Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T21:07:10.440Z Has data issue: false hasContentIssue false

27 - Evolutionary Medicine, Immunity, and Infectious Disease

Published online by Cambridge University Press:  05 August 2012

Michael P. Muehlenbein
Affiliation:
Indiana University, Bloomington
Get access

Summary

The purpose of this chapter is to provide readers with introductions to several topics central to a modern understanding of human evolutionary biology. Infectious pathogens have placed critical selective constraints on the evolution of our hominin ancestors, and our own species continues to coevolve with infectious organisms today. Our understanding of the processes that shaped this evolutionary struggle have changed, and now an adaptationist perspective offered by the discipline of evolutionary medicine helps to shed light on our vulnerabilities to infectious diseases and noninfectious degenerative diseases. It also aids in our understanding of the purpose and outcomes of our coevolutionary conflicts with the microscopic predators that parasitize us. So as to compete in these interactions, we have developed a marvelously complex immune system capable of dynamic, varied responses. Insight into these mechanisms provides fascinating examples of real-time Darwinian processes of survival and fitness maximization in the face of invading competitors within the human host. Interestingly the ontogeny and deployment of these responses are dependent on several factors, including genetic and ecological constraints.

The discussion offered below provides an introduction to evolutionary medicine with the specific purpose of better understanding human–pathogen coevolution and the development of human immune responses. A current, detailed description of human immunity is included, but this discussion is far from complete. Comparative aspects of evolutionary immunology are emphasized, as are the genetic and ecological sources of variation in these responses.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, S. N. and Arock, M. (1998). Mast cells and basophils in innate immunity. Seminars in Immunology, 10, 373–381.CrossRefGoogle ScholarPubMed
Adema, C. M., Hertel, , , L. A., Miller, , , R. D., et al. (1997). A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proceedings of the National Academy of Sciences of the United States of America, 94, 8691–8696.CrossRefGoogle ScholarPubMed
Agrawal, A., Eastman, Q. M. and Schatz, D. G. (1998). Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature, 394, 744–751.Google ScholarPubMed
Ahmed, A. M. and Hurd, H. (2006). Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apopstosis. Microbes and Infection, 8, 308–315.CrossRefGoogle Scholar
Alder, M. N., Rogozin, I. B., Lakshminarayan, M. I., et al. (2005). Diversity and function of adaptive immune receptors in a jawless vertebrate. Science, 310, 1970–1973.CrossRefGoogle Scholar
Allee, W. C., Park, O., Emerson, A. E., et al. (1949). Principles of Animal Ecology. Philadelphia: W.B. Saunders.Google Scholar
Allen, J. E. and Maizels, R. M. (1996). Immunology of human helminth infection. International Archives of Allergy and Immunology, 109, 3–10.CrossRefGoogle ScholarPubMed
Allen, S. J., O'Donnell, A., Alexander, N. D., et al. (1997). Alpha-thalassaemia protects children against disease caused by other infections as well as malaria. Proceedings of the National Academy of Sciences of the United States of America, 94, 14736–14741.CrossRefGoogle ScholarPubMed
Allen, S. J., O'Donnell, A., Alexander, N. D., et al. (1999). Prevention of cerebral malaria in children in Papua New Guinea by Southeast Asian ovalocytosis band 3. American Journal of Tropical Medicine and Hygiene, 60, 1056–1060.CrossRefGoogle ScholarPubMed
Allison, A. C. (1954). Protection afforded by sickle-cell trait against subtertian malarial infection. British Medical Journal, 1, 290–294.CrossRefGoogle Scholar
Anderson, R. M. and May, R. M. (1992). Infectious Diseases of Humans: Dynamics and Control. New York: Oxford University Press.Google Scholar
Apetrei, C., Metzger, M. J., Richardson, D., et al. (2005). Detection and partial characterization of simian immunodeficiency virus SIVsm strains from bush meat samples from rural Sierra Leone. Journal of Virology, 79, 2631–2636.CrossRefGoogle ScholarPubMed
Ardia, D. R., Schat, K. A. and Winkler, D. W. (2003). Reproductive effort reduces long-term immune function in breeding tree swallows (Tachycineta bicolor). Proceedings of the Royal Society of London. Series B, 270, 1679–1683.CrossRefGoogle Scholar
Austin, D. J., Kristinsson, K. G. and Anderson, R. M. (1999). The relationships between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proceedings of the National Academy of Sciences of the United States of America, 96, 1152–1156.CrossRefGoogle Scholar
Ayala, F. J., Escalante, A. A., Lal, A. A., et al. (1998). Evolutionary relationships of human malaria parasites. In Malaria: Parasite Biology, Pathogenesis and Protection, Sherman, I. W. (ed.). Washington, DC: ASM Press, pp. 285–300.Google Scholar
Bailes, E., Gao, F., Bibollet-Ruche, F., et al. (2003). Hybrid origin of SIV in chimpanzees. Science, 300, 1713.CrossRefGoogle ScholarPubMed
Baker, E. N., Baker, H. M. and Kidd, R. D. (2002). Lactoferrin and transferrin: functional variations on a common structural framework. Biochemistry and Cell Biology, 80, 27–34.CrossRefGoogle ScholarPubMed
Ballinger, A. B., Savage, M. O. and Sanderson, I. R. (2003). Delayed puberty associated with inflammatory bowel disease. Pediatric Research, 53, 205–210.CrossRefGoogle ScholarPubMed
Barker, D. J. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261, 412–417.CrossRefGoogle ScholarPubMed
Barker, D. J., Eriksson, J. G., Forsen, T., et al. (2002). Fetal origins of adult disease: strength of effects and biological basis. International Journal of Epidemiology, 31, 1235–1239.CrossRefGoogle ScholarPubMed
Barr, D. P., Russell, M. D., Cecil, L., et al. (1922). Clinical calorimetry XXXII: temperature regulation after the intravenous injections of protease and typhoid vaccine. Archives of Internal Medicine, 29, 608–634.CrossRefGoogle Scholar
Barrett, K. E., Neva, F. A., Gam, A. A., et al. (1988). The immune response to nematode parasites: modulation of mast cell numbers and function during Strongyloides stercoralis infections in nonhuman primates. American Journal of Tropical Medicine and Hygiene, 38, 574–581.CrossRefGoogle ScholarPubMed
Bellamy, R., Ruwende, C., Corrah, T., et al. (1998). Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. New England Journal of Medicine, 338, 640–644.CrossRefGoogle ScholarPubMed
Berke, G. (1997). Killing mechanisms of cytotoxic lymphocytes. Current Opinion in Hematology, 4, 32–40.CrossRefGoogle ScholarPubMed
Bergstrom, C. T., Lo, M. and Lipsitch, M. (2004). Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proceedings of the National Academy of Sciences of the United States of America, 101, 13285–13290.CrossRefGoogle Scholar
Bhasin, S., Storer, T. W., Berman, N., et al. (1996). The effects of supraphysiological doses of testosterone on muscle size and strength in normal men. New England Journal of Medicine, 335, 1–7.CrossRefGoogle Scholar
Bloom, B. R. and Murray, C. J. (1992). Tuberculosis: commentary on a reemergent killer. Science, 257, 1055–1064.CrossRefGoogle ScholarPubMed
Bothamley, G. H., Beck, J. S., Schreuder, G. M., et al. (1989). Association of tuberculosis and M. tuberculosis-specific antibody levels with HLA. Journal of Infectious Diseases, 159, 549–555.CrossRefGoogle Scholar
Brahmajothi, V., Pitchappan, R. M., Kakkanaiah, V. N., et al. (1991). Association of pulmonary tuberculosis and HLA in South India. Tubercle, 72, 123–132.CrossRefGoogle ScholarPubMed
Braun, M., Cook, D. C. and Pfeiffer, S. (1998). DNA from Mycobacterium tuberculosis complex identified in North American, pre-Columbian human skeletal remains. Journal of Archaeological Science, 25, 271–277.CrossRefGoogle Scholar
Braun-Fahrlander, C., Gassner, M., Grize, L., et al. (1999). Prevalence of hay fever and allergic sensitization in farmer's children and their peers living in the same rural community. Clinical and Experimental Allergy, 29, 28–34.CrossRefGoogle ScholarPubMed
Bribiescas, R. G. (2001). Reproductive ecology and life history of the human male. Yearbook of Physical Anthropology, 44, 148–176.CrossRefGoogle Scholar
Brosch, R., Gordon, S. V., Marmiesse, M., et al. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proceedings of the National Academy of Sciences of the United States of America, 99, 3684–3689.CrossRefGoogle ScholarPubMed
Brownstein, J. S., Holford, T. R. and Fish, D. (2005). Effect of climate change on Lyme disease risk in North America. EcoHealth, 2, 38–46.CrossRefGoogle ScholarPubMed
Bull, J. J., Molineux, I. J. and Rice, W. R. (1991). Selection of benevolence in a host-parasite system. Evolution, 45, 875–882.CrossRefGoogle Scholar
Burger, D. and Dayer, J. M. (2002). Cytokines, acute-phase proteins, and hormones: IL-1 and TNF-α production in contact-mediated activation of monocytes by T lymphocytes. Annals of the New York Academy of Sciences, 966, 464–473.CrossRefGoogle ScholarPubMed
Burnet, F. M. (1959). The Clonal Selection Theory of Acquired Immunity. Nashville: Vanderbilt University Press.CrossRefGoogle Scholar
Burnet, F. M. and White, D. O. (1972). Natural History of Infectious Disease, 4th edn. Cambridge: Cambridge University Press.Google Scholar
Carroll, M. C. (1998). The role of complement and complement receptors in induction and regulation of immunity. Annual Review of Immunology, 16, 545–568.CrossRefGoogle Scholar
Carter, R. and Mendis, K. N. (2002). Evolutionary and historical aspects of the burden of malaria. Clinical Microbiology Reviews, 15, 564–594.CrossRefGoogle ScholarPubMed
