: 345349.CrossRefGoogle ScholarPubMed
Forouhar, A. S., Liebling, M., Hickerson, A., et al. (2006). “The embryonic vertebrate heart tube is a dynamic suction pump.” Science 312: 751753.CrossRefGoogle ScholarPubMed
Forte, G., Carotenuto, F., Pagliari, F., et al. (2008). “Criticality of the biological and physical stimuli array inducing resident cardiac stem cell determination.” Stem Cells 26: 20932103.CrossRefGoogle ScholarPubMed
Foty, R. A. and Steinberg, M. S. (2005). “The differential adhesion hypothesis: a direct evaluation.” Dev Biol 278: 255263.CrossRefGoogle ScholarPubMed
Gang, E. J., Jeong, J. A., Hong, S. H., et al. (2004). “Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood.” Stem Cells 22: 617624.CrossRefGoogle ScholarPubMed
Gerecht, S., Bettinger, C. J., Zhang, Z., et al. (2007). “ The effect of actin disrupting agents on contact guidance of human embryonic stem cells.” Biomaterials 28: 40684077.CrossRefGoogle ScholarPubMed
Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., et al. (2010). “Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture.” Science 329: 10781081.CrossRefGoogle ScholarPubMed
Glukhova, M. A. and Thiery, J. P. (1993). “Fibronectin and integrins in development.” Semin Cancer Biol 4: 241249.Google ScholarPubMed
Golji, J., Lam, J. and Mofrad, M. R. (2011). “Vinculin activation is necessary for complete talin binding.” Biophys J 100: 332340.CrossRefGoogle ScholarPubMed
Guharay, F. and Sachs, F. (1984). “Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle.” J Physiol 352: 685701.CrossRefGoogle ScholarPubMed
Harris, A. K., Wild, P. and Stopak, D. (1980). “Silicone rubber substrata: a new wrinkle in the study of cell locomotion.” Science 208: 177179.CrossRefGoogle Scholar
Hazeltine, L. B., Badur, M. G., Lian, X., et al. (2014). “Temporal impact of substrate mechanics on differentiation of human embryonic stem cells to cardiomyocytes.” Acta Biomater 10: 604612.CrossRefGoogle ScholarPubMed
Heydemann, A. and McNally, E. M. (2007). “Consequences of disrupting the dystrophin-sarcoglycan complex in cardiac and skeletal myopathy.” Trends Cardiovasc Med 17: 5559.CrossRefGoogle ScholarPubMed
Holle, A. W. and Engler, A. J. (2010). “Cell rheology: Stressed-out stem cells.” Nat Mater 9: 46.CrossRefGoogle ScholarPubMed
Holle, A. W., Tang, X., Vijayraghavan, D., et al. (2013). “In situ mechanotransduction via vinculin regulates stem cell differentiation.” Stem Cells 31: 24672477.CrossRefGoogle ScholarPubMed
Holly, S. P., Larson, M. K. and Parise, L. V. (2000). “Multiple roles of integrins in cell motility.” Exp Cell Res 261: 6974.CrossRefGoogle ScholarPubMed
Horner, V. L. and Wolfner, M. F. (2008). “Mechanical stimulation by osmotic and hydrostatic pressure activates Drosophila oocytes in vitro in a calcium-dependent manner.” Dev Biol 316: 100109.CrossRefGoogle Scholar
Hove, J. R., Koster, R. W., Forouhar, A. S., et al. (2003). “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis.” Nature 421: 172177.CrossRefGoogle ScholarPubMed
Huang, C. Y., Hagar, K. L., Frost, L. E., Sun, Y. and Cheung, H. S. (2004). “Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells.” Stem Cells 22: 313323.CrossRefGoogle ScholarPubMed
Huang, S. and Ingber, D. E. (2005). “Cell tension, matrix mechanics, and cancer development.” Cancer Cell 8: 175176.CrossRefGoogle ScholarPubMed
Huebsch, N., Arany, P. R., Mao, A. S., et al. (2010). “Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate.” Nat Mater 9: 518526.CrossRefGoogle ScholarPubMed
