Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T19:23:33.717Z Has data issue: false hasContentIssue false

17 - Multiple time scales for dispersals of bacterial disease over human history

from V - Invasion: The Movement of Invasive and Disease Species

Published online by Cambridge University Press:  04 May 2017

Mark Achtman
Affiliation:
University of Warwick
Nicole Boivin
Affiliation:
Max Planck Institute for the Science of Human History, Jena
Rémy Crassard
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Lyon
Michael Petraglia
Affiliation:
Max Planck Institute for the Science of Human History, Jena
Get access

Summary

Abstract

Multiple microbial pathogens have spread geographically, sometimes with drastic impacts on the health of humans and their domesticated animals and crops due to epidemic outbreaks of disease. However, microbial pathogens do not leave fossils, and, until very recently, it has been difficult to reconstruct the causes of historical human diseases. For some bacterial pathogens, this situation is now changing due to recent advances in population genetics, DNA sequencing, and ancient DNA studies. This chapter illustrates these developments with an overview of the histories of three exemplary bacterial pathogens: Helicobacter pylori (a common cause of gastric ulcers), Yersinia pestis (the cause of plague), and Salmonella enterica serovar Agona (a common cause of gastroenteritis), with occasional references to other bacteria. These three pathogens have been inferred to have infected humans for very different time periods within the history of anatomically modern humans, ranging from 100,000 years down to 80 years.

Keywords: History of disease, molecular clock rates, bacterial populations, human migrations, geographic diversity

MOLECULAR CLOCK RATES

In 1654, James Usher (Ussher), Church of Ireland Archbishop of Armagh and Primate of all Ireland, calculated that the world began on the night preceding Sunday, 23 October 4004 BC http://en.wikipedia.org/wiki/James_Ussher). This calculation is notable both for its supposed precision, and for the fact that it is still believed by some Creationists http://en.wikipedia.org/wiki/Young_earth_creationism). However, scientific analyses support very different estimates of the age of various historical events (Table 17.1).

Until several years ago, it was generally believed by microbiologists that bacteria accumulate mutations at a constant molecular clock rate of 3.4∙10−9 mutations per nucleotide per year, which was based on an estimate that the bacterial species Escherichia coli and S. enterica separated about 160 million years ago (Ochman and Wilson 1987). This clock rate then allowed calculating the ages of other bacterial taxa based on their genetic diversity, resulting in estimates of 70 million years for the age of Moraxella catarrhalis (Wirth et al. 2007), 50,000 years for S. enterica serovar Typhi (Kidgell et al. 2002), and 7,000 years for E. coli O157:H7 (Leopold et al. 2009). However, these estimates of the ages of bacterial pathogens are suspect, as are all others predating 2008, because protein-coding genes mutate at different rates in different taxa (Ochman et al. 1999), and the original calibrations supporting a constant clock rate are no longer valid (Morelli et al. 2010a).