Chambers, H. F. (1997). Methicillin resistance in Staphylococci: genetics and mechanisms of resistance. Clinical Microbiology Reviews, 10, 781–791.Google Scholar
Chen, H., Smith, G. J. D., Zhang, S. Y., et al. (2005). H5N1 virus outbreak in migratory waterfowl. Nature, 436, 191–192.CrossRefGoogle ScholarPubMed
Chisholm, S. T., Coaker, G., Day, B., et al. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803–814.CrossRefGoogle ScholarPubMed
Chua, K. B., Chua, B. H. and Wang, C. W. (2002). Anthropogenic deforestation, El Niño and the emergence of Nipah virus in Malaysia. Malaysian Journal of Pathology, 24, 15–21.Google ScholarPubMed
Chun, T. W., Nickle, D. C., Justement, J. S., et al. (2008). Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. Journal of Infectious Diseases, 197, 714–720.CrossRefGoogle ScholarPubMed
Coatney, R. G., Collins, W. E., Warren, M., et al. (1971). The Primate Malarias. Bethesda, MD: National Institutes of Health.Google Scholar
Coffman, R. L. and Mosmann, T. R. (1991). CD4+ T-cell subsets: regulation of differentiation and function. Research in Immunology, 142, 7–9.CrossRefGoogle ScholarPubMed
Cole, S. T., Brosch, R., Parkhill, J., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393, 537–544.CrossRefGoogle ScholarPubMed
Coluzzi, M. (1999). The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia, 41, 277–283.Google ScholarPubMed
Combes, C. (2004). Parasitism: the Ecology and Evolution of Intimate Interactions. Chicago: University of Chicago Press.Google Scholar
Conway, D. J., Greenwood, B. M. and McBride, J. S. (1991). The epidemiology of multiple-clone Plasmodium falciparum infections in Gambian patients. Parasitology, 103, 1–6.CrossRefGoogle ScholarPubMed
Conway, D. J., Fanello, C., Lloyd, J. M., et al. (2000). Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Molecular and Biochemical Parasitology, 111, 163–171.CrossRefGoogle ScholarPubMed
Cookson, W. O. C. M. and Moffatt, M. F. (1997). Asthma: an epidemic in the absence of infection. Science, 275, 41–42.CrossRefGoogle Scholar
Cooper, M. and Alder, M. (2006). The evolution of adaptive immune systems. Cell, 124, 815–822.CrossRefGoogle ScholarPubMed
Courvalin, P. (2008). Predictable and unpredictable evolution of antibiotic resistance. Journal of Internal Medicine, 264, 4–16.CrossRefGoogle ScholarPubMed
Cox, F. E. and Liew, F. Y. (1992). T-cell subsets and cytokines in parasitic infections. Immunology Today, 13, 445–448.CrossRefGoogle ScholarPubMed
Cserti, C. M. and Dzik, W. H. (2007). The ABO blood group system and Plasmodium falciparum malaria. Blood, 110, 2250–2258.CrossRefGoogle ScholarPubMed
Curran, J. E., Jowett, J. B. M., Elliott, K. S., et al. (2005). Genetic variation in selenoprotein S influences inflammatory response. Nature Genetics, 37, 1234–1241.CrossRefGoogle ScholarPubMed
Cyranoski, D. (2005). Tests in Tokyo reveal flaws in Vietnam's bird flu surveillance. Nature, 433, 787.CrossRefGoogle ScholarPubMed
Daily, G. C. and Ehrlich, P. R. (1996). Global change and human susceptibility to disease. Annual Review of Energy and the Environment, 21, 125–144.CrossRefGoogle Scholar
Dangl, J. L. and Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–833.CrossRefGoogle Scholar
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science, 287, 443–449.CrossRefGoogle ScholarPubMed
Dawkins, R. and Krebs, J. R. (1978). Arms races between and within species. Proceedings of the Royal Society of London. Series B, 205, 489–511.CrossRefGoogle Scholar
Dean, M., Carrington, M. and O'Brien, S. J. (2002). Balanced polymorphism selected by genetic versus infectious human disease. Annual Review of Genomics and Human Genetics, 3, 263–292.CrossRefGoogle ScholarPubMed
Deerenberg, C., Arpanius, V., Daan, S., et al. (1997). Reproductive effort decreases antibody responsiveness. Proceedings of the Royal Society of London. Series B, 264, 1021–1029.CrossRefGoogle Scholar
Delves, P. J. and Roitt, I. M. (2000a). Advances in immunology: the immune system I. New England Journal of Medicine, 343, 37–49.CrossRefGoogle Scholar
Delves, P. J. and Roitt, I. M. (2000b). Advances in immunology: the immune system II. New England Journal of Medicine, 343, 108–117.CrossRefGoogle Scholar
Demas, G. E., Chefer, V., Talan, M. I., et al. (1997). Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 42, R1331–R1367.Google Scholar
Dempsey, P. W., Allison, M. E., Akkaraju, S., et al. (1996). C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science, 271, 348–350.CrossRefGoogle ScholarPubMed
Dessein, A. J., Hillaire, D., Elwali, N. E., et al. (1999). Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-gamma receptor gene. American Journal of Human Genetics, 65, 709–721.CrossRefGoogle ScholarPubMed
Dinarello, C. A. (2000). Proinflammatory cytokines. Chest, 118, 503–508.CrossRefGoogle ScholarPubMed
Doran, T. F., DeAngelis, C., Baumgardner, R. A., et al. (1989). Acetaminophen: more harm than good for chickenpox?Journal of Pediatrics, 114, 1045–1048.CrossRefGoogle ScholarPubMed
Douglas, A. S., Strachan, D. P. and Maxwell, J. D. (1996). Seasonality of tuberculosis: the reverse of other respiratory diseases in the UK. Thorax, 51, 944–946.CrossRefGoogle ScholarPubMed
Drobniewski, F., Balabanova, Y., Ruddy, M., et al. (2002). Rifampin- and multidrug-resistant tuberculosis in Russian civilians and prison inmates: dominance of the Beijing strain family. Emerging Infectious Diseases, 8, 1320–1326.CrossRefGoogle ScholarPubMed
Duncan, S. R., Scott, S. and Duncan, C. J. (2005). Reappraisal of the historical selective pressures for the CCR5-D32 mutation. Journal of Medical Genetics, 42, 205–208.CrossRefGoogle Scholar
Dye, C., Scheele, S., Dolin, P., et al. (1999). Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. Journal of the American Medical Association, 282, 677–686.CrossRefGoogle Scholar
Eaton, S. B. and Eaton, S. B. (1999). The evolutionary context of chronic degenerative diseases. In Evolution in Health and Disease, Stearns, S. C. (ed.). New York: Oxford University Press, pp. 251–259.Google Scholar
Ebert, D. and Bull, J. J. (2008). The evolution and expression of virulence. In Evolution in Health and Disease, Stearns, S. C. and Koella, J. C. (eds), 2nd edn. New York: Oxford University Press, pp. 153–168.Google Scholar
Edelman, G. M. (1973). Antibody structure and molecular immunology. Science, 180, 830–840.CrossRefGoogle ScholarPubMed
Elia, M. (1992). Energy expenditure to metabolic rate. In Energy Metabolism: Tissue Determinants and Cellular Corollaries, McKinney, J. M. and Tucker, H. N. (eds). New York: Raven Press, pp. 19–49.Google Scholar
Ellner, J. J. (1997). Review: the immune response in human tuberculosis – implications for tuberculosis control. Journal of Infectious Diseases, 176, 1351–1359.CrossRefGoogle ScholarPubMed
Else, K. J. and Finkelman, F. D. (1998). Intestinal nematode parasites, cytokines and effector mechanisms. International Journal for Parasitology, 28, 1145–1158.CrossRefGoogle ScholarPubMed
Elton, S. and O'Higgins, P. (2008). Medicine and Evolution: Current Applications, Future Prospects. New York: CRC Press.Google Scholar
Engelthaler, D. M., Mosley, D. G., Cheek, J. E., et al. (1999). Climatic and environmental patterns associated with Hantavirus pulmonary syndrome, Four Corners region, United States. Emerging Infectious Diseases, 5, 87–94.CrossRefGoogle ScholarPubMed
Epstein, J., Field, H. E., Luby, S., et al. (2006). Nipah virus: impact, origins, and causes of emergence. Current Infectious Disease Reports, 8, 59–65.CrossRefGoogle ScholarPubMed
Eraud, C., Duriez, O., Chastel, O., et al. (2005). The energetic cost of humoral immunity in the collared dove, Streptopelia decaocto: is the magnitude sufficient to force energy-based trade-offs? Functional Ecology, 19, 110–118.CrossRefGoogle Scholar
Ernst, J. D., Trevejo-Nuñez, G. and Banaiee, N. (2007). Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. Journal of Clinical Investigation, 117, 1738–1745.CrossRefGoogle ScholarPubMed
Escalante, A. A. and Ayala, F. J. (1995). Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proceedings of the National Academy of Sciences of the United States of America, 91, 11373–11377.CrossRefGoogle Scholar
Escalante, A. A., Barrio, E. and Ayala, F. J. (1995). Evolutionary origins of human and primate malarias: evidence from the circumsporozoite protein gene. Molecular Biology and Evolution, 12, 616–626.Google Scholar
Escalante, A. A., Cornejo, O. E., Freeland, D. E., et al. (2005). A monkey's tale: the origin of Plasmodium vivax as a human malaria parasite. Proceedings of the National Academy of Sciences of the United States of America, 102, 1980–1985.CrossRefGoogle ScholarPubMed
Ewald, P. W. (1996). Evolution of Infectious Disease. New York: Oxford University Press.Google Scholar
Ewald, P. W. and Cochran, G. M. (2004). Units of selection and the evolution of virulence. In The Evolution of Population Biology, Singh, R. and Uyenoyama, M. (eds). New York: Cambridge University Press, pp. 377–390.CrossRefGoogle Scholar
Fischer, G. F. and Mayr, W. R. (2001). Molecular genetics of the HLA complex. Wiener Klinische Wochenschrift, 113, 814–824.Google ScholarPubMed
Flajnik, M. F. (2002). Comparative analyses of immunoglobulin genes: surprises and portents. Nature Reviews Immunology, 2, 688–698.CrossRefGoogle ScholarPubMed
Flajnik, M. F. and du Pasquier, L. (2004). Evolution of innate and adaptive immunity: can we draw a line?Trends in Immunology, 25, 640–644.CrossRefGoogle ScholarPubMed
Flajnik, M. F. and Kasahara, M. (2001). Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity, 15, 351–362.CrossRefGoogle ScholarPubMed
Fugmann, S. D., Lee, A. I., Shockett, P. E., et al. (2000). The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annual Review of Immunology, 18, 495–527.CrossRefGoogle Scholar
