Skip to main content Accessibility help
  • Print publication year: 2015
  • Online publication date: December 2015

2 - The origin of icebergs

from Part I - The science of icebergs
1.McClintock, Captain F. L., In the Arctic Sea. Philadelphia: Porter and Coates (1857), pp. 31–2.
2.Hambrey, M. J. and Alean, J. C., Glaciers. Cambridge: Cambridge University Press (1994).
3.Paterson, W. S. B., The physics of glaciers, 3rd ed. Oxford: Elsevier, 2002.
4.Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.
5.Clapperton, C. M., Sugden, D. E. and Pelto, M., Relationship of land terminating and fjord glaciers to Holocene climatic-change, South Georgia, Antarctica. In: Glacial fluctuations and climatic change, ed. Oerlemans, J.. Utrecht: University of Utrecht (1989), pp. 5775.
6.Davies, B. J., Carrick, J. L., Glasser, N. F., et al., Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. Cryosphere, 6 (2012), 1031–48.
7.König, M., Nuth, C., Kohler, J., et al., New digital database for Svalbard, [accessed 11 February 2014].
8.Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., et al., Polythermal glacier hydrology: a review. Rev. Geophys. 49, RG4002, doi:10.1029/2010RG000350.
9.Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., et al., A new bed elevation dataset for Greenland. Cryosphere, 7 (2013), 499510.
10.Hanna, E., Huybrechts, P., Cappelen, J., et al., Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J. Geophys. Res. Atmos., 116 (2011), D24121, doi:10.1029/2011JD016387.
11.Box, J. E. and Colgan, W., Greenland ice sheet mass balance reconstruction. Part III: marine ice loss and total mass balance (1840–2010). J. Climate, 26 (2013), 69907002.
12.Alley, R. B., Andrews, J. T., Brigham-Grette, J., et al., History of the Greenland Ice Sheet: paleoclimatic evidence. Quaternary Sci. Rev., 29 (2010), 1728–56.
13.Church, J. A., Gregory, J. M., Huybrechts, P., et al., Changes in sea level. In: Climate Change 2001: the scientific basis, ed. Houghton, J. T., Ding, Y., Griggs, D. J., et al. Cambridge: Cambridge University Press (2001), pp. 639–93.
14.Bigg, G. R., An estimate of the flux of iceberg calving from Greenland. Arct. Antarct. Alp. Res., 31 (1999), 174–8.
15.Bigg, G. R., Wei, H., Wilton, D. J., et al., A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. Roy. Soc Ser. A, 470 (2014), 20130662, doi:10.1098/rspa.2013.0662.
16.Bigg, G. R. and Wilton, D. J., The iceberg risk in the Titanic year of 1912: was it exceptional? Weather, 69 (2014), 100–4.
17.Hall, D. K., Comiso, J. C., Diggirolamo, N. E., et al., Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophys. Res. Lett., 40 (2013), 2114–20.
18.Mayewski, P. A., Meredith, M. P., Summerhayes, C. P., et al., State of the Antarctic and Southern Ocean climate system. Rev. Geophys., 47 (2009), RG1003, doi:10.1029/2007RG000231.
19.Hanna, E., Navarro, F. J., Pattyn, F., et al., Ice-sheet mass balance and climate change. Nature, 498 (2013), 51–9.
20.Lee, H., Shum, C. K., Howat, I. M., et al., Continuously accelerating ice loss over Amundsen Sea catchment, West Antarctica, revealed by integrating altimetry and GRACE data. Earth Planet Sci. Lett., 321 (2012), 7480.
21.Nye, J. F., The mechanics of glacier flow. J. Glaciol., 2 (1952), 8293.
22.Nye, J. F., The flow of a glacier in a channel of rectangular, elliptical or parabolic cross-section. J. Glaciol., 5 (1965), 661–90.
23.Schoof, C. and Hewitt, I., Ice-sheet dynamics. Ann. Rev. Fluid Mech., 45 (2013), 217–39.