Type
Chapter
Information
Human Dispersal and Species Movement
From Prehistory to the Present
, pp. 454 - 476
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achtman, M. 2008. Evolution, population structure and phylogeography of genetically monomorphic bacterial pathogens. Annual Review of Microbiology 62: 53–70.Google Scholar
Achtman, M. 2012. Insights from genomic comparisons of genetically monomorphic bacterial pathogens. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 367: 860–867.Google Scholar
Achtman, M., Azuma, T., Berg, D.E., Ito, Y., Morelli, G., Pan, Z.-J., Suerbaum, S. et al. 1999a. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Molecular Microbiology 32: 459–470.Google Scholar
Achtman, M., Wain, J., Weill, F.-X., Nair, S., Zhou, Z., Sangal, V., Krauland, M.G. et al. 2012. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica . PLoS Pathogens 8: e1002776.Google Scholar
Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A., and Carniel, E. 1999b. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis . Proceedings of the National Academy of Sciences 96: 14043–14048.Google Scholar
Adler, C.J., Dobney, K., Weyrich, L.S., Kaidonis, J., Walker, A.W., Haak, W., Bradshaw, C.J. et al. 2013. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics 45: 450–455.Google Scholar
Benedictow, O.J. 2005. The black death – The greatest catastrophe ever. History Today 55(3): 42–49.Google Scholar
Bos, K.I., Schuenemann, V.J., Golding, G.B., Burbano, H.A., Waglechner, N., Coombes, B.K., McPhee, J.B. et al. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature (London) 478: 506–510.Google Scholar
Buell, P.D. 2012. Qubilai and the rats. Sudhoffs Archiv Zeitschrift für Wissenschaftsgeschichte 96(2): 127–144.Google Scholar
Castillo-Ramirez, S., Corander, J., Marttinen, P., Aldeljawi, M., Hanage, W.P., Westh, H., Boye, K. et al. 2012. Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus . Genome Biology 13(12): R126.Google Scholar
Cohn, S.K. Jr. 2002. The Black Death Transformed: Disease and Culture in Early Renaissance Europe. London: Arnold.
Comas, I., Coscolla, M., Luo, T., Borrell, S., Holt, K.E., Kato-Maeda, M., Parkhill, J. et al. 2013. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature Genetics 45(10): 1176–1182.Google Scholar
Cui, Y., Yu, C., Yan, Y., Li, D., Li, Y., Jombart, T., Weinert, L.A. et al. 2013. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis . Proceedings of the National Academy of Sciences 110: 577–582.Google Scholar
Devault, A.M., Golding, G.B., Waglechner, N., Enk, J.M., Kuch, M., Tien, J.H., Shi, M. et al. 2014. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. New England Journal of Medicine 370(4): 334–340.Google Scholar
Didelot, X., Nell, S., Yang, I., Woltemate, S., van der Merwe, S., and Suerbaum, S. 2013. Genomic evolution and transmission of Helicobacter pylori in two South African families. Proceedings of the National Academy of Sciences 110(34): 13880–13885.Google Scholar
Duchene, S., Holmes, E.C., and Ho, S.Y. 2014. Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proceedings of the Royal Society B: Biological Sciences 281(1786): 20140732.Google Scholar
Eppinger, M., Baar, C., Linz, B., Raddatz, G., Lanz, C., Keller, H., Morelli, G. et al. 2006. Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genetics 2(7): e120.Google Scholar
Eyre, D.W., Cule, M.L., Wilson, D.J., Griffiths, D., Vaughan, A., O'Connor, L., Ip, C.L. et al. 2013. Diverse sources of C. difficile infection identified on whole-genome sequencing. New England Journal of Medicine 369(13): 1195–1205.Google Scholar
Falush, D., Wirth, T., Linz, B., Pritchard, J.K., Stephens, M., Kidd, M., Blaser, M.J. et al. 2003. Traces of human migrations in Helicobacter pylori populations. Science 299(5612): 1582–1585.Google Scholar
Farhat, M.R., Shapiro, B.J., Kieser, K.J., Sultana, R., Jacobson, K.R., Victor, T.C., Warren, R.M. et al. 2013. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis . Nature Genetics 45(10): 1183–1189.Google Scholar
Feng, L., Reeves, P.R., Lan, R., Ren, Y., Gao, C., Zhou, Z., Ren, Y. et al. 2008. A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS ONE 3(12): e4053.Google Scholar