Gagneux, S., DeRiemer, K., Van, T., et al. (2006). Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 103, 2869–2873.CrossRefGoogle ScholarPubMed
Gallup, J. L. and Sachs, J. D. (2001). The economic burden of malaria. American Journal of Tropical Medicine and Hygiene, 64(suppl.), 85–96.CrossRefGoogle ScholarPubMed
Galvani, A. P. (2003). Epidemiology meets evolutionary ecology. Trends in Ecology and Evolution, 18, 132–139.CrossRefGoogle Scholar
Galvani, A. P. and Slatkin, M. (2003). Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele. Proceedings of the National Academy of Sciences of the United States of America, 100, 15276–15279.CrossRefGoogle Scholar
Gamblin, S. J., Haire, L. F., Russell, R. J., et al. (2004). The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science, 303, 1838–1842.CrossRefGoogle ScholarPubMed
Gandon, S., Mackinnon, M. J., Nee, S., et al. (2001). Imperfect vaccines and the evolution of pathogen virulence. Nature, 414, 751–756.CrossRefGoogle ScholarPubMed
Gangestad, S. W. and Thornhill, R. (1998). Menstrual cycle variation in women's preferences for the scent of symmetrical men. Proceedings of the Royal Society of London. Series B, 265, 927–933.CrossRefGoogle ScholarPubMed
Gao, F., Bailes, E., Robertson, D. L., et al. (1999). Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 397, 436–441.CrossRefGoogle ScholarPubMed
Gao, P. S., Fujishima, S., Mao, X. Q., et al. (2000). Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. International Tuberculosis Genetics Team. Clinical Genetics, 58, 74–76.CrossRefGoogle ScholarPubMed
Garnham, P. C. C. (1966). Malaria Parasites and other Haemosporidia. Oxford: Blackwell Scientific Publications.Google Scholar
Gazzinelli, R. T., Hieny, S., Wynn, T. A., et al. (1993). Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proceedings of the National Academy of Sciences of the United States of America, 90, 6115–6119.CrossRefGoogle ScholarPubMed
Genton, B., Al-Yaman, F., Mgone, C. S., et al. (1995). Ovalocytosis and cerebral malaria. Nature, 378, 564–565.CrossRefGoogle ScholarPubMed
Gerald, M. S. (2001). Primate colour predicts social status and aggressive outcome. Animal Behavior, 61, 559–566.CrossRefGoogle Scholar
George, A. J. T. and Ritter, M. A. (1996). Thymic involution with ageing: obsolescence or good housekeeping?Immunology Today, 17, 267–272.CrossRefGoogle ScholarPubMed
Gershwin, M. E., German, J. B. and Keen, C. L. (2000). Nutrition and Immunology. Totowa: Humana Press.CrossRefGoogle Scholar
Glass, W. G., McDermott, D. H., Lim, J. K., et al. (2006). CCR5 deficiency increases risk of symptomatic West Nile virus infection. Journal of Experimental Medicine, 203, 35–40.CrossRefGoogle ScholarPubMed
Goldfeld, A. E., Delgado, J. C., Thim, S., et al. (1998). Association of an HLA-DQ allele with clinical tuberculosis. Journal of the American Medical Association, 279, 226–228.CrossRefGoogle ScholarPubMed
Goldman, A. S. (1993). The immune system of human milk: antimicrobial, anti-inflammatory and immunomodulating properties. Journal of Pediatric Infectious Diseases, 12, 664–671.CrossRefGoogle Scholar
Goncalves, M. L., Araujo, A. and Ferreira, L. F. (2003). Human intestinal parasites in the past: new findings and a review. Memorias do Instituto Oswaldo Cruz, 98, 103–118.CrossRefGoogle ScholarPubMed
Graham, N. M., Burrell, C. J., Douglas, R. M., et al. (1990). Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers. Journal of Infectious Diseases, 162, 1277–1282.CrossRefGoogle ScholarPubMed
Grammer, K. and Thornhill, R. (1994). Human (Homo sapiens) facial attractiveness and sexual selection: the role of symmetry and averageness. Journal of Comparative Psychology, 108, 233–242.CrossRefGoogle ScholarPubMed
Grassi, B. and Feletti, R. (1890). Parasites malariques chez les oiseaux. Archives Italiennes de Biologie, 13, 297–300.Google Scholar
Greaves, M. (2006). Infection, immune responses and the aetiology of childhood leukemia. Nature Reviews Cancer, 6, 193–203.CrossRefGoogle Scholar
Grosskinsky, C. M., Jacobs, W. R., Clark-Curtiss, J. E., et al. (1989). Genetic relationships among Mycobacterium leprae, Mycobacterium tuberculosis, and candidate leprosy vaccine strains determined by DNA hybridization: identification of an M. leprae-specific repetitive sequence. Infection and Immunity, 57, 1535–1541.Google ScholarPubMed
Gutierrez, M. C., Brisse, S., Brosch, R., et al. (2005). Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathogens, 1, 55–61.CrossRefGoogle ScholarPubMed
Guerra, C. A., Giandi, P. W., Tatem, A. J., et al. (2008). The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Medicine, 5, e38.CrossRefGoogle ScholarPubMed
Hadju, V., Abadi, K., Stephenson, L. S., et al. (1995). Intestinal helminthiasis, nutritional status, and their relationship; a cross-sectional study in urban slum school children in Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health, 26, 719–729.Google ScholarPubMed
Hahn, B. H., Shaw, G. M., Cock, K. M., et al. (2000). AIDS as a zoonosis: scientific and public health implications. Science, 287, 607–614.CrossRefGoogle ScholarPubMed
Haig, D. (1993). Genetic conflict in human pregnancy. Quarterly Review of Biology, 68, 495–532.CrossRefGoogle ScholarPubMed
Haldane, J. B. S. (1941). New Paths in Genetics. London: Allen and Unwin.Google Scholar
Haldane, J. B. S. (1949). Disease and evolution. La Ricerca Scientifica Supplement A, 19, 68–76.Google Scholar
Hales, S., Wet, N., Maindonald, J., et al. (2002). Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet, 360, 830–834.CrossRefGoogle Scholar
Hall, H. I., Song, R., Rhodes, P., et al. (2008). Estimation of HIV incidence in the United States. Journal of the American Medical Association, 300, 520–529.CrossRefGoogle ScholarPubMed
Hamilton, W. D. and Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites?Science, 218, 384–387.CrossRefGoogle Scholar
Hannet, I., Erkeller-Yuksel, F., Lydyard, P., et al. (1992). Developmental and maturational changes in human blood lymphocyte subpopulations. Immunology Today, 13, 215–218.CrossRefGoogle ScholarPubMed
Hartl, D. L. (2004). The origin of malaria: mixed messages from genetic diversity. Nature Reviews Microbiology, 2, 15–22.CrossRefGoogle ScholarPubMed
Havlir, D. V., Wallis, R. S., Boom, W. H., et al. (1991). Human immune response to Mycobacterium tuberculosis antigens. Infection and Immunity, 59, 665–670.Google ScholarPubMed
Hawn, T. R., Dunstan, S. J., Thwaites, G. E., et al. (2006). A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. Journal of Infectious Diseases, 194, 1127–1134.CrossRefGoogle ScholarPubMed
He, W., Neil, S., Kulkarni, H., et al. (2008). Duffy antigen receptor for chemokines mediates trans-infection of HIV-1 from red blood cells to target cells and affects HIV-AIDS susceptibility. Cell Host and Microbe, 4, 52–62.CrossRefGoogle ScholarPubMed
Herberman, R. B., Reynolds, C. W. and Ortaldo, J. R. (1986). Mechanisms of cytotoxicity by natural killer (NK) cells. Annual Review of Immunology, 4, 651–680.CrossRefGoogle Scholar
Heymann, D. L. (2004). The international response to the outbreak of SARS in 2003. Philosophical Transactions of the Royal Society of London. Series B, 1447, 1127–1129.CrossRefGoogle Scholar
Heymann, D. L. (2006). SARS and emerging infectious diseases: a challenge to place global solidarity above national sovereignty. Annals Academy of Medicine Singapore, 35, 350–353.Google ScholarPubMed
Hill, A. V. S. (1998). The immunogenetics of human infectious diseases. Annual Review of Immunology, 16, 593–617.CrossRefGoogle ScholarPubMed
Hoberg, E. P., Alkire, N. L., Queiroz, A., et al. (2001). Out of Africa: origins of the Taenia tapeworm in humans. Proceedings of the Royal Society of London. Series B, 268, 781–787.CrossRefGoogle ScholarPubMed
Hoffmann, J. A. and Reichhart, J. M. (2002). Drosophila innate immunity: an evolutionary perspective. Nature Immunology, 3, 121–126.CrossRefGoogle Scholar
Howard, R. S. and Lively, C. M. (1994). Parasitism, mutation accumulation and the maintenance of sex. Nature, 367, 554–557.CrossRefGoogle ScholarPubMed
Hughes, A. L. and Verra, F. (2001). Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proceedings of the Royal Society of London. Series B, 268, 1855–1860.CrossRefGoogle ScholarPubMed
Hughes, A. L., Friedman, R. and Murray, M. (2002). Genomewide pattern of synonymous nucleotide substitution in two complete genomes of Mycobacterium tuberculosis. Emerging Infectious Disease, 8, 1342–1346.CrossRefGoogle ScholarPubMed
Hughes, J. M. (2004). SARS: an emerging global microbial threat. Transactions of the American Clinical and Climatological Association, 115, 361–374.Google ScholarPubMed
Hume, D. A., Ross, I. L., Himes, S. R., et al. (2002). The mononuclear phagocyte system revisited. Journal of Leukocyte Biology, 72, 621–627.Google ScholarPubMed
Hummel, S., Schmidt, D., Kremeyer, B., et al. (2005). Detection of the CCR5-Δ32 HIV resistance gene in Bronze-Age skeletons. Genes and Immunity, 6, 371–374.CrossRefGoogle ScholarPubMed
Hutchinson, J. F. (2001). The biology and evolution of HIV. Annual Review of Anthropology, 30, 85–108.CrossRefGoogle Scholar
Ing, R., Su, Z., Scott, M. E., et al. (2000). Suppressed T helper 2 immunity and prolonged survival of a nematode parasite in protein-malnourished mice. Proceedings of the National Academy of Sciences of the United States of America, 97, 7078–7083.CrossRefGoogle Scholar
Innes, R. W. (2004). Guarding the goods. New insights into the central alarm system of plants. Plant Physiology, 135, 695–701.CrossRefGoogle Scholar
Jamieson, B. D., Douek, D. C., Killian, S., et al. (1999). Generation of functional thymocytes in the human adult. Immunity, 10, 569–575.CrossRefGoogle ScholarPubMed
,Joint United National Programme on HIV/AIDS (2008). Report on the Global AIDS Epidemic. Geneva: World Health Organization.
