Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T00:35:46.599Z Has data issue: false hasContentIssue false

5 - Icebergs and the sea floor

from Part I - The science of icebergs

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 101 - 124
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Darwin, C., Note on a rock seen on an iceberg in 61° South latitude. J. Roy. Geog. Soc. Lond., 9 (1839), 528–9.Google Scholar
Benn, D. I. and Evans, D. J. A., Glaciers and glaciations. Oxford: Oxford University Press (2003).Google Scholar
Azetsu-Scott, K. and Syvitski, J. M. P., Influence of melting icebergs on distribution, characteristics and transport of marine particles in an East Greenland fjord. J. Geophys. Res. Oceans, 104(1999), 5321–8.CrossRefGoogle Scholar
Open University, Ocean chemistry and deep-sea sediments. Oxford: Butterworth-Heinemann (1989).Google Scholar
MacAyeal, D. R., Okal, E. A., Aster, R. C. and Bassis, J. N., Seismic and hydroacoustic tremor generated by colliding icebergs. J. Geophys. Res. Earth Surf., 113 (2008), F03011, doi:10.1029/2008JF001005.CrossRefGoogle Scholar
Woodworth-Lynas, C. M. T., Josenhans, H. W., Barrie, J. V., et al., The physical processes of seabed disturbance during iceberg grounding and scouring. Cont. Shelf Res., 11 (1991), 939–61.CrossRefGoogle Scholar
Marsh, R., Ivchenko, V. O., Skliris, N., et al., NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at coarse and eddy-permitting resolution. Geoscientific Mod. Dev., 8 (2015), 1547–62.Google Scholar
King, E. L. and Gillespie, R. T., Regional iceberg scour distribution and variability on the eastern Canadian continental shelf. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 172–81.Google Scholar
Wilton, D. J., Bigg, G. R. and Hanna, E., Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge. Prog. Oceanogr. (2015), doi : 10.1016/j.pocean.2015.07.003.Google Scholar
Lever, J., Iceberg dynamics of the DIGS Experiment. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 138–42.Google Scholar
Kuijpers, A., Dalhoff, F., Brandt, M. P., et al., Giant iceberg plow marks at more than 1 km water depth offshore West Greenland. Mar. Geol., 246 (2007), 60–4.CrossRefGoogle Scholar
Todd, B. J., Iceberg scouring on Saglek Bank, northern Labrador shelf. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 182–93.Google Scholar
Woodworth-Lynas, C. M. T. and Guigné, J. Y., Iceberg scours in the geological record: examples from glacial Lake Agassiz. In: Glacimarine environments: processes and sediments, ed. Dowdeswell, J. A. and Scourse, J. D.. London: Special Publications of the Geologists’ Association 53 (1990), pp. 217–23.Google Scholar
MacAyeal, D. R., Okal, M. H., Thom, J. E., et al., Tabular iceberg collisions within the coastal regime. J. Glaciol., 54 (2008), 371–86.CrossRefGoogle Scholar
Barrie, J. V., Collins, W. T. and Parrott, D. R., Grand Banks pits: description and postulated origin. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 73–7.Google Scholar
Barrie, J. V., Lewis, C. F. M., Parrott, D. R., et al., Submersible observations of an iceberg pit and scour on the Grand Banks of Newfoundland. Geo-mar. Lett., 12 (1992), 16.CrossRefGoogle Scholar
Bass, D. and Woodworth-Lynas, C., Iceberg crater chains and scour up- and downslope. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 122–8.Google Scholar
Dziak, R. P., Park, M., Lee, W. S., et al., Tectonomagmatic activity and ice dynamics in the Bransfield Strait back-arc basin, Antarctica. J. Geophys. Res. Solid Earth, 115 (2010), B01102, doi:10.1029/2009JB006295.CrossRefGoogle Scholar
Dupont, L. M. and Wefer, G., Sedimentation rate of Site 175–1077 (2001), doi:10.1594/PANGAEA.60351.CrossRefGoogle Scholar