Ford, C.B., Shah, R.R., Maeda, M.K., Gagneux, S., Murray, M.B., Cohen, T., Johnston, J.C. et al. 2013. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nature Genetics 45(7): 784–790.Google Scholar
Gage, K.L. and Kosoy, M.Y. 2005. Natural history of plague: perspectives from more than a century of research. Annual Reviews of Entomology 50: 505–528.Google Scholar
Golubchik, T., Batty, E.M., Miller, R.R., Farr, H., Young, B.C., Larner-Svensson, H., Fung, R., Godwin, H., Knox, K., Votintseva, A., Everitt, R.G., Street, T., Cule, M., Ip, C.L., Didelot, X., Peto, T.E., Harding, R.M., Wilson, D.J., Crook, D.W., and Bowden, R. 2013. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS ONE 8 (5): e61319.Google Scholar
Grad, Y.H., Lipsitch, M., Feldgarden, M., Arachchi, H.M., Cerqueira, G.C., Fitzgerald, M., Godfrey, P. et al. 2012. Genomic epidemiology of the Escherichia coli O104: H4outbreaks in Europe, 2011. Proceedings of the National Academy of Sciences 109: 3065–3070.Google Scholar
Gray, R.D., Drummond, A.J., and Greenhill, S.J. 2009. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323(5913): 479–483.Google Scholar
Haensch, S., Bianucci, R., Signoli, M., Rajerison, M., Schultz, M., Kacki, S., Vermunt, M. et al. 2010. Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathogens 6: e1001134.Google Scholar
Harbeck, M., Seifert, L., Hänsch, S., Wagner, D.M., Birdsell, D., Parise, K.L., Wiechmann, I. et al. 2013. Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into Justinianic Plague. PLoS Pathogens 9(5): e1003349.Google Scholar
Harris, S.R., Clarke, I.N., Seth-Smith, H.M., Solomon, A.W., Cutcliffe, L.T., Marsh, P., Skilton, R.J. et al. 2012. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nature Genetics 44(4): 413–419.Google Scholar
He, M., Miyajima, F., Roberts, P., Ellison, L., Pickard, D.J., Martin, M.J., Connor, T.R. et al. 2013. Emergence and global spread of epidemic healthcare-associated Clostridium difficile . Nature Genetics 45(1): 109–113.Google Scholar
Hinnebusch, B.J. 2005. The evolution of flea-borne transmission in Yersinia pestis . Current Issues in Molecular Biology 7(2): 197–212.Google Scholar
Hirsch, A. 1881. Beulenpest. In Handbuch Der Historisch-Geographischen Pathologie. vol. I. pp. 349–384. Stuttgart: Verlag von Ferdinand Enke.
Ho, S.Y. and Larson, G. 2006. Molecular clocks: when times are a-changin’. Trends in Genetics 22(2): 79–83.Google Scholar
Ho, S.Y., Shapiro, B., Phillips, M.J., Cooper, A., and Drummond, A.J. 2007. Evidence for time dependency of molecular rate estimates. Systematic Biology 56(3): 515–522.Google Scholar
Holden, M.T.G., Hsu, L.Y., Kurt, K., Weinert, L.A., Mather, A.E., Harris, S.R., Strommenger, B. et al. 2013. A genomic portrait of the emergence, evolution and global spread of a methicillin resistant Staphylococcus aureus pandemic. Genome Research 23: 653–664.Google Scholar
Holmes, E.C. 2008. Evolutionary history and phylogeography of human viruses. Annual Review of Microbiology 62: 307–328.Google Scholar
Holt, K.E., Baker, S., Weill, F.X., Holmes, E.C., Kitchen, A., Yu, J., Sangal, V. et al. 2012. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nature Genetics 44(9): 1056–1059.Google Scholar
Holt, K.E., Parkhill, J., Mazzoni, C.J., Roumagnac, P., Weill, F.-X., Goodhead, I., Rance, R. et al. 2008. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nature Genetics 40(8): 987–993.Google Scholar
Holt, K.E., Thieu Nga, T.V., Thanh, D.P., Vinh, H., Kim, D.W., Vu Tra, M.P., Campbell, J.I. et al. 2013. Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proceedings of the National Academy of Sciences 110: 17522–17527.Google Scholar
Kacki, S., Rahalison, L., A'ashi, J., Rajerison, M., Ferroglio, E., and Bianucci, R. 2011. Black Death in the rural cemetary of Saint-Laurent-de-la-Cabererisse Aude-Languedoc, southern France, 14th century: immunological evidence. Journal of Archaeological Science 38: 581–587.Google Scholar
Kidgell, C., Reichard, U., Wain, J., Linz, B., Torpdahl, M., Dougan, G., and Achtman, M. 2002. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infection, Genetics and Evolution 2(1): 39–45.Google Scholar
Lang, G.I., Rice, D.P., Hickman, M.J., Sodergren, E., Weinstock, G.M., Botstein, D., and Desai, M.M. 2013. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature (London) 500(7464): 571–574.Google Scholar