Jones, C. A., Holloway, J. A. and Warner, J. O. (2000). Does atopic disease start in foetal life?Allergy, 55, 2–10.CrossRefGoogle ScholarPubMed
Jones, K. E., Patel, N. G., Levy, M. A., et al. (2008). Global trends in emerging infectious diseases. Nature, 451, 990–993.CrossRefGoogle ScholarPubMed
Jongwutiwes, S., Putaporntip, C., Iwasaki, T., et al. (2005). Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. Molecular and Biological Evolution, 22, 1733–1739.CrossRefGoogle ScholarPubMed
Joy, D. A., Feng, X., Mu, J., et al. (2003). Early origin and recent expansion of Plasmodium falciparum. Science, 300, 318–321.CrossRefGoogle ScholarPubMed
Kalish, M. L., Wolfe, N. D., Ndongmo, C. B., et al. (2005). Central African hunters exposed to simian immunodeficiency virus. Emerging Infectious Diseases, 11, 1928–1930.CrossRefGoogle ScholarPubMed
Keele, B. F., Heuverswyn, F., Li, Y., et al. (2006). Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science, 313, 523–526.CrossRefGoogle ScholarPubMed
Keiser, J., Castro, M. C., Maltese, M. F., et al. (2005). Effect of irrigation and large dams on the burden of malaria on a global and regional scale. American Journal of Tropical Medicine and Hygiene, 72, 392–406.Google ScholarPubMed
Keller, M. A. (1992). Immunology of lactation. In Immunological Obstetrics, Coulam, C. B., Faulk, W. P. and McIntyre, J. A. (eds). New York: W. W. Norton, pp. 315–330.Google Scholar
Ketterson, E. D., Nolan, V., Wolf, L., et al. (1992). Testosterone and avian life histories: effects of experimentally elevated testosterone on behavior and correlates of fitness in the darkeyed junco (Junco hyemalis). American Naturalist, 140, 980–999.CrossRefGoogle Scholar
Kim, K. C. (1985). Parasitism and coevolution: epilogue. In Coevolution of Parasitic Arthropods and Mammals, Kim, K. C. (ed.). New York: John Wiley and Sons, pp. 661–682.Google Scholar
Kimball, A. M., Arima, Y. and Hodges, J. R. (2005). Trade related infections: farther, faster, quieter. Globalization and Health, 1, 3.CrossRefGoogle ScholarPubMed
King, C. H., Blanton, R. E., Muchiri, E. M., et al. (2004). Low heritable component of risk for infection intensity and infection-associated disease in urinary schistosomiasis among Wadigo village populations in Coast Province, Kenya.American Journal of Tropical Medicine and Hygiene, 70, 57–62.Google ScholarPubMed
King, C. L. and Nutman, T. B. (1992). Biological role of helper T-cell subsets in helminth infections. Chemical Immunology, 54, 136–165.Google ScholarPubMed
Kiple, K. F. (1993). The Cambridge World History of Human Disease. New York: Cambridge University Press.CrossRefGoogle Scholar
Kiple, K. F. (2003). The Cambridge Historical Dictionary of Disease. New York: Cambridge University Press.Google Scholar
Kiszewski, A., Mellinger, A., Spielman, A., et al. (2004). A global index representing the stability of malaria transmission. American Journal of Tropical Medicine and Hygiene, 70, 486–498.Google ScholarPubMed
Kiyono, H., Kunisawa, J., McGhee, J. R., et al. (2008). The mucosal immune system. In Fundamental Immunology, Paul, W. E. (ed.), 6th edn. New York: Lippincott, Williams and Wilkins, pp. 983–1030.Google Scholar
Klasing, K. C. (1998). Nutritional modulation of resistance to infectious diseases. Poultry Science, 77, 1119–1125.CrossRefGoogle ScholarPubMed
Kluger, M. J., Kozak, W., Conn, C. A., et al. (1998). Role of fever in disease. Annals of the New York Academy of Sciences, 856, 224–233.CrossRefGoogle Scholar
Kobayashi, M., Fitz, L., Ryan, M., et al. (1989). Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. Journal of Experimental Medicine, 170, 827–845.CrossRefGoogle Scholar
Koella, J. C. and Turner, P. (2008). Evolution of parasites. In Evolution in Health and Disease, Stearns, S. C. and Koella, J. C. (eds), 2nd edn. New York: Oxford University Press, pp. 229–238.Google Scholar
Koski, K. G., Su, Z. and Scott, M. E. (1999). Energy deficits suppress both systemic and gut immunity during infection. Biochemical and Biophysical Research Communications, 264, 796–801.CrossRefGoogle ScholarPubMed
Kramer, M. S., Naimark, L. E., Roberts-Brauer, R., et al. (1991). Risks and benefits of paracetamol antipyresis in young children with fever of presumed viral origin. Lancet, 337, 591–594.CrossRefGoogle ScholarPubMed
Kramer, T. R., Moore, R. J., Shippee, R. L., et al. (1997). Effects of food restriction in military training on T-lymphocyte responses. International Journal of Sports Medicine, 18, 84–90.CrossRefGoogle ScholarPubMed
Kwiatkowski, D. P. (2005). How malaria has affected the human genome and what human genetics can teach us about malaria. American Journal of Human Genetics, 77, 171–192.CrossRefGoogle ScholarPubMed
Lagesen, K. and Folstad, I. (1998). Antler asymmetry and immunity in reindeer. Behavioral Ecology and Sociobiology, 44, 135–142.CrossRefGoogle Scholar
Landsoud-Soukate, J., Dupont, A., Reggi, M. L., et al. (1989). Hypogonadism and ecdysteroid production in Loa loa and Mansonella perstans filariasis. Acta Tropica, 46, 249–256.CrossRefGoogle Scholar
Law, S. K. A. and Reid, K. B. M. (1995). Complement, 2nd edn. Oxford: IRL Press.Google Scholar
Lazarus, R., Vercelli, D., Palmer, L. J., et al. (2002). Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunological Reviews, 190, 9–25.CrossRefGoogle ScholarPubMed
Leclerc, M. C., Durand, P., Gauthier, C., et al. (2004). Meager genetic variability of the human malaria agent Plasmodium vivax. Proceedings of the National Academy of Sciences of the United States of America, 101, 14455–14460.CrossRefGoogle ScholarPubMed
Lenzini, L., Rottoli, P. and Rottoli, L. (1977). The spectrum of human tuberculosis. Clinical and Experimental Immunology, 27, 230–237.Google ScholarPubMed
Levin, B. R. (1996). Evolution and maintenance of virulence in microparasites. Emerging Infectious Diseases, 2, 93–102.CrossRefGoogle ScholarPubMed
Levine, N. D. (1988). The Protozoan Phylum Apicomplexa, vols 1 and 2. Boca Raton: CRC.Google Scholar
Levy, S. B. (1998). The challenge of antibiotic resistance. Scientific American, 278, 46–53.CrossRefGoogle ScholarPubMed
Levy, S. B. and Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10, S122–S129.CrossRefGoogle ScholarPubMed
Li, W., Shi, Z., Yu, M., et al. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310, 676–679.CrossRefGoogle ScholarPubMed
Lim, C. S., Tazi, L. and Ayala, F. J. (2005). Plasmodium vivax: recent world expansion and genetic identity to Plasmodium simium. Proceedings of the National Academy of Sciences of the United States of America, 102, 15523–15528.CrossRefGoogle ScholarPubMed
Lin, E., Kotani, J. G. and Lowry, S. F. (1998). Nutritional modulation of immunity and the inflammatory response. Nutrition, 14, 545–550.CrossRefGoogle ScholarPubMed
Linz, B., Balloux, F., Moodley, Y., et al. (2007). An African origin for the intimate association between humans and Helicobacter pylori. Nature, 445, 915–918.CrossRefGoogle ScholarPubMed
Lipsitch, M. (2001). The rise and fall of antimicrobial resistance. Trends in Microbiology, 9, 438–444.CrossRefGoogle ScholarPubMed
Lisse, I. M., Aaby, P., Whittle, H., et al. (1997). T-lymphocyte subsets in West African children: impact of age, sex, and season. Journal of Pediatrics, 130, 77–85.CrossRefGoogle ScholarPubMed
Litman, G. W., Cannon, J. P. and Dishaw, L. J. (2005). Reconstructing immune phylogeny: new perspectives. Nature Reviews Immunology, 5, 866–879.CrossRefGoogle ScholarPubMed
Livingstone, F. B. (1958). Anthropological implications of sickle cell gene distribution in West Africa. American Anthropologist, 60, 533–562.CrossRefGoogle Scholar
Livingstone, F. B. (1967). Abnormal Hemoglobins in Human Populations. New York: Aldine de Gruyter.Google Scholar
