Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T14:43:29.336Z Has data issue: false hasContentIssue false

4 - Inviscid instability of parallel flows

Published online by Cambridge University Press:  05 August 2011

François Charru
Affiliation:
Université Paul Sabatier (Toulouse III)
Get access

Summary

Introduction

An instability typical of a parallel flow was demonstrated in an experiment performed by Osborne Reynolds (1883) and repeated by Thorpe (1969). A horizontal long tube is filled carefully with a layer of water lying on top of a layer of heavier colored brine (salt water), as sketched in Figure 4.1a. The tube is suddenly tipped several degrees: the brine falls and the water rises, creating a shear flow which displays an inflection point near the interface (Figure 4.1b). In a few seconds a wave of sinusoidal shape develops at the interface of the two fluids, and leads to regular co-rotating vortices, as shown in Figure 4.2. These vortices are a manifestation of the Kelvin–Helmholtz instability. This instability owes its origin to the inertia of the fluids; viscosity plays only a minor role, tending to attenuate the growth of the wave only slightly by momentum diffusion.

Another manifestation of the Kelvin–Helmholtz instability on a much larger atmospheric scale is illustrated in Figure 4.3. An upper air layer flows over a lower layer moving more slowly, with different humidity and temperature. The thin layer of clouds formed at the interface displays billows which are the exact analogs of those in Figure 4.1. Figure 4.4 shows another example, in a mixing layer formed between a flow of water on the left and a flow of water and air bubbles on the right.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×