Latifi-Navid, S., Gorashi, S., Siavoshi, F., Linz, B., Massarrat, S., Khegay, T., Salmanian, A. et al. 2010. Ethnic and geographic differentiation of Helicobacter pylori within Iran. PLoS ONE 5(3): e9645.Google Scholar
Laukkanen-Ninios, R., Didelot, X., Jolley, K.A., Morelli, G., Sangal, V., Kristo, P., Brehony, C. et al. 2011. Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing. Environmental Microbiology 13(12): 3114–3127.Google Scholar
Leopold, S.R., Magrini, V., Holt, N.J., Shaikh, N., Mardis, E.R., Cagno, J., Ogura, Y. et al. 2009. A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. Proceedings of the National Academy of Sciences 106: 8713–8718.Google Scholar
Linz, B., Balloux, F., Moodley, Y., Manica, A., Liu, H., Roumagnac, P., Falush, D. et al. 2007. An African origin for the intimate association between humans and Helicobacter pylori . Nature (London) 445(7130): 915–918.Google Scholar
Linz, B., Windsor, H.M., McGraw, J.J., Hansen, L.M., Gajewski, J.P., Tomsho, L.P., Hake, C.M. et al. 2014. A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques. Nature Communications 5: 4165.Google Scholar
Little, L.K. 2007. Plague and the End of Antiquity. The Pandemic of 541–750. Cambridge: Cambridge University Press.
Little, L.K. 2011. Review article: Plague historians in lab coats. Past & Present 213: 267–290.Google Scholar
Liu, H., Prugnolle, F., Manica, A., and Balloux, F. 2006. A geographically explicit genetic model of worldwide human-settlement history. American Journal of Human Genetics 79: 230–237.Google Scholar
Manica, A., Amos, W., Balloux, F., and Hanihara, T. 2007. The effect of ancient population bottlenecks on human phenotypic variation. Nature (London) 448(7151): 346–348.Google Scholar
Matthews, L., Reeve, R., Gally, D.L., Low, J.C., Woolhouse, M.E., McAteer, S.P., Locking, M.E. et al. 2013. Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. Proceedings of the National Academy of Sciences 110(40): 16265–16270.Google Scholar
McCormick, M. and McCorm, 2006. Toward a molecular history of the Justinianic Pandemic. In Plague and the End of Antiquity. The Pandemic of 541–750. ed. Little, L.K., pp. 290–312. Cambridge: Cambridge University Press.
Moodley, Y., Linz, B., Bond, R.P., Nieuwoudt, M., Soodyall, H., Schlebusch, C.M., Bernhöft, S. et al. 2012. Age of the association between Helicobacter pylori and man. PLoS Pathogens 8: e1002693.Google Scholar
Moodley, Y., Linz, B., Yamaoka, Y., Windsor, H.M., Breurec, S., Wu, J.-Y., Maady, A. et al. 2009. The peopling of the Pacific from a bacterial perspective. Science 323: 527–530.Google Scholar
Morelli, G., Didelot, X., Kusecek, B., Schwarz, S., Falush, D., Bahlawane, C., Suerbaum, S. et al. 2010a. Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genetics 6(7): e1001036.Google Scholar
Morelli, G., Song, Y., Mazzoni, C.J., Eppinger, M., Roumagnac, P., Wagner, D.M., Feldkamp, M. et al. 2010b. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nature Genetics 42: 1140–1143.Google Scholar
Muller, B., Borrell, S., Rose, G., and Gagneux, S. 2013. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis . Trends in Genetics 29(3): 160–169.Google Scholar
Mutreja, A., Kim, D.W., Thomson, N.R., Connor, T.R., Lee, J.H., Kariuki, S., Croucher, N.J. et al. 2011. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature (London) 477: 462–465.Google Scholar
Nasser, W., Beres, S.B., Olsen, R.J., Dean, M.A., Rice, K.A., Long, S.W., Kristinsson, K.G. et al. 2014. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proceedings of the National Academy of Sciences 111: E1768–E1776.Google Scholar
Nell, S., Eibach, D., Montano, V., Maady, A., Nkwescheu, A., Siri, J., Elamin, W.F. et al. 2013. Recent Acquisition of Helicobacter pylori by Baka Pygmies. PLoS Genetics 9(9): e1003775.Google Scholar
Nishiura, H. 2006. Epidemiology of a primary pneumonic plague in Kantoshu, Manchuria, from 1910 to 1911: statistical analysis of individual records collected by the Japanese Empire. International Journal of Epidemiology 35(4): 1059–1065.Google Scholar
Nuebel, U., Roumagnac, P., Feldkamp, M., Song, J.H., Ko, K.S., Huang, Y.C., Coombs, G. et al. 2008. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus . Proceedings of the National Academy of Sciencs USA 105: 14130–14135.Google Scholar