Livingstone, F. B. (1971). Malaria and human polymorphisms. Annual Review of Genetics, 5, 33–64.CrossRefGoogle Scholar
Lockmiller, R. L. and Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what is the cost of immunity?Oikos, 88, 87–98.CrossRefGoogle Scholar
Loker, E. S., Adema, C. M., Zhang, S. M., et al. (2004). Invertebrate immune systems – not homogeneous, not simple, not well understood. Immunological Reviews, 198, 10–24.CrossRefGoogle Scholar
Lunn, P. G. (1991). Nutrition, immunity and infection. In The Decline of Mortality in Europe, Schofield, R., Reher, D. S. and Bideau, A. (eds). New York: Oxford University Press, pp. 131–145.Google Scholar
MacDonald, A. S., Araujo, M. I. and Pearce, E. J. (2002). Immunology of parasitic helminth infections. Infection and Immunity, 70, 427–433.CrossRefGoogle ScholarPubMed
Mackinnon, M. J., Gandon, S. and Read, A. F. (2008). Virulence evolution in response to vaccination: the case of malaria. Vaccine, 26S, C42–C52.CrossRefGoogle Scholar
Maillard, J. C. and Gonzalez, J. P. (2006). Biodiversity and emerging diseases. Annals of the New York Academy of Sciences, 1081, 1–16.CrossRefGoogle ScholarPubMed
Marchalonis, J. J. and Schluter, S. F. (1994). Development of an immune system. Annals of the New York Academy of Sciences, 712, 1–12.CrossRefGoogle ScholarPubMed
Marks, J. (2008). Would Darwin recognize himself here? In Medicine and Evolution: Current Applications, Future Prospects, Elton, S. and O'Higgins, P. (eds). New York: CRC Press, pp. 273–288.CrossRefGoogle Scholar
Marlink, R., Kanki, P., Thior, I., et al. (1994). Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science, 265, 1587–1590.CrossRefGoogle ScholarPubMed
Marquet, S., Abel, L., Hillaire, D., et al. (1996). Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. Nature Genetics, 14, 181–184.CrossRefGoogle ScholarPubMed
Matricardi, P. M., Rosmini, F., Riondino, S., et al. (2000). Exposure to foodborne and orofecal microbes versus airborne viruses in relation to atopy and allergic asthma: an epidemiological study. British Medical Journal, 320, 412–417.CrossRefGoogle ScholarPubMed
Matsunaga, T. and Rhaman, A (1998). What brought the adaptive immune system to vertebrates? The jaw hypothesis and the seahorse. Immunological Reviews, 166, 177–186.CrossRefGoogle ScholarPubMed
McCutchan, T. F., Dame, J. B., Miller, L. H., et al. (1984). Evolutionary relatedness of Plasmodium species as determined by the structure of DNA. Science, 225, 808–811.CrossRefGoogle ScholarPubMed
McDade, T. W., Beck, M. A., Kuzawa, C. W., et al. (2001a). Prenatal undernutrition, postnatal environments, and antibody response to vaccination in adolescence. American Journal of Clinical Nutrition, 74, 543–548.CrossRefGoogle ScholarPubMed
McDade, T. W., Beck, M. A., Kuzawa, C. W., et al. (2001b). Prenatal undernutrition and postnatal growth are associated with adolescent thymic function. Journal of Nutrition, 131, 1225–1235.CrossRefGoogle ScholarPubMed
McDade, T. W., Kuzawa, C. W., Beck, M. A., et al. (2004). Prenatal and early postnatal environments are significant predictors of total IgE concentration in Filipino adolescents. Clinical and Experimental Allergy, 34, 44–50.CrossRefGoogle ScholarPubMed
McDade, T. W., Reyes-Garcia, V., Tanner, S., et al. (2008). Maintenance versus growth: investigating the costs of immune activation among children in lowland Bolivia. American Journal of Physical Anthropology, 136, 478–484.CrossRefGoogle ScholarPubMed
Mecsas, J., Franklin, G., Kuziel, W. A., et al. (2004). CCR5 mutation and plague protection. Nature, 427, 606.CrossRefGoogle ScholarPubMed
Medawar, P. B. (1952). An Unsolved Problem of Biology. London: HK Lewis and Company.Google Scholar
Medzhitov, R. and Janeway, C. A. (1997). Innate immunity: impact on the adaptive immune response. Current Opinion in Immunology, 9, 4–9.CrossRefGoogle ScholarPubMed
Meister, M. (2004). Blood cells of Drosophila: cell lineages and role in host defense. Current Opinion in Immunology, 16, 10–15.CrossRefGoogle Scholar
Mellon, M., Benbrook, C. and Benbrook, K. L. (2001). Hogging It: Estimates of Antimicrobial Abuse in Livestock. Cambridge: UCS Publications.Google Scholar
Meltzer, M. I., Cox, N. J. and Fukuda, K. (1999). The economic impact of pandemic influenza in the United States: priorities for intervention. Emerging Infectious Diseases, 5, 659–671.CrossRefGoogle ScholarPubMed
Mendis, K. N., Sina, B. J., Marchesini, P., et al. (2001). The neglected burden of Plasmodium vivax malaria. American Journal of Tropical Medicine and Hygiene, 64(suppl.), 97–106.CrossRefGoogle ScholarPubMed
Messenger, S. L., Molineux, I. J. and Bull, J. J. (1999). Virulence evolution in a virus obeys a trade-off. Proceedings of the Royal Society of London. Series B, 266, 397–404.CrossRefGoogle Scholar
Meyer, D. and Thomson, G. (2001). How selection shapes variation of the human major histocompatibility complex: a review. Annals of Human Genetics, 65, 1–26.CrossRefGoogle ScholarPubMed
Modiano, D., Luoni, G., Sirima, B. S., et al. (2001). Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature, 414, 305–308.CrossRefGoogle ScholarPubMed
Mohammed, I., Tomkins, A. M. and Greenwood, B. M. (1973). Normal immunoglobulin's in the tropics. Lancet, 1, 481.Google Scholar
Morens, D. M., Folkers, G. K. and Fauci, A. S. (2004). The challenge of emerging and re-emerging infectious diseases. Nature, 430, 242–249.CrossRefGoogle ScholarPubMed
Mosmann, T. R. (1991a). Cytokine secretion phenotypes of TH cells: how many subsets, how much regulation?Research in Immunology, 142, 9–13.CrossRefGoogle ScholarPubMed
Mosmann, T. R. (1991b). Cytokine secretion patterns and cross-regulation of T cell subsets. Immunologic Research, 10, 183–188.CrossRefGoogle ScholarPubMed
Mosmann, T. R. and Coffman, R. L. (1989a). Heterogeneity of cytokine secretion patterns and functions of helper T cells. Advances in Immunology, 46, 111–147.CrossRefGoogle ScholarPubMed
Mosmann, T. R. and Coffman, R. L. (1989b). TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology, 7, 145–173.CrossRefGoogle ScholarPubMed
Mosmann, T. R., Cherwinski, H., Bond, M. W., et al. (1986). Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. Journal of Immunology, 136, 2348–2357.Google ScholarPubMed
Mostowy, S., Cousins, D., Brinkman, J., et al. (2002). Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. Journal of Infectious Diseases, 186, 74–80.CrossRefGoogle ScholarPubMed
Muchmore, E. A. (2001). Chimpanzee models for human disease and immunobiology. Immunological Reviews, 183, 86–93.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P. (2008a). Adaptive variation in testosterone levels in response to immune activation: empirical and theoretical perspectives. Social Biology, 53, 13–23.Google Scholar
Muehlenbein, M. P. (2008b). Human immune functions are energetically costly. American Journal of Physical Anthropology, 135, 158–159.Google Scholar
Muehlenbein, M. P. and Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. American Journal of Human Biology, 17, 527–558.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Algier, J., Cogswell, F., et al. (2005). The reproductive endocrine response to Plasmodium vivax infection in Hondurans. American Journal of Tropical Medicine and Hygiene, 73, 178–187.Google ScholarPubMed
Muehlenbein, M. P., Cogswell, F., James, M., et al. (2006). Testosterone correlates with Venezuelan Equine Encephalitis virus infection in macaques. Virology Journal, 3, 19–27.CrossRefGoogle ScholarPubMed
Muehlenbein, M. P., Jordan, J. L., Bonner, J. Z. (in press). Towards quantifying the usage costs of human immunity: altered metabolic rates and hormone levels during acute immune activation in men. American Journal of Human Biology.