Ingber, D. (1991). “Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis.” J Cell Biochem 47: 236241.CrossRefGoogle ScholarPubMed
Ingber, D. E. (2006). “Cellular mechanotransduction: putting all the pieces together again.” FASEB J 20: 811827.CrossRefGoogle Scholar
Jaalouk, D. E. and Lammerding, J. (2009). “Mechanotransduction gone awry.” Nat Rev Mol Cell Biol 10: 6373.CrossRefGoogle ScholarPubMed
Kahn, J., Shwartz, Y., Blitz, E., et al. (2009). “Muscle contraction is necessary to maintain joint progenitor cell fate.” Dev Cell 16: 734743.CrossRefGoogle ScholarPubMed
Kanczler, J. M., Sura, H. S., Magnay, J., et al. (2010). “Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology.” Tissue Eng Part A 16: 32413250.CrossRefGoogle ScholarPubMed
Katayama, Y., Battista, M., Kao, W. M., et al. (2006). “Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow.” Cell 124: 407421.CrossRefGoogle ScholarPubMed
Khetan, S., Guvendiren, M., Legant, W. R., et al. (2013). “Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels.” Nat Mater 12: 458465.CrossRefGoogle ScholarPubMed
Kinney, M. A., Saeed, R. and McDevitt, T. C. (2014). “Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche.” Sci Rep 4: 4290.CrossRefGoogle ScholarPubMed
Kong, Y. P., Tu, C. H., Donovan, P. J. and Yee, A. F. (2013). “Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration.” Acta Biomater 9: 63696380.CrossRefGoogle ScholarPubMed
Krieg, M., Arboleda-Estudillo, Y., Puech, P. H., et al. (2008). “Tensile forces govern germ-layer organization in zebrafish.” Nat Cell Biol 10: 429636.CrossRefGoogle ScholarPubMed
Kurpinski, K., Chu, J., Hashi, C., and Li, S. (2006). “Anisotropic mechanosensing by mesenchymal stem cells.” Proc Natl Acad Sci USA 103: 1609516100.CrossRefGoogle ScholarPubMed
Lammerding, J., Kamm, R. D. and Lee, R. T. (2004). “Mechanotransduction in cardiac myocytes.” Ann N Y Acad Sci 1015: 5370.CrossRefGoogle ScholarPubMed
le Noble, F., Moyon, D., Pardanaud, L., et al. (2004). “Flow regulates arterial-venous differentiation in the chick embryo yolk sac.” Development 131: 361375.CrossRefGoogle ScholarPubMed
Lee, M. R., Kwon, K. W., Jung, H., et al. (2010). “Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays.” Biomaterials 31: 43604366.CrossRefGoogle ScholarPubMed
Leipzig, N. D. and Shoichet, M. S. (2009). “The effect of substrate stiffness on adult neural stem cell behavior.” Biomaterials 30: 68676878.CrossRefGoogle ScholarPubMed
Leucht, P., Kim, J. B., Currey, J. A., Brunski, J. and Helms, J. A. (2007). “FAK-Mediated mechanotransduction in skeletal regeneration.” PLoS One 2: e390.CrossRefGoogle ScholarPubMed
Li, Y., Chu, J. S., Kurpinski, K., et al. (2011). “Biophysical regulation of histone acetylation in mesenchymal stem cells.” Biophys J 100: 19021909.CrossRefGoogle ScholarPubMed
Majkut, S., Idema, T., Swift, J., et al. (2013). “Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating.” Curr Biol 23: 24342439.CrossRefGoogle ScholarPubMed
Mammoto, T. and Ingber, D. E. (2010). “Mechanical control of tissue and organ development.” Development 137: 14071420.CrossRefGoogle ScholarPubMed
Manasek, F. J., Burnside, M. B. and Waterman, R. E. (1972). “Myocardial cell shape change as a mechanism of embryonic heart looping.” Dev Biol 29: 349371.CrossRefGoogle ScholarPubMed
Mauck, R. L., Byers, B. A., Yuan, X. and Tuan, R. S. (2007). “Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading.” Biomech Model Mechanobiol 6: 113125.CrossRefGoogle ScholarPubMed
