Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T18:20:31.815Z Has data issue: false hasContentIssue false

4 - Comparative analysis of herpesvirus–common proteins

from Part I - Introduction: definition and classification of the human herpesviruses

Published online by Cambridge University Press:  24 December 2009

Edward S. Mocarski Jr.
Affiliation:
Department of Microbiology & Immunology, Stanford University School of Medicine, CA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Despite the evolutionary and biological divergence represented by the nine human herpesviruses that have been classified into three broad subgroups, a large number of herpesvirus-common (core) gene products are evolutionarily conserved (Table 4.1 see chapter 2). These appear to carry out functions upon which every herpesvirus relies because all exhibit a common virion structure, a core genome replication process, and similar entry and egress pathways. These herpesvirus common functions are most often recognized through deduced protein sequence similarity that extends throughout alpha-, beta-, and gammaherpesviruses subfamilies infecting mammals, reptiles and birds (see Chapter 2, Table 2.2). These herpesviruses exhibit conservation that suggests a shared common ancestor at least 50 million years ago. Other evolutionarily distant herpesviruses infecting fish, amphibians, and invertebrates share less similarity with these better-studied herpesviruses, suggesting a common evolutionary origin dating back over 150 million years. In the more distant relatives, a common virion structure, genome organization and similarity across a small subset herpesvirus-common gene products provide the evidence of a common origin.

A few herpesvirus-common gene products have been recognized via a common enzymatic or binding activity long before any systematic genome sequence analysis became available. The homologous function of envelope glycoprotein B, DNA polymerase, alkaline exonuclease and single strand DNA binding protein, to give a few examples, emerged from biochemical studies in a number of herpesvirus systems.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 44 - 58
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boehmer, P. E., and Lehman, I. R. (1997). Herpes simplex virus DNA replication. Annu. Rev. Biochem., 66, 347–384.CrossRefGoogle ScholarPubMed
Boehmer, P. E. and Nimonkar, A. V. (2003). Herpes virus replication. IUBMB Life, 55(1), 13–22.CrossRefGoogle ScholarPubMed
Borst, E. M., Mathys, S., Wagner, M., Muranyi, W., and Messerle, M. (2001). Genetic evidence of an essential role for cytomegalovirus small capsid protein in viral growth. J. Virol., 75(3), 1450–1458.CrossRefGoogle ScholarPubMed
Bortz, E., Whitelegge, J. P., Jia, Q.et al. (2003). Identification of proteins associated with murine gammaherpesvirus 68 virions. J. Virol., 77(24), 13425–13432.CrossRefGoogle ScholarPubMed
Borza, C. M. and Hutt-Fletcher, L. M. (2002). Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat. Med., 8(6), 594–599.CrossRefGoogle Scholar
Campbell, A. (1994). Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol., 48, 193–222.CrossRefGoogle ScholarPubMed
Courcelle, C. T., Courcelle, J., Prichard, M. N., and Mocarski, E. S. (2001). Requirement for uracil-DNA glycosylase during the transition to late-phase cytomegalovirus DNA replication. J. Virol., 75(16), 7592–7601.CrossRefGoogle ScholarPubMed
Dales, S. (1973). Early events in cell-animal virus interactions. Bacteriol. Rev., 37(2), 103–135.Google ScholarPubMed
Davison, A. J. (2002). Evolution of the herpesviruses. Vet. Microbiol., 86 (1–2), 69–88.CrossRefGoogle ScholarPubMed
Desai, P., DeLuca, N. A., and Person, S. (1998). Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology, 247(1), 115–124.CrossRefGoogle Scholar