Gebhardt, A. C., Jokat, W., Niessen, F., et al., Ice sheet grounding and iceberg plow marks on the northern and central Yermak Plateau revealed by geophysical data. Quaternary Sci. Rev., 30 (2011), 1726–38.CrossRefGoogle Scholar
Sacchetti, F., Benetti, S., O’Cofaigh, C. and Georgiopoulou, A., Geophysical evidence of deep-keeled icebergs on the Rockall Bank, Northeast Atlantic Ocean. Geomorphology, 159 (2011), 6372.Google Scholar
Metz, J. M., Dowdeswell, J. A. and Woodworth-Lynas, C. M. T., Sea-floor scour at the mouth of Hudson Strait by deep-keeled icebergs from the Laurentide Ice Sheet. Mar. Geol., 253 (2008), 149–59.CrossRefGoogle Scholar
Gutt, J., Starmans, A. and Dieckmann, G., Impact of iceberg scouring on polar benthic habitats. Mar. Ecol. Prog. Ser., 137 (1996), 311–6.CrossRefGoogle Scholar
Peck, L. S., Brockington, S., Vanhove, S. and Beghyn, M., Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar. Ecol. Prog. Ser., 186 (1999), 18.CrossRefGoogle Scholar
Thrush, S. F. and Cummings, V. J., Massive icebergs, alteration in primary food resources and change in benthic communities at Cape Evans, Antarctica. Mar. Ecol. – Evol. Perspective, 32 (2011), 289–99.Google Scholar
Gutt, J., Barratt, I., Domack, E., et al., Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Res. II, 58 (2011), 7483.CrossRefGoogle Scholar
Gutt, J., On the direct impact of ice on marine benthos. Polar Biol., 24 (2001), 553–64.CrossRefGoogle Scholar
Barnes, D. K. A. and Souster, T., Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Clim. Change, 1 (2011), 365–8.CrossRefGoogle Scholar
Gutt, J. and Starmans, A., Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biol., 24 (2001), 615–9.CrossRefGoogle Scholar
Smale, D. A., Barnes, D. K. A. and Fraser, K. P. P., The influence of depth, site exposure and season on the intensity of iceberg scouring in nearshore Antarctic waters. Polar Biol., 30 (2007), 769–79.CrossRefGoogle Scholar
Gutt, J. and Piepenburg, D., Scale-dependent impact of diversity of Antarctic benthos caused by grounding of icebergs. Mar. Ecol. Prog. Ser., 253 (2003), 7783.CrossRefGoogle Scholar
Clarke, A., Aronson, R. B., Crame, J. A., et al., Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Ant. Sci., 16 (2004), 559–68.CrossRefGoogle Scholar
Viana, M., Sediment characterization in the Garvellachs area (Firth of Lorn Special Area for conservation). Fisheries Research Services Internal Report No. 05/08 (2008), Aberdeen: Scottish Fisheries Research Services.Google Scholar
Hemming, S. R., Heinrich Events: massive Late Pleistocene detritus layers of the North Atlantic and their global imprint. Rev. Geophys., 42 (2004), RG1005, doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Gorbarenko, S. A., Nürnberg, D., Derkachev, A. N., et al., Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigeneous, volcanogenic and biogenic matter supply. Mar. Geol., 183 (2002), 107–29.CrossRefGoogle Scholar
Andrews, J. T., Unraveling sediment transport along glaciated margins (the northwestern Nordic Seas) using quantitative x-ray diffraction of bulk (< 2 mm sediment). In: Sediment transport: flow and morphological processes, ed. Bhuiyan, F.. Rijeka, Croatia: InTech (2011), pp. 225–48.Google Scholar
Bond, G., Showers, W., Cheseby, M., et al., A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278 (1997), 1257–66.CrossRefGoogle Scholar
Andrews, J. T. and Principato, S. M., Grain-size characteristics and provenance of ice-proximal glacial marine sediments. In: Glacier-influenced sedimentation on high-latitude continental margins, ed. Dowdeswell, J. A. and O’Cofaigh, C.. London: Geological Society, Special Publication, 203 (2002), pp. 305–24.Google Scholar