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. and Chen, C. S. (2004). “Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment.” Dev Cell 6: 483495.CrossRefGoogle ScholarPubMed
McMurray, R. J., Gadegaard, N., Tsimbouri, P. M., et al. (2011). “Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency.” Nat Mater 10: 637644.CrossRefGoogle ScholarPubMed
Montell, D. J. (2003). “Border-cell migration: the race is on.” Nat Rev Mol Cell Biol 4: 1324.CrossRefGoogle ScholarPubMed
Moore, K. A., Polte, T., Huang, S., et al. (2005). “Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension.” Dev Dyn 232: 268281.CrossRefGoogle Scholar
Moore, S. W., Biais, N., and Sheetz, M. P. (2009). “Traction on immobilized netrin-1 is sufficient to reorient axons.” Science 325: 166.CrossRefGoogle ScholarPubMed
Moore, S. W., Keller, R. E., and Koehl, M. A. (1995). “The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis.” Development 121: 31313140.CrossRefGoogle ScholarPubMed
Muramatsu, S., Wakabayashi, M., Ohno, T., et al. (2007). “Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation.” J Biol Chem 282: 3215832167.CrossRefGoogle ScholarPubMed
Murphy, W. L., McDevitt, T. C. and Engler, A. J. (2014). “Materials as stem cell regulators.” Nat Mater 13(3): 547557.CrossRefGoogle ScholarPubMed
North, T. E., Goessling, W., Peeters, M., et al. (2009). “Hematopoietic stem cell development is dependent on blood flow.” Cell 137: 736748.CrossRefGoogle ScholarPubMed
Nostro, M. C., Cheng, X., Keller, G. M., and Gadue, P. (2008). “Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood.” Cell Stem Cell 2: 6071.CrossRefGoogle ScholarPubMed
Nur, E. K. A., Ahmed, I., Kamal, J., Schindler, M. and Meiners, S. (2006). “Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells.” Stem Cells 24: 426433.CrossRefGoogle Scholar
Oh, S., Brammer, K. S., Li, Y. S., et al. (2009). “Stem cell fate dictated solely by altered nanotube dimension.” Proc Natl Acad Sci USA 106: 21302135.CrossRefGoogle ScholarPubMed
Ohashi, N., Robling, A. G., Burr, D. B. and Turner, C. H. (2002). “The effects of dynamic axial loading on the rat growth plate.” J Bone Miner Res 17: 284292.CrossRefGoogle ScholarPubMed
Park, J., Bauer, S., von der Mark, K. and Schmuki, P. (2007). “Nanosize and vitality: TiO2 nanotube diameter directs cell fate.” Nano Lett 7: 16861691.CrossRefGoogle ScholarPubMed
Park, J. S., Chu, J. S., Cheng, C., et al. (2004). “Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells.” Biotechnol Bioeng 88: 359868.CrossRefGoogle ScholarPubMed
Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. and Waterman, C. M. (2010). “Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation.” J Cell Biol 188: 877890.CrossRefGoogle ScholarPubMed
Paszek, M. J., Zahir, N., Johnson, K. R., et al. (2005). “Tensional homeostasis and the malignant phenotype.” Cancer Cell 8: 241254.CrossRefGoogle ScholarPubMed
Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). “ Multilineage potential of adult human mesenchymal stem cells.” Science 284: 143147.CrossRefGoogle ScholarPubMed
Poteser, M., Graziani, A., Eder, P., et al. (2008). “Identification of a rare subset of adipose tissue-resident progenitor cells, which express CD133 and TRPC3 as a VEGF-regulated Ca2+ entry channel.” FEBS Lett 582: 26962702.CrossRefGoogle ScholarPubMed
Roux, P. P. and Blenis, J. (2004). “ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions.” Microbiol Mol Biol Rev 68: 320344.CrossRefGoogle ScholarPubMed
Sachs, F. (2010). “Stretch-activated ion channels: what are they?Physiology (Bethesda) 25: 5056.Google Scholar
