Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T22:27:27.989Z Has data issue: false hasContentIssue false

Part Four - Formal Analysis

Published online by Cambridge University Press:  04 May 2010

Roland Baddeley
Affiliation:
University of Oxford
Peter Hancock
Affiliation:
University of Stirling
Peter Földiák
Affiliation:
University of St Andrews, Scotland
Get access

Summary

the final part consists of four chapters: two using information theory techniques to model the hippocampus and associated systems; one on the phenomena of stochastic resonance in neronal models; and one exploring the idea that cortical maps can be understood within the information maximisation framework.

The simple “hippocampus as memory system” metaphor has led the hippocampus to be one of the most modelled areas of the brain. These models extend from the very abstract (the hidden layer of a back-propagation network labelled “hippocampus”), to simulations where almost every known detail of the anatomy and physiology is incorporated. The first of the two chapters on the hippocampus modelling (Chapter 14) starts with a model of intermediate complexity. The model is simple enough to allow analytic results, whilst it is rich enough to allow the parameters to be related to known anatomy and physiology. In particular, Schultz et al.'s framework allows an investigation of the effects of changing the topography of connections between CA3 and CA1 (two subparts of the hippocampus), and different forms of representation in CA3 (binary or graded activity).

The second chapter uses similar methods, but this time working on a model that includes more of the hippocampal circuitry: specifically the entorhinal cortex and the associated perforant pathways. This inevitably introduces more parameters and makes the model more complex, but by use of methods to reduce the dimensionality of the saddle-point equations, numerical results have been obtained.

Stochastic resonance is the initially counterintuitive phenomenon that the signal-to-noise ratio (and hence information transmission) of a non-linear system can sometimes be improved by the addition of noise.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×