Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T21:43:10.817Z Has data issue: false hasContentIssue false

2 - The origin of icebergs

from Part I - The science of icebergs

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 23 - 51
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McClintock, Captain F. L., In the Arctic Sea. Philadelphia: Porter and Coates (1857), pp. 31–2.Google Scholar
Hambrey, M. J. and Alean, J. C., Glaciers. Cambridge: Cambridge University Press (1994).Google Scholar
Paterson, W. S. B., The physics of glaciers, 3rd ed. Oxford: Elsevier, 2002.Google Scholar
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Clapperton, C. M., Sugden, D. E. and Pelto, M., Relationship of land terminating and fjord glaciers to Holocene climatic-change, South Georgia, Antarctica. In: Glacial fluctuations and climatic change, ed. Oerlemans, J.. Utrecht: University of Utrecht (1989), pp. 5775.CrossRefGoogle Scholar
Davies, B. J., Carrick, J. L., Glasser, N. F., et al., Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. Cryosphere, 6 (2012), 1031–48.CrossRefGoogle Scholar
König, M., Nuth, C., Kohler, J., et al., New digital database for Svalbard, http://public.data.npolar.no/cryoclim/CryoClimGAO.pdf [accessed 11 February 2014].Google Scholar
Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., et al., Polythermal glacier hydrology: a review. Rev. Geophys. 49, RG4002, doi:10.1029/2010RG000350.Google Scholar
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., et al., A new bed elevation dataset for Greenland. Cryosphere, 7 (2013), 499510.CrossRefGoogle Scholar
Hanna, E., Huybrechts, P., Cappelen, J., et al., Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J. Geophys. Res. Atmos., 116 (2011), D24121, doi:10.1029/2011JD016387.CrossRefGoogle Scholar
Box, J. E. and Colgan, W., Greenland ice sheet mass balance reconstruction. Part III: marine ice loss and total mass balance (1840–2010). J. Climate, 26 (2013), 69907002.CrossRefGoogle Scholar
Alley, R. B., Andrews, J. T., Brigham-Grette, J., et al., History of the Greenland Ice Sheet: paleoclimatic evidence. Quaternary Sci. Rev., 29 (2010), 1728–56.CrossRefGoogle Scholar
Church, J. A., Gregory, J. M., Huybrechts, P., et al., Changes in sea level. In: Climate Change 2001: the scientific basis, ed. Houghton, J. T., Ding, Y., Griggs, D. J., et al. Cambridge: Cambridge University Press (2001), pp. 639–93.Google Scholar
Bigg, G. R., An estimate of the flux of iceberg calving from Greenland. Arct. Antarct. Alp. Res., 31 (1999), 174–8.CrossRefGoogle Scholar
Bigg, G. R., Wei, H., Wilton, D. J., et al., A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. Roy. Soc Ser. A, 470 (2014), 20130662, doi:10.1098/rspa.2013.0662.CrossRefGoogle ScholarPubMed
Bigg, G. R. and Wilton, D. J., The iceberg risk in the Titanic year of 1912: was it exceptional? Weather, 69 (2014), 100–4.CrossRefGoogle Scholar
Hall, D. K., Comiso, J. C., Diggirolamo, N. E., et al., Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophys. Res. Lett., 40 (2013), 2114–20.CrossRefGoogle Scholar
Mayewski, P. A., Meredith, M. P., Summerhayes, C. P., et al., State of the Antarctic and Southern Ocean climate system. Rev. Geophys., 47 (2009), RG1003, doi:10.1029/2007RG000231.CrossRefGoogle Scholar
Hanna, E., Navarro, F. J., Pattyn, F., et al., Ice-sheet mass balance and climate change. Nature, 498 (2013), 51–9.CrossRefGoogle ScholarPubMed
Lee, H., Shum, C. K., Howat, I. M., et al., Continuously accelerating ice loss over Amundsen Sea catchment, West Antarctica, revealed by integrating altimetry and GRACE data. Earth Planet Sci. Lett., 321 (2012), 7480.CrossRefGoogle Scholar
Nye, J. F., The mechanics of glacier flow. J. Glaciol., 2 (1952), 8293.CrossRefGoogle Scholar
Nye, J. F., The flow of a glacier in a channel of rectangular, elliptical or parabolic cross-section. J. Glaciol., 5 (1965), 661–90.CrossRefGoogle Scholar