Nelson, R. J., Demas, G. E., Klein, S. L., et al. (2002). Seasonal Patterns of Stress, Immune Function, and Disease. New York: Cambridge University Press.CrossRefGoogle Scholar
Nesse, R. M. (2006). Evolutionary explanations for mood and mood disorders. In American Psychiatric Publishing Textbook of Mood Disorders, Stein, D. J., Kupfur, D. J. and Schatzberg, A. F. (eds). Washington, DC: American Psychiatric Publishing, pp. 159–175.Google Scholar
Nesse, R. M. and Berridge, K. C. (1997). Psychoactive drug use in evolutionary perspective. Science, 278, 63–66.CrossRefGoogle ScholarPubMed
Nesse, R. M. and Williams, G. C. (1996). Why We Get Sick: the New Science of Darwinian Medicine. New York: Vintage Books.Google Scholar
Newport, M. J., Huxley, C. M., Huston, S., et al. (1996). A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. New England Journal of Medicine, 335, 1941–1949.CrossRefGoogle ScholarPubMed
Newsholme, P. and Newsholme, E. A. (1989). Rates of utilization of glucose, glutamine and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochemistry, 261, 211–218.CrossRefGoogle ScholarPubMed
Nonaka, M. and Yoshizaki, F. (2004). Evolution of the complement system. Molecular Immunology, 40, 897–902.CrossRefGoogle ScholarPubMed
Nordling, D., Andersson, M., Zohari, S., et al. (1998). Reproductive effort reduces specific immune response and parasite resistance.Proceedings of the Royal Society of London. Series B, 265, 1291–1298.CrossRefGoogle Scholar
Normile, D. (2005). WHO faults China for lax outbreak response. Science, 309, 684.CrossRefGoogle ScholarPubMed
Nowak, M. A. and May, R. M. (1994). Superinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London. Series B, 255, 81–89.CrossRefGoogle ScholarPubMed
O'Garra, A. (1998). Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity, 8, 275–283.CrossRefGoogle ScholarPubMed
Oktenli, C., Doganci, L., Ozguratas, T., et al. (2004). Transient hypogonadotrophic hypogonadism in males with acute toxoplasmosis: suppressive effect of interleukin-1β on the secretion of GnRH. Human Reproduction, 19, 859–866.CrossRefGoogle ScholarPubMed
Olsen, B., Munster, V. J., Wallensten, A., et al. (2006). Global patterns of influenza A virus in wild birds. Science, 312, 384–388.CrossRefGoogle ScholarPubMed
Ots, I., Kerimov, A. B., Ivankina, E. V., et al. (2001). Immune challenge affects basal metabolic activity in wintering great tits. Proceedings of the Royal Society of London. Series B, 268, 1175–1181.CrossRefGoogle ScholarPubMed
Owens, I. P. (2002). Ecology and evolution. Sex differences in mortality rate. Science, 297, 2008–2009.CrossRefGoogle ScholarPubMed
Pancer, Z. and Cooper, M. D. (2006). The evolution of adaptive immunity. Annual Review of Immunology, 24, 497–518.CrossRefGoogle ScholarPubMed
Pancer, Z., Amrmiya, C. T., Ehrhardt, G. R. A., et al. (2004). Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature, 430, 174–180.CrossRefGoogle ScholarPubMed
Panter-Brick, C., Lunn, P. G., Baker, R., et al. (2000). Elevated acute-phase protein in stunted Nepali children reporting low morbidity: different rural and urban profiles. British Journal of Nutrition, 85, 1–8.Google Scholar
Parry, J. (2003). WHO is worried that China is under-reporting SARS. British Medical Journal, 326, 1110.Google ScholarPubMed
Patz, J. A., Daszak, P., Tabor, G. M., et al. (2004). Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environmental Health Perspectives, 112, 1092–1098.CrossRefGoogle ScholarPubMed
Patz, J. A., Gibbs, H. K., Foley, J. A., et al. (2007). Climate change and global health: quantifying a growing ethical crisis. EcoHealth, 4, 397–405.CrossRefGoogle Scholar
Paul, W. E. (2008). Fundamental Immunology, 6th edn. New York: Lippincott Williams and Wilkins.Google Scholar
Peeters, M., Courgnaud, V., Abela, B., et al. (2002). Risk to human health from a plethora of simian immunodeficiency viruses in primate bushmeat. Emerging Infectious Diseases, 8, 451–457.CrossRefGoogle ScholarPubMed
Perrett, D. I., Lee, K. J., Penton-Voak, I. S., et al. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394, 884–887.CrossRefGoogle ScholarPubMed
Poolman, E. M. and Galvani, A. P. (2007). Evaluating candidate agents of selective pressure for cystic fibrosis. Journal of the Royal Society Interface, 4, 91–98.CrossRefGoogle ScholarPubMed
Porter, R. (2001). The Cambridge Illustrated History of Medicine. New York: Cambridge University Press.Google Scholar
Porter, R. (2006). The Cambridge History of Medicine. New York: Cambridge University Press.Google Scholar
Poulin, R. (2006). Evolutionary Ecology of Parasites, 2nd edn. Princeton: Princeton University Press.Google Scholar
Qari, S. H., Shi, Y. P., Pieniazek, N. J., et al. (1996). Phylogenetic relationship among the malaria parasites based on small subunit rRNA gene sequences: monophyletic nature of the human malaria parasite, Plasmodium falciparum. Molecular Phylogenetics and Evolution, 6, 157–165.CrossRefGoogle ScholarPubMed
Raberg, L., Grahn, M., Hasselquist, D., et al. (1998). On the adaptive significance of stress-induced immunosuppression. Proceedings of the Royal Society of London. Series B, 265, 1637–1641.CrossRefGoogle ScholarPubMed
Raberg, L., Vestberg, M., Hasselquist, D., et al. (2002). Basal metabolic rate and the evolution of the adaptive immune system. Proceedings of the Royal Society of London. Series B, 269, 817–821.CrossRefGoogle ScholarPubMed
Radic, M. Z. and Zouali, M. (1996). Receptor editing, immune diversification, and self-tolerance. Immunity, 5, 505–511.CrossRefGoogle ScholarPubMed
Rambaut, A., Posada, D., Crandall, K. A., et al. (2004). The causes and consequences of HIV evolution. Nature Reviews Genetics, 5, 52–61.CrossRefGoogle ScholarPubMed
Rani, R., Fernandez-Vina, M. A., Zaheer, S. A., et al. (1993). Study of HLA class II alleles by PCR oligotyping in leprosy patients from north India. Tissue Antigens, 42, 133–137.CrossRefGoogle ScholarPubMed
Rathmell, J. C. and Thompson, C. B. (1999). The central effectors of cell death in the immune system. Annual Review of Immunology, 17, 781–828.CrossRefGoogle ScholarPubMed
Reincke, M., Arlt, W., Heppner, C., et al. (1998). Neuroendocrine dysfunction in African trypanosomiasis. The role of cytokines. Annals of the New York Academy of Sciences, 840, 809–821.CrossRefGoogle ScholarPubMed
Reiner, S. L. and Seder, R. A. (1999). Dealing from the evolutionary pawnshop: how lymphocytes make decisions. Immunity, 11, 1–10.CrossRefGoogle ScholarPubMed
Remington, J. S. and Klein, J. O. (1990). Infectious Diseases of the Fetus and Newborn Infant. Philadelphia: W. B. Saunders.Google Scholar
Rich, S. M., Licht, M. C., Hudson, R. R., et al. (1998). Malaria's eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 95, 4425–4430.CrossRefGoogle ScholarPubMed
Richner, H., Christie, P. and Oppliger, A. (1995). Paternal investment affects prevalence of malaria. Proceedings of the National Academy of Sciences of the United States of America, 92, 1192–1194.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. and Wikelski, M. (2002). The physiology/life history nexus. Trends in Ecology and Evolution, 17, 462–468.CrossRefGoogle Scholar
Robert, J., Cohen, N., Maniero, G. D., et al. (2003). Evolution of the immunomodulatory role of the heat shock protein gp96. Cellular and Molecular Biology, 49, 263–275.Google ScholarPubMed
Rodrigo, A. G. (1999). HIV evolutionary genetics. Proceedings of the National Academy of Sciences of the United States of America, 96, 10559–10561.CrossRefGoogle ScholarPubMed
Rodrigues, V., Piper, K., Couissinier-Paris, P., et al. (1999). Genetic control of schistosome infections by the SM1 locus of the 5q21–q33 region is linked to differentiation of type 2 helper T lymphocytes. Infection and Immunity, 67, 4689–4692.Google Scholar
Roe, C. F. and Kinney, J. M. (1965). The caloric equivalent of fever: II. Influence of major trauma. Annals of Surgery, 161, 140–147.CrossRefGoogle ScholarPubMed
Rolff, J. (2007). Why did the acquired immune system of vertebrates evolve?Developmental and Comparative Immunology, 31, 476–482.CrossRefGoogle ScholarPubMed
Rook, W. G. A. (1988). Role of activated macrophages in the immunopathology of tuberculosis. British Medical Bulletin, 44, 611–623.CrossRefGoogle ScholarPubMed
Rosas-Magallanes, V., Deschavanne, P., Quintana-Murci, L., et al. (2006). Horizontal transfer of a virulence operon to the ancestor of Mycobacterium tuberculosis. Molecular Biology and Evolution, 23, 1129–1135.CrossRefGoogle ScholarPubMed
Rosenberg, I. H. and Bowman, B. B. (1984). Impact of intestinal parasites on digestive function in humans. Federation Proceedings, 43, 246–250.Google ScholarPubMed
Rothschild, B. M., Martin, L. D., Lev, G., et al. (2001). Mycobacterium tuberculosis complex DNA from an extinct bison dated 17 000 years before the present. Clinical Infectious Diseases, 33, 305–311.CrossRefGoogle ScholarPubMed
Rothwell, T. L. (1989). Immune expulsion of parasitic nematodes from the alimentary tract. International Journal for Parasitology, 19, 139–168.CrossRefGoogle ScholarPubMed
Roumagnac, P., Weill, F. X., Dolecek, C., et al. (2006). Evolutionary history of Salmonella typhi. Science, 314, 1301–1304.CrossRefGoogle ScholarPubMed