Dohner, K. and Sodeik, B. (2004). The role of the cytoplasm during viral infection. Curr. Top. Microbiol. Immunol., 285, 67–108.Google Scholar
Dohner, K., Wolfstein, A., Prank, U.et al. (2002). Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell, 13(8), 2795–2809.CrossRefGoogle ScholarPubMed
Douglas, M. W., Diefenbach, R. J., Homa, F. L.et al. (2004). Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J. Biol. Chem., 279(27), 28522–28530.CrossRefGoogle Scholar
Dunn, W., Chou, C., Li, H.et al. (2003). Functional profiling of a human cytomegalovirus genome. Proc. Natl Acad. Sci. USA, 100(24), 14223–14228.CrossRefGoogle ScholarPubMed
Gibson, W. (1996). Structure and assembly of the virion. Intervirology, 39(5–6), 389–400.CrossRefGoogle ScholarPubMed
Hiriart, E., Bardouillet, L., Manet, E.et al. (2003). A region of the Epstein-Barr virus (EBV) mRNA export factor EB2 containing an arginine-rich motif mediates direct binding to RNA. J. Biol. Chem., 278(39), 37790–37798.CrossRefGoogle ScholarPubMed
Jackson, S. A. and DeLuca, N. A. (2003). Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc. Natl Acad. Sci. USA, 100(13), 7871–7876.CrossRefGoogle ScholarPubMed
Jean, S., LeVan, K. M., Song, B., Levine, M., and Knipe, D. M. (2001). Herpes simplex virus 1 ICP27 is required for transcription of two viral late (gamma 2) genes in infected cells. Virology, 283(2), 273–284.CrossRefGoogle ScholarPubMed
Johannsen, E., Luftig, M., Chase, M. R.et al. (2004). Proteins of purified Epstein–Barr virus. Proc. Natl Acad. Sci. USA, 101(46), 16286–16291.CrossRefGoogle ScholarPubMed
Jones, N. L., Lewis, J. C., and Kilpatrick, B. A. (1986). Cytoskeletal disruption during human cytomegalovirus infection of human lung fibroblasts. Eur. J. Cell Biol., 41(2), 304–312.Google ScholarPubMed
Karlin, S., Mocarski, E. S., and Schachtel, G. A. (1994). Molecular evolution of herpesviruses: genomic and protein sequence comparisons. J. Virol., 68(3), 1886–1902.Google ScholarPubMed
Kattenhorn, L. M., Mills, R., Wagner, M.et al. (2004). Identification of proteins associated with murine cytomegalovirus virions. J. Virol., 78(20), 11187–11197.CrossRefGoogle ScholarPubMed
Kopp, M., Granzow, H., Fuchs, W., Klupp, B., and Mettenleiter, T. C. (2004). Simultaneous deletion of pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment. J. Virol., 78(6), 3024–3034.CrossRefGoogle ScholarPubMed
Kornberg, A. and Baker, T. A. (1992). DNA Replication. 2nd edn. New York: W. H. Freeman and Company.
Krosky, P. M., Baek, M. C., and Coen, D. M. (2003). The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J. Virol., 77(2), 905–914.CrossRefGoogle ScholarPubMed
Lake, C. M. and Hutt-Fletcher, L. M. (2000). Epstein–Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J. Virol., 74(23), 11162–11172.CrossRefGoogle ScholarPubMed
Lehman, I. R. and Boehmer, P. E. (1999). Replication of herpes simplex virus DNA. J. Biol. Chem., 274(40), 28059–28062.CrossRefGoogle ScholarPubMed
Lischka, P., Toth, Z., Thomas., M., Mueller, R., and Stamminger, T. (2006). The UL69 transactivator protein of human cytomegalovirus interacts with DEXD&H-Box RNA helicase UAP56 to promote cytoplasmic accumulation of unspliced RNA. Mol. Cell. Biol., 26(5), 1631–1643.CrossRefGoogle ScholarPubMed
Mabit, H., Nakano, M. Y., Prank, U.et al. (2002). Intact microtubules support adenovirus and herpes simplex virus infections. J. Virol., 76(19), 9962–9971.CrossRefGoogle ScholarPubMed
Macao, B., Olsson, M., and Elias, P. (2004). Functional properties of the herpes simplex virus type I origin-binding protein are controlled by precise interactions with the activated form of the origin of DNA replication. J. Biol. Chem., 279(28), 29211–29217.CrossRefGoogle ScholarPubMed