Schoof, C. and Hewitt, I., Ice-sheet dynamics. Ann. Rev. Fluid Mech., 45 (2013), 217–39.CrossRefGoogle Scholar
Gladstone, R., Bigg, G. R. and Nicholls, K.W., Icebergs and fresh water fluxes in the Southern Ocean. J. Geophys. Res. Oceans, 106 (2001), 19903–15.Google Scholar
Bigg, G. R. and Wadley, M. R., The origin and flux of icebergs into the Last Glacial Maximum Northern Hemisphere Oceans. J. Quaternary Sci., 16 (2001), 565–73.CrossRefGoogle Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
Andresen, C. S., Straneo, F., Ribergaard, M. H., et al., Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nature Geosci., 5 (2012), 3741.CrossRefGoogle Scholar
Csatho, B., Schenk, T., Van der Veen, C. J. and Krabill, W.B., Intermittent thinning of Jakobshavn Isbrae, West Greenland, since the Little Ice Age. J. Glaciol., 54 (2008), 131–44.CrossRefGoogle Scholar
Howat, I. M. and Eddy, A., Multi-decadal retreat of Greenland’s marine-terminating glaciers. J. Glaciol., 57 (2011), 389–96.CrossRefGoogle Scholar
Long, D. G., Ballantyne, J. and Bertoia, C., Is the number of icebergs really increasing? EOS, 83 (2002), 469, 474.CrossRefGoogle Scholar
Stuart, K. M. and Long, D. G., Iceberg size and orientation estimation using SeaWinds. Cold Reg. Sci. Technol., 69 (2011), 3951.CrossRefGoogle Scholar
Rignot, E., Box, J. E., Burgess, E. and Hanna, E., Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35 (2008), L20502, doi:10.1029/2008GL035417.CrossRefGoogle Scholar
Hulbe, C. L. and Fahnestock, M., Century-scale discharge stagnation and reactivation of the Ross Ice Streams, West Antarctica. J. Geophys. Res. Earth Surf., 112 (2007), F03S27, doi:10.1029/2006JF000603.CrossRefGoogle Scholar
Hulbe, C. L., Scambos, T. A., Youngberg, T., et al., Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula. Glob. Planet. Change, 63 (2008), 18.CrossRefGoogle Scholar
Winsborrow, M. C. M., Clark, C. D. and Stokes, C. R., What controls the location of ice streams? Earth-Sci. Rev., 103 (2010), 4559.CrossRefGoogle Scholar
Bell, R. E., The role of subglacial water in ice-sheet mass balance. Nature Geosci., 1 (2008), 297304.CrossRefGoogle Scholar
Fahnestock, M., Abdalati, W., Joughin, I., et al., High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294 (2001), 2338–42.CrossRefGoogle ScholarPubMed
Oerter, H., Kipfstuhl, J., Determann, J., et al., Evidence for basal marine ice in the Filchner-Ronne Ice Shelf. Nature, 358 (1992), 399401.CrossRefGoogle Scholar
Hulbe, C. L., Scambos, T. A., Lee, C. K., et al., Recent changes in the flow of the Ross Ice Shelf, West Antarctica. Earth Planet. Sci. Lett., 376 (2013), 5462.CrossRefGoogle Scholar
Anderson, J. B. and Molnia, B. F., Glacial-marine sedimentation. Washington, DC: American Geophysical Union (1989).CrossRefGoogle Scholar
Dowdeswell, J. A. and Murray, O., Modelling rates of sedimentation from icebergs. In: Glacimarine environments: processes and sediments, ed. Dowdeswell, J. A. and Scourse, J. D.. Geol. Soc. Spec. Publ., 53 (1990), pp. 121337.Google Scholar
Benn, D. I. and Evans, D. J. A., Glaciers and glaciations. Oxford: Oxford University Press (2003).Google Scholar
Death, R., Siegert, M. J., Bigg, G. R. and Wadley, M. R., Modelling iceberg trajectories, sedimentation rates and meltwater input to the ocean from the Eurasian Ice Sheet at the Last Glacial Maximum. Palaeogeogr., Palaeoclim. Palaeoecol., 236 (2006), 135–50.CrossRefGoogle Scholar
Bigg, G. R., Levine, R. C., Clark, C. D., et al., Last Glacial ice-rafted debris off south-western Europe: the role of the British-Irish Ice Sheet. J. Quaternary Sci., 25 (2010), 689–99.CrossRefGoogle Scholar
Roberts, W. H. G., Valdes, P. J. and Payne, A. J., A new constraint on the size of Heinrich events from an iceberg/sediment model. Earth Planet. Sci. Lett., 386 (2014), 19.CrossRefGoogle Scholar