Rowe, J. A., Handel, I. G., Thera, M. A., et al. (2007). Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced resetting. Proceedings of the National Academy of Sciences of the United States of America, 104, 17471–17476.CrossRefGoogle Scholar
Ruwende, C., Khoo, S. C., Snow, R. W., et al. (1995). Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature, 376, 246–249.CrossRefGoogle ScholarPubMed
Saad, A. H., Abdelbaky, A., Osman, A. M., et al. (1999) Possible role of Schistosoma mansoni infection in male hypogonadism. Journal of the Egyptian Society of Parasitology, 29, 307–323.Google ScholarPubMed
Sabeti, P. C., Walsh, E., Schaffner, S. F., et al. (2005). The case for selection at CCR5-Δ32. PLoS Biology, 3, e378.CrossRefGoogle ScholarPubMed
Saino, N. and Moller, A. P. (1994). Secondary sexual characters, parasites and testosterone in the barn swallow, Hirundo rustica. Animal Behaviour, 48, 1325–1333.CrossRefGoogle Scholar
Saino, N., Stradi, R., Ninni, P., et al. (1999). Carotenoid plasma concentration, immune profile, and plumage ornamentation of male barn swallows (Hirundo rustica). American Naturalist, 154, 441–448.CrossRefGoogle Scholar
Saino, N., Incagli, M., Martinelli, R., et al. (2002). Immune response of male barn swallows in relation to parental effort, corticosterone plasma levels, and sexual ornamentation. Behavioral Ecology, 13, 169–174.CrossRefGoogle Scholar
Samuel, C. E. (2001). Antiviral actions of interferon's. Clinical Microbiology Reviews, 14, 778–809.CrossRefGoogle Scholar
Santiago, M. L., Range, F., Keele, B. F., et al. (2005). Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atye atys) from the Tai Forest, Cote d'Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. Journal of Virology, 79, 12515–12527.CrossRefGoogle Scholar
Sattenspiel, L. (2000). The epidemiology of human disease. In Human Biology: an Evolutionary and Biocultural Approach, Stinson, S., Bogin, B., Huss-Ashmore, R., et al. (eds). New York: Wiley-Liss, pp. 225–271.Google Scholar
Schatz, D. G., Oettinger, M. A. and Schlissel, M. S. (1992). V(D)J recombination: molecular biology and regulation. Annual Review of Immunology, 10, 359–383.CrossRefGoogle Scholar
Schmid-Hempel, P. (2003). Variation in immune defence as a question of evolutionary ecology. Proceedings of the Royal Society of London. Series B, 270, 357–366.CrossRefGoogle ScholarPubMed
Scrimshaw, N. S. (1992). Effect of infection on nutritional status. Proceedings of the National Science Council Republic of China. Part B Life Sciences, 16, 46–64.Google ScholarPubMed
Sebzda, E., Mariathasan, S., Ohteki, T., et al. (1999). Selection of the T cell repertoire. Annual Review of Immunology, 17, 829–874.CrossRefGoogle ScholarPubMed
Setchell, J. M. and Dixson, A. F. (2001). Changes in the secondary sexual adornments of male mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–184.CrossRefGoogle ScholarPubMed
Sharp, P. M., Bailes, E. and Wain, L. V. (2008). Evolutionary origins of diversity in human viruses. In Evolution in Health and Disease, Stearns, S. C. and Koella, J. C. (eds), 2nd edn. New York: Oxford University Press, pp. 169–184.Google Scholar
Sheldon, B. C. and Verhulst, S. (1996). Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends in Ecology and Evolution, 11, 317–321.CrossRefGoogle Scholar
Shephard, R. J., Castellani, J. W. and Shek, P. N. (1998). Immune deficits induced by strenuous exertion under adverse environmental conditions: manifestations and countermeasures. Critical Reviews in Immunology, 18, 545–568.CrossRefGoogle ScholarPubMed
Sher, A. and Coffman, R. L. (1992). Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annual Review of Immunology, 10, 385–409.CrossRefGoogle Scholar
Shevach, E. M. (2008). Regulatory/suppressor T cells. In Fundamental Immunology, Paul, W. E. (ed.), 6th edn. New York: Lippincott, Williams and Wilkins, pp. 943–982.Google Scholar
Shinya, K., Ebina, M., Yamada, S., et al. (2006). Avian flu: influenza virus receptors in the human airway. Nature, 440, 435–436.CrossRefGoogle ScholarPubMed
Sluiter, C. P., Swellengrebel, N. H. and Ihle, J. E. (1922). De dierlijke parasieten van den mensch en van onze huisdieren, 3rd edn. Amsterdam: Scheltema and Holkema.Google Scholar
Smith, N. H., Gordon, S. V., Rua-Domenech, R., et al. (2006). Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nature Reviews Microbiology, 4, 670–681.CrossRefGoogle ScholarPubMed
Smith, T. (1934). Parasitism and Disease. Princeton: Princeton University Press.Google Scholar
Smith, T., Bhatia, K., Branish, G., et al. (1991). Host genetic factors do not account for variation in parasite loads in Strongyloides fuelleborni kellyi. Annals of Tropical Medicine and Parasitology, 5, 533–537.CrossRefGoogle Scholar
Snapper, C. M. (1996). Cytokine Regulation of Humoral Immunity: Basic and Clinical Aspects. New York: Wiley.Google Scholar
Spink, W. W. and Ferris, V. (1945). Quantitative action of penicillin inhibitor from penicillin-resistant strain of staphylococcus. Science, 102, 102–221.CrossRefGoogle Scholar
Spratt, D. I. (2001). Altered gonadal steroidogenesis in critical illness: is treatment with anabolic steroids indicated?Best Practice and Research Clinical Endocrinology and Metabolism, 15, 479–494.CrossRefGoogle ScholarPubMed
Spratt, D. I., Cox, P., Orav, J., et al. (1993). Reproductive axis suppression in acute illness is related to disease severity. Journal of Clinical Endocrinology and Metabolism, 76, 1548–1554.Google ScholarPubMed
Sprent, J. (1993). The thymus and T-cell tolerance. Annals of the New York Academy of Sciences, 681, 5–15.CrossRefGoogle ScholarPubMed
Spurlock, M. E. (1997). Regulation of metabolism and growth during growth challenge: an overview of cytokine function. Journal of Animal Science, 75, 1773–1783.CrossRefGoogle ScholarPubMed
Sreevatsan, S., Pan, X., Stockbauer, K. E., et al. (1997). Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proceedings of the National Academy of Sciences of the United States of America, 94, 9869–9874.CrossRefGoogle ScholarPubMed
Stearns, S. (1989). Trade-offs in life-history evolution. Functional Ecology, 3, 259–268.CrossRefGoogle Scholar
Stearns, S. (1992). The Evolution of Life Histories. New York: Oxford University Press.Google Scholar
Stearns, S. C. and Koella, J. C. (2008). Evolution in Health and Disease, 2nd edn. New York: Oxford University Press.Google Scholar
Stearns, S. C., Nesse, R. M. and Haig, D. (2008). Introducing evolutionary thinking for medicine. In Evolution in Health and Disease, Stearns, S. C. and Koella, J. C. (eds), 2nd edn. New York: Oxford University Press, pp. 3–15.Google Scholar
Steinmann, P., Keiser, J., Bos, R., Tanner, , et al. (2006). Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infectious Diseases, 6, 411–425.CrossRefGoogle ScholarPubMed
Stephens, J. C., Reich, D. E., Goldstein, D. B., et al. (1998). Dating the origin of the CCR5-Δ32 AIDS-resistance allele by the coalescence of haplotypes. American Journal of Human Genetics, 62, 1507–1515.CrossRefGoogle ScholarPubMed
Stephens, J. W. W. (1922). A new malaria parasite of man. Annals of Tropical Medicine, 16, 383–388.CrossRefGoogle Scholar
Stevenson, M. M. and Riley, E. M. (2004). Innate immunity to malaria. Nature Reviews Immunology, 4, 169–180.CrossRefGoogle ScholarPubMed
Strachan, D. P. (1989). Hay fever, hygiene, and household size. British Medical Journal, 299, 1259–1260.CrossRefGoogle ScholarPubMed
Svensson, E., Raberg, L., Koch, C., et al. (1998). Energetic stress, immunosuppression and the costs of an antibody response. Functional Ecology, 12, 912–919.CrossRefGoogle Scholar
Swellengrebel, N. H. (1940). The efficient parasite. In Proceedings of the Third International Congress of Microbiology. Baltimore: Waverly, pp. 119–127.Google Scholar
Tanabe, K., Escalante, A., Sakihama, N., et al. (2007). Recent independent evolution of msp1 polymorphism in Plasmodium vivax and related simian malaria parasites. Molecular and Biochemical Parasitology, 156, 74–79.CrossRefGoogle ScholarPubMed
Taubenberger, J. K., Reid, A. H., Krafft, A. E., et al. (1997). Initial genetic characterization of the 1918 “Spanish” influenza virus. Science, 275, 1793–1796.CrossRefGoogle ScholarPubMed
Taubenberger, J. K., Reid, A. H., Lourens, R. M., et al. (2005). Characterization of the 1918 influenza virus polymerase genes. Nature, 437, 889–893.CrossRefGoogle ScholarPubMed
Taylor, T. E., Fu, W. J., Carr, R. A., et al. (2004). Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nature Medicine, 10, 143–145.CrossRefGoogle ScholarPubMed
Thompson, J. N. (1994). The Coevolutionary Process. Chicago: Chicago University Press.CrossRefGoogle Scholar
Thuong, N. T., Hawn, T. R., Thwaites, G. E., et al. (2007). A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes and Immunology, 8, 422–428.CrossRefGoogle ScholarPubMed
Tishkoff, S. A., Varkonyi, R., Cahinhinan, N., et al. (2001). Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science, 293, 455–462.CrossRefGoogle ScholarPubMed
Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature, 302, 575–581.CrossRefGoogle ScholarPubMed
Toossi, Z., Gogate, P., Shiratsuchi, H., et al. (1995). Enhanced production of TGF-β by blood monocytes from patients with active tuberculosis and presence of TGF-β in tuberculous granulomatous lung lesions. Journal of Immunology, 154, 465–473.Google ScholarPubMed