McGeoch, D. J., Dolan, A., and Ralph, A. C. (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol., 74(22), 10401–10406.CrossRefGoogle Scholar
Mettenleiter, T. C. (2002). Herpesvirus assembly and egress. J. Virol., 76(4), 1537–1547.CrossRefGoogle ScholarPubMed
Mettenleiter, T. C. (2004). Budding events in herpesvirus morphogenesis. Virus Res., 106(2), 167–180.CrossRefGoogle ScholarPubMed
Mocarski, E. S., Jr., and Courcelle, C. T. (2001). Cytomegaloviruses and their replication. In Fields Virology, 4th edn., ed. Knipe, D. M., Howley, P. M., Griffin, D. E.et al., Vol. 2, pp. 2629–2673. Philadelphia: Lippincott, Williams & Wilkins.Google Scholar
Mocarski, E. S. and Roizman, B. (1982). Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell, 31(1), 89–97.CrossRefGoogle ScholarPubMed
Muranyi, W., Haas, J., Wagner, M., Krohne, G., and Koszinowski, U. H. (2002). Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science, 297(5582), 854–857.CrossRefGoogle ScholarPubMed
Newcomb, W. W., Homa, F. L., Thomsen, D. R.et al. (1996). Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol., 263(3), 432–446.CrossRefGoogle ScholarPubMed
Newcomb, W. W., Thomsen, D. R., Homa, F. L., and Brown, J. C. (2003). Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J. Virol., 77(18), 9862–9871.CrossRefGoogle ScholarPubMed
Nishiyama, Y. (2004). Herpes simplex virus gene products: the accessories reflect her lifestyle well. Rev. Med. Virol., 14(1), 33–46.CrossRefGoogle ScholarPubMed
Pearson, A., Knipe, D. M., and Coen, D. M. (2004). ICP27 selectively regulates the cytoplasmic localization of a subset of viral transcripts in herpes simplex virus type 1-infected cells. J. Virol., 78(1), 23–32.CrossRefGoogle ScholarPubMed
Prichard, M. N., Jairath, S., Penfold, M. E., Jeor, St S., Bohlman, M. C., and Pari, G. S. (1998). Identification of persistent RNA–DNA hybrid structures within the origin of replication of human cytomegalovirus. J. Virol., 72(9), 6997–7004.Google ScholarPubMed
Roizman, B. (1999). HSV gene functions: what have we learned that could be generally applicable to its near and distant cousins?Acta Virol., 43(2–3), 75–80.Google ScholarPubMed
Roizman, B., and Knipe, D. M. (2001). Herpes simplex viruses and their replication. In Fields Virology, 4th edn., ed. Knipe, D. M., Howley, P. M., Griffin, D. E.et al., Vol. 2, pp. 2399–2459. 2 vols. Philadelphia: Lippincott, Williams and Wilkins.Google Scholar
Roizman, B. and Pellett, P. E. (2001). The family Herpesviridae: A Brief Introduction. In Fields Virology, 4th edn., ed. Knipe, D. M., Howley, P. M., Griffin, D. E.et al., Vol. 2, pp. 2221–2230. 2 vols. Philadelphia: Lippincott, Williams & Wilkins.Google Scholar
Sandri-Goldin, R. M. (2001). Nuclear export of herpes virus RNA. Curr. Top. Microbiol. Immunol., 259, 2–23.Google ScholarPubMed
Sciortino, M. T., Suzuki, M., Taddeo, B., and Roizman, B. (2001). RNAs extracted from herpes simplex virus 1 virions: apparent selectivity of viral but not cellular RNAs packaged in virions. J. Virol., 75(17), 8105–8116.CrossRefGoogle Scholar
Singer, G. P., Newcomb, W. W., Thomsen, D. R., Homa, F. L., and Brown, J. C. (2005). Identification of a region in the herpes simplex virus scaffolding protein required for interaction with the portal. J. Virol., 79(1), 132–139.CrossRefGoogle ScholarPubMed
Smith, G. A. and Enquist, L. W. (2002). Break ins and break outs: viral interactions with the cytoskeleton of Mammalian cells. Annu Rev Cell Dev. Biol., 18, 135–161.CrossRefGoogle ScholarPubMed
Spaete, R. R. and Mocarski, E. S. (1985). The a sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes. J. Virol., 54, 817–824.Google ScholarPubMed
Spear, P. G. (2004). Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol, 6(5), 401–410.CrossRefGoogle ScholarPubMed