Bigg, G. R. and Wilton, D. J., The iceberg risk in the Titanic year of 1912: was it exceptional? Weather, 69 (2014), 100–4.CrossRefGoogle Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Simulations of two last glacial maximum ocean states. Paleoceanography, 13 (1998), 340–51.CrossRefGoogle Scholar
Grousset, F. E., Labeyrie, L., Sinko, J. A., et al., Patterns of ice-rafted detritus in the glacial North Atlantic (40–55°N). Paleoceanography, 8 (1993), 175–92.CrossRefGoogle Scholar
Dasch, E. J., Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta, 33 (1969), 1521–52.CrossRefGoogle Scholar
Grousset, F. E., Biscaye, P. E., Zindler, A., et al., Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic. Earth Planet. Sci. Lett., 87 (1988), 367–78.CrossRefGoogle Scholar
Goldstein, S. L. and Hemming, S. R., Long-lived isotopic tracers in oceanography, Paleoceanography and Ice-sheet dynamics. In: Treatise on Geochemistry Volume 6, ed. Elderfield, H.. Oxford: Elsevier (2003), pp. 453–89.Google Scholar
Farmer, G. L., Barber, D. and Andrews, J., Provenance of Late Quaternary ice-proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence. Earth Planet. Sci. Lett., 209 (2003), 227–43.CrossRefGoogle Scholar
Small, D., Parrish, R. R., Austin, W. E. N., et al., Provenance of North Atlantic ice-rafted debris during the last deglaciation – a new application of U-Pb rutile and zircon geochronology. Geology, 41 (2013), 155–8.CrossRefGoogle Scholar
Roy, M., van de Flierdt, T., Hemming, S. R. and Goldstein, S. L., 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: implications for sediment provenance in the Southern Ocean. Chem. Geol., 244 (2007), 507–19.CrossRefGoogle Scholar
Hemming, S. R., Voren, T. O. and Kleman, J., Provinciality of ice rafting in the North Atlantic: application of 40Ar/39Ar dating of individual ice rafted hornblende grains. Quaternary Int., 95–6 (2002), 7585.CrossRefGoogle Scholar
Watkins, S. J. and Maher, B. A., Magnetic characterisation of present-day deep-sea sediments in the North Atlantic. Earth Planet. Sci. Lett., 214 (2003), 379–94.CrossRefGoogle Scholar
Hatfield, R. G., Stoner, J. S., Carlson, A. E., et al., Source as a controlling factor on the quality and interpretation of sediment magnetic records from the northern North Atlantic. Earth Planet. Sci. Lett., 368 (2013), 6977.CrossRefGoogle Scholar
Bezdek, C. J., Ehrlich, R. and Full, W., FCM: the fuzzy c-means clustering algorithm. Comput. Geosci., 10 (1984), 191203.CrossRefGoogle Scholar
Moros, M., McManus, J. F., Rasmussen, T., et al., Quartz content and the quartz-to-plagioclase ratio determined by X-ray diffraction: a proxy for ice rafting in the northern North Atlantic? Earth Planet. Sci. Lett., 218 (2004), 389401.CrossRefGoogle Scholar
Andrews, J. T., Darby, D., Eberle, D., et al., A robust multisite Holocene history of drift ice off northern Iceland: implications for North Atlantic climate. Holocene, 19 (2009), 71–7.CrossRefGoogle Scholar
St. John, K. E. K. and Krissek, L. A., Regional patterns of Pleistocene ice-rafted debris flux in the North Pacific. Paleoceanography, 14 (1999), 653–62.Google Scholar
Krissek, L. A., Late Cenozoic ice rafting records from ODP Leg 145 sites in the North Pacific: Late Miocene onset, late Pliocene intensification and Plio-Pleistocene events. Proc. Ocean Drilling Prog. Sci. Results, 145 (1995), 179–94.CrossRefGoogle Scholar
Rea, D. K., Basov, I. A., Janacek, T. R., et al., Proceedings of the ODP Initial Reports, Leg 145. College Station, Texas: Ocean Drilling Program (1993).Google Scholar
Bigg, G. R., Clark, C. D. and Hughes, A. L. C., A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction. Earth Planet. Sci. Lett., 265 (2008), 559–70.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×