Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T03:34:58.879Z Has data issue: false hasContentIssue false

6 - Instabilities at low Reynolds number

Published online by Cambridge University Press:  05 August 2011

François Charru
Affiliation:
Université Paul Sabatier (Toulouse III)
Get access

Summary

Introduction

When a viscous flow has a deformable interface, small inertial effects can give rise to an instability which is manifested as interfacial waves. The principal types of such flows are illustrated in Figure 6.1: liquid films falling down an inclined plane, flows induced by a pressure gradient, and shear flows.

Falling films composed of a single layer (Figure 6.1a) or of several layers (Figure 6.1b) are often encountered in coating processes. Examples are coating of paints and varnishes, printing inks, magnetic tape and disks, photographic film, and so on. Flows set in motion by a pressure gradient (Figure 6.1c) are encountered in extrusion of polymers in planar or annular geometries. The third type of flow, shear flow, typically corresponds to a liquid film sheared by a gas (Figure 6.1d), a situation encountered in chemical reactors or heat exchangers, or by Marangoni stresses. In these applications it is often required that the films have uniform thickness, and so it is essential to avoid instabilities. On the other hand, instabilities may actually be desirable because they typically augment rates of heat and mass transfer.

Figure 6.2 illustrates an instability observed in the oil industry in the transport of oil of very high viscosity on the order of a million times that of water. Water, which is injected into the pipe in order to reduce the viscous friction, migrates to the wall where it forms a lubricating film (Joseph et al., 1997).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×