Tournamille, C., Colin, Y., Cartron, J. P., et al. (1995). Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nature Genetics, 10, 224–228.CrossRefGoogle ScholarPubMed
Trevathan, W. R., Smith, E. O. and McKenna, J. (2007). Evolutionary Medicine and Health: New Perspectives. New York: Oxford University Press.Google Scholar
Trigg, P. I. and Kondrachine, A. V. (1998). The current global malaria situation. In Malaria: Parasite Biology, Pathogenesis and Protection, Sherman, I. W. (ed.). Washington, DC: ASM Press, pp. 11–22.Google Scholar
Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology, 3, 133–146.CrossRefGoogle ScholarPubMed
Trivers, R. L. (1974). Parent–offspring conflict. American Zoologist, 14, 249–264.CrossRefGoogle Scholar
Trowsdale, J. and Parham, P. (2004). Defense strategies and immunity-related genes. European Journal of Immunology, 34, 7–17.CrossRefGoogle ScholarPubMed
Ungchusak, K., Auewarakul, P., Dowell, S. F., et al. (2005). Probably person-to-person transmission of avian influenza A (H5N1). New England Journal of Medicine, 352, 333–340.CrossRefGoogle Scholar
Urban, J. F., Madden, K. B., Svetic, A., et al. (1992). The importance of Th2 cytokines in protective immunity to nematodes. Immunological Reviews, 127, 205–220.CrossRefGoogle ScholarPubMed
Blerkom, L. M. (2003). Role of viruses in human evolution. Yearbook of Physical Anthropology, 46, 14–46.CrossRefGoogle Scholar
Crevel, R., Ottenhoff, T. H. M. and Meer, J. W. M. (2002). Innate immunity to Mycobacterium tuberculosis. Clinical Microbiology Reviews, 15, 294–309.CrossRefGoogle ScholarPubMed
Heuverswyn, F., Li, Y., Neel, C., et al. (2006). SIV infection in wild gorillas. Nature, 444, 164.Google ScholarPubMed
Valen, L. (1973). A new evolutionary law. Evolutionary Theory, 1, 1–30.Google Scholar
Verhulst, S., Dieleman, S. J. and Parmentier, H. K. (1999). A tradeoff between immunocompetence and sexual ornamentation in domestic fowl. Proceedings of the National Academy of Sciences of the United States of America, 96, 4478–4481.CrossRefGoogle ScholarPubMed
Visintin, A., Mazzoni, A., Spitzer, J. H., et al. (2001). Regulation of Toll-like receptors in human monocytes and dendritic cells. Journal of Immunology, 166, 249–255.CrossRefGoogle ScholarPubMed
Vitzthum, V. J. (2003). A number no greater than the sum of its parts: the use and abuse of heritability. Human Biology, 75, 539–558.CrossRefGoogle Scholar
Volkman, S. K., Barry, A. E., Lyons, E. J., et al. (2001). Recent origin of Plasmodium falciparum from a single progenitor. Science, 293, 482–484.CrossRefGoogle ScholarPubMed
Mutius, E., Fritzsch, C., Weiland, S. K., et al. (1992). Prevalence of asthma and allergic disorders among children in united Germany: a descriptive comparison. British Medical Journal, 305, 1395–1399.CrossRefGoogle Scholar
Wallace Taylor, D. (2002). The inducible defense system: antibody molecules and antigen-antibody reactions. In Infection, Resistance, and Immunity, Kreier, J. P. (ed.). New York: Taylor and Francis, pp. 105–130.Google Scholar
Walther, B. A. and Ewald, P. W. (2004). Pathogen survival in the external environment and the evolution of virulence. Biological Reviews, 79, 849–869.CrossRefGoogle ScholarPubMed
Wardlaw, A. J., Moqbel, R. and Kay, A. B. (1995). Eosinophils: biology and role in disease. Advances in Immunology, 60, 151–266.CrossRefGoogle Scholar
Waters, A. P., Higgins, D. G. and McCutchan, T. F. (1993). Evolutionary relatedness of some primate models of Plasmodium. Molecular Biology and Evolution, 10, 914–923.Google ScholarPubMed
Watson, J. T., Gayer, M. and Connolly, M. A. (2007). Epidemics after natural disasters. Emerging Infectious Diseases, 13, 1–5.CrossRefGoogle ScholarPubMed
Weatherall, D. J. and Clegg, J. B. (2001). Inherited haemoglobin disorders: an increasing global health problem. Bulletin of the World Health Organization, 79, 704–712.Google Scholar
Wedekind, C. and Folstad, I. (1994). Adaptive or nonadaptive immunosuppression by sex-hormones. American Naturalist, 143, 936–938.CrossRefGoogle Scholar
Weiss, R. A. and McMichael, A. J. (2004). Social and environmental risk factors in the emergence of infectious diseases. Nature Medicine, 10, S70–S76.CrossRefGoogle ScholarPubMed
Welch, W. H. (1897). Malaria: definitions, synonyms, history and parasitology. In Systemic Practical Medicine, Loomis, A. L. and Thompson, W. G. (eds). Philadelphia, PA: Lea Brothers and Company, pp. 1–17.Google Scholar
Welle, S., Jozefowicz, R., Forbes, G., et al. (1992). Effect of testosterone on metabolic rate and body composition in normal men and men with muscular dystrophy. Journal of Clinical Endocrinology and Metabolism, 74, 332–335.Google ScholarPubMed
White, N. J. (1993). Malaria parasites do ape. Lancet, 341, 793.Google ScholarPubMed
Wilkinson, R. J., Llewelyn, M., Toossi, Z., et al. (2000). Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case-control study. Lancet, 355, 618–621.CrossRefGoogle ScholarPubMed
Williams, G. C. and Nesse, R. M. (1991). The dawn of Darwinian medicine. Quarterly Review of Biology, 66, 1–22.CrossRefGoogle ScholarPubMed
Williams, T. N. (2006). Human red blood cell polymorphisms and malaria. Current Opinions in Microbiology, 9, 388–394.CrossRefGoogle ScholarPubMed
Williams, T. N., Mwangi, T. W., Roberts, D. J., et al. (2005). An immune basis for malaria protection by the sickle cell trait. PLoS Medicine, 2, e128.CrossRefGoogle ScholarPubMed
Williams-Blangero, S., Blangero, J. and Bradley, M. (1997). Quantitative genetic analysis of susceptibility to hookworm infection in a population from rural Zimbabwe. Human Biology, 69, 201–208.Google Scholar
Williams-Blangero, S., Subedi, J., Upadhayay, R. P., et al. (1999). Genetic analysis of susceptibility to infection with Ascaris lumbricoides. American Society of Tropical Medicine and Hygiene, 60, 921–926.CrossRefGoogle ScholarPubMed
Williams-Blangero, S., McGarvey, S. T., Subedi, J., et al. (2002a). Genetic component to susceptibility to Trichuris trichiura: evidence from two Asian populations. Genetic Epidemiology, 22, 254–264.CrossRefGoogle ScholarPubMed
Williams-Blangero, S., VandeBerg, J. L., Subedi, J., et al. (2002b). Genes on chromosomes 1 and 13 have significant affects on Ascaris infection. Proceedings of the National Academy of Sciences of the United States of America, 99, 5533–5538.CrossRefGoogle Scholar
Williams-Blangero, S., Correa-Oliveira, R., Vandenberg, J. L., et al. (2004). Genetic influences on plasma cytokine variation in a parasitized population. Human Biology, 76, 515–525.CrossRefGoogle Scholar
Williams-Blangero, S., Vandeberg, J. L., Subedi, J., et al. (2008a). Localization of multiple quantitative trait loci influencing susceptibility to infection with Ascaris lumbricoides. Journal of Infectious Diseases, 197, 66–71.CrossRefGoogle ScholarPubMed
Williams-Blangero, S., Vandeberg, J. L., Subedi, J., et al. (2008b). Two quantitative trait loci influence whipworm (Trichuris trichiura) infection in a Nepalese population. Journal of Infectious Diseases, 197, 1198–1203.CrossRefGoogle Scholar
Wills-Karp, M., Santeliz, J. and Karp, C. L. (2001). The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Reviews Immunology, 1, 69–75.CrossRefGoogle ScholarPubMed
Wilson, M. S. and Maizels, R. M. (2004). Regulation of allergy and autoimmunity in helminth infection. Clinical Reviews of Allergy and Immunology, 26, 35–50.CrossRefGoogle ScholarPubMed
Wilson, R. J. M. and Williamson, D. H. (1997). Extrachromosomal DNA in the Apicomplexa. Microbiology and Molecular Biology Reviews, 61, 1–16.Google ScholarPubMed
Winkler, C., An, P. and O'Brien, S. J. (2004). Patterns of ethnic diversity among the genes that influence AIDS. Human Molecular Genetics, 13, R9–R19.CrossRefGoogle ScholarPubMed
Wolfe, N. D., Prosser, A. T., Carr, J. K., et al. (2004). Exposure to nonhuman primates in rural Cameroon. Emerging Infectious Diseases, 10, 2094–2099.CrossRefGoogle ScholarPubMed
,World Health Organization (1999). World Health Report. Geneva: World Health Organization.
Worobey, M., Gemmel, M., Teuwen, D. E., et al. (2008). Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature, 455, 661–664.CrossRefGoogle ScholarPubMed
Yazdanbakhsh, M., Kremsner, P. G. and Ree, R. (2002). Allergy, parasites, and the hygiene hypothesis. Science, 296, 490–494.CrossRefGoogle ScholarPubMed
Yu, D., Li, H., Xu, R., et al. (2003). Prevalence of IgG antibody to SARS-associated coronavirus in animal traders – Guangdong Province, China, 2003. Morbidity and Mortality Weekly Report, 52, 986–987.Google Scholar
Yu, X. Q. and Kanost, M. R. (2002). Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid. An immunoglobulin superfamily member from insects as a pattern-recognition receptor. European Journal of Biochemistry, 269, 1827–1834.CrossRefGoogle ScholarPubMed
Zahavi, A. (1975). Mate selection – a selection for a handicap. Journal of Theoretical Biology, 53, 205–214.CrossRefGoogle ScholarPubMed
Zimmerman, P. A., Buckler-White, A., Alkhatib, G., et al. (1997). Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Molecular Medicine, 3, 23–36.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×