Saha, K., Keung, A. J., Irwin, E. F., et al. (2008). “Substrate modulus directs neural stem cell behavior.” Biophys J 95: 44264438.CrossRefGoogle ScholarPubMed
Saha, S., Ji, L., de Pablo, J. J. and Palecek, S. P. (2006). “Inhibition of human embryonic stem cell differentiation by mechanical strain.” J Cell Physiol 206: 126137.CrossRefGoogle ScholarPubMed
Sanders, M. C., Way, M., Sakai, J. and Matsudaira, P. (1996). “Characterization of the actin cross-linking properties of the scruin-calmodulin complex from the acrosomal process of Limulus sperm.” J Biol Chem 271: 26512657.CrossRefGoogle ScholarPubMed
Sawada, Y., Tamada, M., Dubin-Thaler, B. J., et al. (2006). “Force sensing by mechanical extension of the Src family kinase substrate p130Cas.” Cell 127: 10151026.CrossRefGoogle ScholarPubMed
Schindler, M., Ahmed, I., Kamal, J., et al. (2005). “A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture.” Biomaterials 26: 56245631.CrossRefGoogle ScholarPubMed
Schwartz, M. A. (2010). “Integrins and extracellular matrix in mechanotransduction.” Cold Spring Harb Perspect Biol 2: a005066.CrossRefGoogle ScholarPubMed
Shih, Y. R., Tseng, K. F., Lai, H. Y., Lin, C. H. and Lee, O. K. (2005). “Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells.” J Bone Miner Res 26: 730738.CrossRefGoogle Scholar
Shimizu, N., Yamamoto, K., Obi, S., et al. (2008). “Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta.” J Appl Physiol (1985) 104: 766772.CrossRefGoogle ScholarPubMed
Shin, J. H., Tam, B. K., Brau, R. R., et al. (2007). “Force of an actin spring.” Biophys J 92: 37298733.CrossRefGoogle ScholarPubMed
Smith, L. A., Liu, X., Hu, J. and Ma, P. X. (2009). “The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells.” Biomaterials 30: 25162522.CrossRefGoogle ScholarPubMed
Smith, L. A., Liu, X., Hu, J. and Ma, P. X. (2010). “The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding.” Biomaterials 31: 55265535.CrossRefGoogle ScholarPubMed
Steward, A. J., Thorpe, S. D., Vinardell, T., et al. (2012). “Cell-matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure.” Acta Biomater 8: 21532159.CrossRefGoogle ScholarPubMed
Stokes, I. A., Mente, P. L., Iatridis, J. C., Farnum, C. E. and Aronsson, D. D. (2002). “Growth plate chondrocyte enlargement modulated by mechanical loading.” Stud Health Technol Inform 88: 378381.Google ScholarPubMed
Stolberg, S. and McCloskey, K. E. (2009). “Can shear stress direct stem cell fate?Biotechnol Prog 25: 1019.CrossRefGoogle ScholarPubMed
Suresh, S. (2007). “Biomechanics and biophysics of cancer cells.” Acta Biomater 3: 413438.CrossRefGoogle ScholarPubMed
Swift, J., Ivanovska, I. L., Buxboim, A., et al. (2013). “Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation.” Science 341: 1240104.CrossRefGoogle ScholarPubMed
Tai, Y., Feng, S., Du, W. and Wang, Y. (2009). “Functional roles of TRPC channels in the developing brain.” Pflugers Arch 458: 239283.CrossRefGoogle ScholarPubMed
Takito, J. and Al-Awqati, Q. (2009). “Conversion of ES cells to columnar epithelia by hensin and to squamous epithelia by laminin.” J Cell Biol 166: 10931102.CrossRefGoogle Scholar
Tay, C. Y., Yu, H., Pal, M., et al. (2010). “Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage.” Exp Cell Res 316: 11591168.CrossRefGoogle ScholarPubMed
Taylor-Weiner, H., Schwarzbauer, J. E. and Engler, A. J. (2013).“Defined extracellular matrix components are necessary for definitive endoderm induction.” Stem Cells 31: 20842094.CrossRefGoogle ScholarPubMed