24.Gladstone, R., Bigg, G. R. and Nicholls, K.W., Icebergs and fresh water fluxes in the Southern Ocean. J. Geophys. Res. Oceans, 106 (2001), 19903–15.
25.Bigg, G. R. and Wadley, M. R., The origin and flux of icebergs into the Last Glacial Maximum Northern Hemisphere Oceans. J. Quaternary Sci., 16 (2001), 565–73.
26.Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.
27.Andresen, C. S., Straneo, F., Ribergaard, M. H., et al., Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nature Geosci., 5 (2012), 3741.
28.Csatho, B., Schenk, T., Van der Veen, C. J. and Krabill, W.B., Intermittent thinning of Jakobshavn Isbrae, West Greenland, since the Little Ice Age. J. Glaciol., 54 (2008), 131–44.
29.Howat, I. M. and Eddy, A., Multi-decadal retreat of Greenland’s marine-terminating glaciers. J. Glaciol., 57 (2011), 389–96.
30.Long, D. G., Ballantyne, J. and Bertoia, C., Is the number of icebergs really increasing? EOS, 83 (2002), 469, 474.
31.Stuart, K. M. and Long, D. G., Iceberg size and orientation estimation using SeaWinds. Cold Reg. Sci. Technol., 69 (2011), 3951.
32.Rignot, E., Box, J. E., Burgess, E. and Hanna, E., Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35 (2008), L20502, doi:10.1029/2008GL035417.
33.Hulbe, C. L. and Fahnestock, M., Century-scale discharge stagnation and reactivation of the Ross Ice Streams, West Antarctica. J. Geophys. Res. Earth Surf., 112 (2007), F03S27, doi:10.1029/2006JF000603.
34.Hulbe, C. L., Scambos, T. A., Youngberg, T., et al., Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula. Glob. Planet. Change, 63 (2008), 18.
35.Winsborrow, M. C. M., Clark, C. D. and Stokes, C. R., What controls the location of ice streams? Earth-Sci. Rev., 103 (2010), 4559.
36.Bell, R. E., The role of subglacial water in ice-sheet mass balance. Nature Geosci., 1 (2008), 297304.
37.Fahnestock, M., Abdalati, W., Joughin, I., et al., High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294 (2001), 2338–42.
38.Oerter, H., Kipfstuhl, J., Determann, J., et al., Evidence for basal marine ice in the Filchner-Ronne Ice Shelf. Nature, 358 (1992), 399401.
39.Hulbe, C. L., Scambos, T. A., Lee, C. K., et al., Recent changes in the flow of the Ross Ice Shelf, West Antarctica. Earth Planet. Sci. Lett., 376 (2013), 5462.
40.Anderson, J. B. and Molnia, B. F., Glacial-marine sedimentation. Washington, DC: American Geophysical Union (1989).
41.Dowdeswell, J. A. and Murray, O., Modelling rates of sedimentation from icebergs. In: Glacimarine environments: processes and sediments, ed. Dowdeswell, J. A. and Scourse, J. D.. Geol. Soc. Spec. Publ., 53 (1990), pp. 121337.
42.Benn, D. I. and Evans, D. J. A., Glaciers and glaciations. Oxford: Oxford University Press (2003).
43.Death, R., Siegert, M. J., Bigg, G. R. and Wadley, M. R., Modelling iceberg trajectories, sedimentation rates and meltwater input to the ocean from the Eurasian Ice Sheet at the Last Glacial Maximum. Palaeogeogr., Palaeoclim. Palaeoecol., 236 (2006), 135–50.
44.Bigg, G. R., Levine, R. C., Clark, C. D., et al., Last Glacial ice-rafted debris off south-western Europe: the role of the British-Irish Ice Sheet. J. Quaternary Sci., 25 (2010), 689–99.
45.Roberts, W. H. G., Valdes, P. J. and Payne, A. J., A new constraint on the size of Heinrich events from an iceberg/sediment model. Earth Planet. Sci. Lett., 386 (2014), 19.