Ochman, H., Elwyn, S., and Moran, N.A. 1999. Calibrating bacterial evolution. Proceedings of the National Academy of Sciences 96(22): 12638–12643.Google Scholar
Ochman, H. and Wilson, A.C. 1987. Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. Journal of Molecular Evolution 26: 74–86.Google Scholar
Okoro, C.K., Kingsley, R.A., Connor, T.R., Harris, S.R., Parry, C.M., Al-Mashhadani, M.N., Kariuki, S. et al. 2012. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nature Genetics 44(11): 1215–1221.Google Scholar
Pollitzer, R. 1951. Plague studies. 1. A summary of the history and survey of the present distribution of the disease. Bulletin of the World Health Organization 4(4): 475–533.Google Scholar
Pugach, I., Delfin, F., Gunnarsdottir, E., Kayser, M., and Stoneking, M. 2013. Genome-wide data substantiate Holocene gene flow from India to Australia. Proceedings of the National Academy of Sciences 110: 1803–1808.Google Scholar
Quammen, D. 2012. Spillover: Animal Infections and the Next Human Pandemic. London: The Bodley Head.
Roumagnac, P., Weill, F.-X., Dolecek, C., Baker, S., Brisse, S., Chinh, N.T., Le, T.A. et al. 2006. Evolutionary history of Salmonella Typhi. Science 314: 1301–1304.Google Scholar
Scally, A. and Durbin, R. 2012. Revising the human mutation rate: implications for understanding human evolution. Nature Reviews Genetics 13(10): 745–753.Google Scholar
Schlebusch, C.M., Skoglund, P., Sjodin, P., Gattepaille, L.M., Hernandez, D., Jay, F., Li, S. et al. 2012. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 338: 374–379.Google Scholar
Schuenemann, V.J., Singh, P., Mendum, T.A., Krause-Kyora, B., Jager, G., Bos, K.I., Herbig, A. et al. 2013. Genome-wide comparison of medieval and modern Mycobacterium leprae . Science 341(6142): 179–183.Google Scholar
Sharp, P.M. and Simmonds, P. 2011. Evaluating the evidence for virus/host co-evolution. Current Opinion in Virology 1(5): 436–441.Google Scholar
Stenseth, N.C., Atshabar, B.B., Begon, M., Belmain, S.R., Bertherat, E., Carniel, E., Gage, K.L. et al. 2008. Plague: Past, present, and future. PLoS Medicine 5(1): e3.Google Scholar
Suerbaum, S. and Josenhans, C. 2007. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nature Reviews Microbiology 5(6): 441–452.Google Scholar
Sun, Y.C., Jarrett, C.O., Bosio, C.F., and Hinnebusch, B.J. 2014. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis . Cell Host and Microbe 15(5): 578–586.Google Scholar
Veeramah, K.R. and Hammer, M.F. 2014. The impact of whole-genome sequencing on the reconstruction of human population history. Nature Reviews Genetics 15(3): 149–162.Google Scholar
Wagner, D.M., Klunk, J., Harbeck, M., Devault, A., Waglechner, N., Sahl, J.W., Enk, J. et al. 2014. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. The Lancet Infectious Diseases 14(4): 319–326.Google Scholar
Walker, T.M., Ip, C.L., Harrell, R.H., Evans, J.T., Kapatai, G., Dedicoat, M.J., Eyre, D.W., Wilson, D.J., Hawkey, P.M., Crook, D.W., Parkhill, J., Harris, D., Walker, A.S., Bowden, R., Monk, P., Smith, E.G., and Peto, T.E. 2013. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infectious Diseases 13 (2):137–146.Google Scholar
Wirth, T., Morelli, G., Kusecek, B., Van Belkum, A., van der Schee, C., Meyer, A., and Achtman, M. 2007. The rise and spread of a new pathogen: seroresistant Moraxella catarrhalis . Genome Research 17: 1647–1656.Google Scholar
Wirth, T., Wang, X., Linz, B., Novick, R.P., Lum, J.K., Blaser, M., Morelli, G. et al. 2004. Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proceedings of the National Academy of Sciences 101(14): 4746–4751.Google Scholar
Zhou, Z., McCann, A., Litrup, E., Murphy, R., Cormican, M., Fanning, S., Brown, D. et al. 2013. Neutral genomic microevolution of a recently emerged pathogen, Salmonella enterica serovar Agona. PLoS Genetics 9: e1003471.Google Scholar
Zhou, Z., McCann, A., Weill, F.-X., Blin, C., Nair, S., Wain, J., Dougan, G. et al. 2014. Transient Darwinian selection in Salmonella enterica serovar Paratyphi A during 450 years of global spread of enteric fever. Proceedings of the National Academy of Sciences 111(33): 12199–12204.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×