Teo, B. K., Wong, S. T., Lim, C. K., et al. (2013). “Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase.” ACS Nano 7: 47854798.CrossRefGoogle ScholarPubMed
Tornillo, G., Elia, A. R., Castellano, I., et al. (2013). “p130Cas alters the differentiation potential of mammary luminal progenitors by deregulating c-Kit activity.” Stem Cells 31: 14221433.CrossRefGoogle ScholarPubMed
Toyama, Y., Peralta, X. G., Wells, A. R., Kiehart, D. P. and Edwards, G. S. (2008). “Apoptotic force and tissue dynamics during Drosophila embryogenesis.” Science 321: 16831686.CrossRefGoogle ScholarPubMed
Trappmann, B., Gautrot, J. E., Connelly, J. T., et al. (2012). “Extracellular-matrix tethering regulates stem-cell fate.” Nat Mater 11: 642649.CrossRefGoogle ScholarPubMed
Tse, J. R. and Engler, A. J. (2010). “Preparation of hydrogel substrates with tunable mechanical properties.” Curr Protoc Cell Biol Chapter 10: Unit 10. 16.Google Scholar
Tse, J. R. and Engler, A. J. (2011). “Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate.” PLoS One 6: e15978.CrossRefGoogle ScholarPubMed
Voronov, D. A., Alford, P. W., Xu, G. and Taber, L. A. (2004). “The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo.” Dev Biol 272: 339350.CrossRefGoogle ScholarPubMed
Wang, Y. and Riechmann, V. (2007). “The role of the actomyosin cytoskeleton in coordination of tissue growth during Drosophila oogenesis.” Curr Biol 17: 13491355.CrossRefGoogle ScholarPubMed
Wen, J. H., Vincent, L. G., Fuhrmann, A., et al. (2014). “Interplay of matrix stiffness and protein tethering in stem cell differentiation.” Nat Mater 13(10): 979987.CrossRefGoogle ScholarPubMed
Wilson, N. R., Ty, M. T., Ingber, D. E., Sur, M. and Liu, G. (2007). “Synaptic reorganization in scaled networks of controlled size.” J Neurosci 27: 1358113589.CrossRefGoogle ScholarPubMed
Wozniak, M. A. and Chen, C. S. (2014). “Mechanotransduction in development: a growing role for contractility.” Nat Rev Mol Cell Biol 10: 3443.CrossRefGoogle Scholar
Yang, Y., Beqaj, S., Kemp, P., Ariel, I. and Schuger, L. (2000). “Stretch-induced alternative splicing of serum response factor promotes bronchial myogenesis and is defective in lung hypoplasia.” J Clin Invest 106: 13211330.CrossRefGoogle ScholarPubMed
Yim, E. K., Pang, S. W. and Leong, K. W. (2007). “Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage.” Exp Cell Res 313: 18201829.CrossRefGoogle ScholarPubMed
Young, D. A., Choi, Y. S., Engler, A. J. and Christman, K. L. (2013). “Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue.” Biomaterials 34: 85818588.CrossRefGoogle ScholarPubMed
Young, J. L. and Engler, A. J. (2011). “Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro.” Biomaterials 32: 10021009.CrossRefGoogle ScholarPubMed
Zamir, E. A. and Taber, L. A. (2004a). “Material properties and residual stress in the stage 12 chick heart during cardiac looping.” J Biomech Eng 126: 823830.CrossRefGoogle ScholarPubMed
Zamir, E. A. and Taber, L. A. (2004b). “On the effects of residual stress in microindentation tests of soft tissue structures.” J Biomech Eng 126: 276283.CrossRefGoogle ScholarPubMed
Zhao, L., Liu, L., Wu, Z., Zhang, Y. and Chu, P. K. (2012). “Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation.” Biomaterials 33: 26292641.CrossRefGoogle ScholarPubMed
Zoldan, J., Karagiannis, E. D., Lee, C. Y., et al. (2011). “The influence of scaffold elasticity on germ layer specification of human embryonic stem cells.” Biomaterials 32: 96129621.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×