Bell, R. E., Ferraccioli, F., Creyts, T. T., et al., Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (2011), 1592–95.CrossRefGoogle ScholarPubMed
Nicholls, K. W., Corr, H. F. J., Makinson, K. and Pudsey, C. J., Rock debris in an Antarctic ice shelf. Ann. Glaciol., 53 (2012), 235–40.CrossRefGoogle Scholar
Hodson, A. J., Anesio, A. M., Tranter, M., et al., Glacial ecosystems. Ecol. Monographs, 78 (2008), 4167.CrossRefGoogle Scholar
Anesio, A. M., Hodson, A. J., Fritz, A., et al., High microbial activity on glaciers: importance to the global carbon cycle. Glob. Change Biol., 15 (2009), 955–60.CrossRefGoogle Scholar
Hodson, A. J., Paterson, H., Westwood, K., et al., A blue-ice ecosystem on the margins of the East Antarctic ice sheet. J. Glaciol., 59 (2013), 255–68.CrossRefGoogle Scholar
Wanninkhof, R., Park, G. H., Takahashi, T., et al., Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 10 (2013), 19832000.CrossRefGoogle Scholar
Rignot, E., Mouginot, J. and Scheuchl, B., Ice flow of the Antarctic ice sheet. Science, 333 (2011), 1427–30.CrossRefGoogle ScholarPubMed
Silva, T. A. M., Quantifying Antarctic icebergs and their melting in the ocean. Sheffield: University of Sheffield, Ph.D. thesis (2006).Google Scholar
Straneo, F., Heimbach, P., Sergienko, O., et al., Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteorol. Soc., 94 (2013), 1131–44.CrossRefGoogle Scholar
Joughin, I., Alley, R. B. and Holland, D. M., Ice-sheet response to oceanic forcing. Science, 338 (2012), 1172–6.CrossRefGoogle ScholarPubMed
Warren, C. R., Iceberg calving and the glacioclimatic record. Prog. Phys. Geogr., 16 (1992), 253–82.CrossRefGoogle Scholar
van der Veen, C. J., Tidewater calving. J. Glaciol., 42 (1996), 375–85.CrossRefGoogle Scholar
Bassis, J. N. and Walker, C. C., Upper and lower limits on the stability of calving glaciers from the yield envelope of ice. Proc. Roy. Soc. Ser. A, 468 (2012), 913–31.Google Scholar
Bassis, J. N. and Jacobs, S., Diverse calving patterns linked to glacier geometry. Nature Geosci., 6 (2013), 833–36.CrossRefGoogle Scholar
Seale, A., Christoffersen, P., Mugford, R. I. and O’Leary, M., Ocean forcing of the Greenland ice sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf., 116 (2011), F03013, doi:10.1029/2010JF001847.CrossRefGoogle Scholar
Sole, A. J., Mair, D. W. F., Neinow, P. W., et al., Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface-melt induced changes in subglacial hydrology. J. Geophys. Res. Earth Surf., 116 (2011), F03014, doi:10.1029/2010JF001948.CrossRefGoogle Scholar
Ekström, G., Nettles, M. and Tsai, V. C., Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311 (2006), 1756–8.CrossRefGoogle ScholarPubMed
Robertson, R., Tidally induced increases in melting of Amundsen Sea ice shelves. J. Geophys. Res. Oceans, 118 (2013), 3138–45.CrossRefGoogle Scholar
Doake, C. S. M. and Vaughan, D. G., Rapid disintegration of the Wordie ice shelf in response to atmospheric warming. Nature, 350 (1991), 328–30.CrossRefGoogle Scholar
Scambos, T. A., Hulbe, C., Fahnestock, M. and Bohlander, J., The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46 (2000), 516–30.CrossRefGoogle Scholar
McGrath, D., Stekken, K., Rajaram, H., et al., Basal crevasses on the Larsen C ice shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophys. Res. Lett., 39 (2012), L16504, doi:10.1029/2012GL052413.CrossRefGoogle Scholar
Braun, M. and Humbert, A., Recent retreat of Wilkins ice shelf reveals new insights in ice shelf breakup mechanism. IEEE Geosci. Remote Sens. Lett., 6 (2009), 263–7.CrossRefGoogle Scholar
Hughes, T., Calving bays. Quaternary Sci. Rev., 21 (2002), 267–82.CrossRefGoogle Scholar
Mugford, R. I. and Dowdeswell, J. A., Modeling iceberg-rafted sedimentation in high-latitude fjord environments. J. Geophys. Res. Earth Surf., 115 (2010), F03024, doi:10.1029/2009JF001564.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×