Spear, P. G. and Longnecker, R. (2003). Herpesvirus entry: an update. J. Virol., 77(19), 10179–10185.CrossRefGoogle ScholarPubMed
Terhune, S. S., Schroer, J., and Shenk, T. (2004). RNAs are packaged into human cytomegalovirus virions in proportion to their intracellular concentration. J. Virol., 78(19), 10390–10398.CrossRefGoogle ScholarPubMed
Thomsen, D. R., Roof, L. L., and Homa, F. L. (1994). Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J. Virol., 68(4), 2442–2457.Google ScholarPubMed
Thurlow, J. K., Rixon, F. J., Murphy, M., Targett-Adams, P., Hughes, M., and Preston, V. G. (2005). The herpes simplex virus type 1 DNA packaging protein UL17 is a virion protein that is present in both the capsid and the tegument compartments. J. Virol., 79(1), 150–158.CrossRefGoogle ScholarPubMed
Tischer, B. K., Schumacher, D., Messerle, M., Wagner, M., and Osterrieder, N. (2002). The products of the UL10 (gM) and the UL49.5 genes of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. J. Gen. Virol., 83(Pt 5), 997–1003.CrossRefGoogle ScholarPubMed
Toth, Z., Lischka, P., and Stamminger, T. (2006). RNA-binding of the human cytomegalovirus transactivator protein UL69, mediated by arginine-rich motifs, is not required for nuclear export of unspliced RNA. Nucleic Acids Res., 34(4), 1237–1249.CrossRefGoogle Scholar
Varnum, S. M., Streblow, D. N., Monroe, M. E.et al. (2004). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol., 78(20), 10960–10966.CrossRefGoogle ScholarPubMed
Vittone, V., Diefenbach, E., Triffett, D., Douglas, M. W., Cunningham, A. L., Diefenbach, R. J. (2005). Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79(15), 9566–9571.CrossRefGoogle ScholarPubMed
Wang, S. K., Duh, C. Y., and Wu, C. W. (2004). Human cytomegalovirus UL76 encodes a novel virion-associated protein that is able to inhibit viral replication. J. Virol., 78(18), 9750–9762.CrossRefGoogle ScholarPubMed
Welte, M. A. (2004). Bidirectional transport along microtubules. Curr. Biol., 14(13), R525–R537.CrossRefGoogle ScholarPubMed
Wilkinson, D. E. and Weller, S. K. (2003). The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life, 55(8), 451–458.CrossRefGoogle ScholarPubMed
Wilkinson, D. E., and Weller, S. K. (2004). Recruitment of cellular recombination and repair proteins to sites of herpes simplex virus type 1 DNA replication is dependent on the composition of viral proteins within prereplicative sites and correlates with the induction of the DNA damage response. J. Virol., 78(9), 4783–4796.CrossRefGoogle ScholarPubMed
Wolf, D. G., Courcelle, C. T., Prichard, M. N., and Mocarski, E. S. (2001). Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation. Proc. Natl Acad. Sci. USA, 98(4), 1895–1900.CrossRefGoogle ScholarPubMed
Xu, Y., Cei, S. A., Huete, Rodriguez A., Colletti, K. S., and Pari, G. S. (2004). Human cytomegalovirus DNA replication requires transcriptional activation via an IE2- and UL84-responsive bidirectional promoter element within oriLyt. J. Virol., 78(21), 11664–11677.CrossRefGoogle ScholarPubMed
Yu, D. and Weller, S. K. (1998). Herpes simplex virus type 1 cleavage and packaging proteins UL15 and UL28 are associated with B but not C capsids during packaging. J. Virol., 72(9), 7428–7439.Google Scholar
Yu, D., Silva, M. C., and Shenk, T. (2003). Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc. Natl Acad. Sci. USA, 100(21), 12396–12401.CrossRefGoogle ScholarPubMed
Yu, X., Shah, S., Atanasov, I.et al. (2005). Three-dimensional localization of the smallest capsid protein in the human cytomegalovirus capsid. J. Virol., 79(2), 1327–1332.CrossRefGoogle ScholarPubMed
Zhu, F. X., Chong, J. M., Wu, L., and Yuan, Y. (2005). Virion proteins of Kaposi's sarcoma-associated herpesvirus. J. Virol., 79(2), 800–811.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×