46.Bell, R. E., Ferraccioli, F., Creyts, T. T., et al., Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (2011), 1592–95.
47.Nicholls, K. W., Corr, H. F. J., Makinson, K. and Pudsey, C. J., Rock debris in an Antarctic ice shelf. Ann. Glaciol., 53 (2012), 235–40.
48.Hodson, A. J., Anesio, A. M., Tranter, M., et al., Glacial ecosystems. Ecol. Monographs, 78 (2008), 4167.
49.Anesio, A. M., Hodson, A. J., Fritz, A., et al., High microbial activity on glaciers: importance to the global carbon cycle. Glob. Change Biol., 15 (2009), 955–60.
50.Hodson, A. J., Paterson, H., Westwood, K., et al., A blue-ice ecosystem on the margins of the East Antarctic ice sheet. J. Glaciol., 59 (2013), 255–68.
51.Wanninkhof, R., Park, G. H., Takahashi, T., et al., Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 10 (2013), 19832000.
52.Rignot, E., Mouginot, J. and Scheuchl, B., Ice flow of the Antarctic ice sheet. Science, 333 (2011), 1427–30.
53.Silva, T. A. M., Quantifying Antarctic icebergs and their melting in the ocean. Sheffield: University of Sheffield, Ph.D. thesis (2006).
54.Straneo, F., Heimbach, P., Sergienko, O., et al., Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteorol. Soc., 94 (2013), 1131–44.
55.Joughin, I., Alley, R. B. and Holland, D. M., Ice-sheet response to oceanic forcing. Science, 338 (2012), 1172–6.
56.Warren, C. R., Iceberg calving and the glacioclimatic record. Prog. Phys. Geogr., 16 (1992), 253–82.
57.van der Veen, C. J., Tidewater calving. J. Glaciol., 42 (1996), 375–85.
58.Bassis, J. N. and Walker, C. C., Upper and lower limits on the stability of calving glaciers from the yield envelope of ice. Proc. Roy. Soc. Ser. A, 468 (2012), 913–31.
59.Bassis, J. N. and Jacobs, S., Diverse calving patterns linked to glacier geometry. Nature Geosci., 6 (2013), 833–36.
60.Seale, A., Christoffersen, P., Mugford, R. I. and O’Leary, M., Ocean forcing of the Greenland ice sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf., 116 (2011), F03013, doi:10.1029/2010JF001847.
61.Sole, A. J., Mair, D. W. F., Neinow, P. W., et al., Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface-melt induced changes in subglacial hydrology. J. Geophys. Res. Earth Surf., 116 (2011), F03014, doi:10.1029/2010JF001948.
62.Ekström, G., Nettles, M. and Tsai, V. C., Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311 (2006), 1756–8.
63.Robertson, R., Tidally induced increases in melting of Amundsen Sea ice shelves. J. Geophys. Res. Oceans, 118 (2013), 3138–45.
64.Doake, C. S. M. and Vaughan, D. G., Rapid disintegration of the Wordie ice shelf in response to atmospheric warming. Nature, 350 (1991), 328–30.
65.Scambos, T. A., Hulbe, C., Fahnestock, M. and Bohlander, J., The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46 (2000), 516–30.
66.McGrath, D., Stekken, K., Rajaram, H., et al., Basal crevasses on the Larsen C ice shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophys. Res. Lett., 39 (2012), L16504, doi:10.1029/2012GL052413.
67.Braun, M. and Humbert, A., Recent retreat of Wilkins ice shelf reveals new insights in ice shelf breakup mechanism. IEEE Geosci. Remote Sens. Lett., 6 (2009), 263–7.
68.Hughes, T., Calving bays. Quaternary Sci. Rev., 21 (2002), 267–82.
69.Mugford, R. I. and Dowdeswell, J. A., Modeling iceberg-rafted sedimentation in high-latitude fjord environments. J. Geophys. Res. Earth Surf., 115 (2010), F03024, doi:10.1029/2009JF001564.