Skip to main content Accessibility help
  • Print publication year: 2008
  • Online publication date: September 2009

5 - Genomic Islands in the Bacterial Chromosome – Paradigms of Evolution in Quantum Leaps

from PART II - Mobile Genetic Elements in Bacterial Evolution



The bacterial genome, that is, the entirety of all genes of a bacterium, was once viewed as a rather stable entity. However, the observation of spreading resistance to antibiotics led to the discovery of extra-chromosomal elements encoding this property. Obviously, plasmids are able to transfer genes from one bacterium to another not only among one species but also from one species to another. Such transfer of genes is not restricted to antibiotic resistance genes. Examples of further traits often encoded by plasmids include resistance to heavy metals and production of toxins.

Another example of mobile genetic elements is phages, the viruses of bacteria. Phages are not just able to infect and finally lyse the bacterial host cell. Certain phages infect and then integrate their whole genome into the bacterial chromosome and thereby become a prophage. This may add another important factor to the property of the infected bacteria. In the case of pathogenic bacteria the production of toxins is frequently encoded by a prophage. A few medically important examples are bacteriophage β of Corynebacterium diphtheriae encoding diphtheria toxin, phage C1 of Clostridium botulinum coding for the C1 neurotoxin, and phage H-19B of Escherichia coli, which harbors the gene for Shiga toxin Stx1 (for a recent review, see Brüssow et al., 2004).

Smaller but still important mobile genetic units are insertion sequence (IS) elements. IS elements mediate DNA rearrangements by transposition, resulting in off/on switching of gene expression by insertion into, and excision from, open reading frames (ORFs), respectively.

,Anonymous (2000). Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb Mortal Wkly Rep Recomm Rep, 49, 1–35.
Bach, S., Buchrieser, C., Prentice, M., et al. (1999). The high-pathogenicity island of Yersinia enterocolitica Ye8081 undergoes low-frequency deletion but not precise excision, suggesting recent stabilization in the genome. Infect Immun, 67, 5091–9.
Barocchi, M. A., Ries, J., Zogaj, X., et al. (2006). A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA, 103, 2857–62.
Bennett, P. M. (2004). Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol Biol, 266, 71–113.
Bensing, B. A., Lopez, J. A., and Sullam, P. M. (2004). The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibα. Infect Immun, 72, 6528–37.
Bessen, D. E., and Kalia, A. (2002). Genomic localization of a T serotype locus to a recombinatorial zone encoding extracellular matrix-binding proteins in Streptococcus pyogenes. Infect Immun, 70, 1159–67.
Brown, J. S., Gilliland, S. M., and Holden, D. W. (2001). A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol, 40, 572–85.
Brüssow, H., Canchaya, C., and Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev, 68, 560–602.
Brzuszkiewicz, E., Brüggemann, H., Liesegang, H., et al. (2006). How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA, 103, 12879–84.
Buchrieser, C., Brosch, R., Bach, S., Guiyoule, A., and Carniel, E. (1998). The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol Microbiol, 30, 965–78.
Cazalet, C., Rusniok, C., Brüggemann, H., et al. (2004). Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet, 36, 1165–73.
Censini, S., Lange, C., Xiang, Z., et al. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA, 93, 14648–53.
Collyn, F., Billault, A., Mullet, C., Simonet, M., and Marceau, M. (2004). YAPI, a new Yersinia pseudotuberculosis pathogenicity island. Infect Immun, 72, 4784–90.
Deng, W., Burland, V., Plunkett, G., et al. (2002). Genome sequence of Yersinia pestis KIM. J Bacteriol, 184, 4601–11.
Deng, W., Puente, J. L., Gruenheid, S., et al. (2004). Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci USA, 101, 3597–602.
Dobrindt, U. (2005). (Patho-)Genomics of Escherichia coli. Int J Med Microbiol, 295, 357–71.
Dobrindt, U., Hentschel, U., Kaper, J. B., and Hacker, J. (2002). Genome plasticity in pathogenic and nonpathogenic enterobacteria. Curr Top Microbiol Immunol, 264, 157–75.
Dobrindt, U., Hochhut, B., Hentschel, U., and Hacker, J. (2004). Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol, 2, 414–24.
Doran, K. S., and Nizet, V. (2004). Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Mol Microbiol, 54, 23–31.
Franco, A. A., Cheng, R. K., Chung, G. T., et al. (1999). Molecular evolution of the pathogenicity island of enterotoxigenic Bacteroides fragilis strains. J Bacteriol, 181, 6623–33.
Garmendia, J., Frankel, G., and Crepin, V. F. (2005). Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun, 73, 2573–85.
Germon, P., Roche, D., Melo, S., et al. (2007). tDNA locus polymorphism and ecto-chromosomal DNA insertion hot-spots are related to the phylogenetic group of Escherichia coli strains. Microbiology, 153, 826–37.
Gill, S. R., Fouts, D. E., Archer, G. L., et al. (2005). Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol, 187, 2426–38.
Groisman, E. A., and Ochman, H. (1996). Pathogenicity islands: bacterial evolution in quantum leaps. Cell, 87, 791–4.
Hacker, J., and Carniel, E. (2001). Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep, 2, 376–81.
Hacker, J., and Kaper, J. B. (1999). The concept of pathogenicity islands. In Hacker, J., and Kaper, J. B. (Eds.). Pathogenicity islands and other mobile virulence elements. Washington, DC: American Society for Microbiology.
Hacker, J., and Kaper, J. B. (2000). Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol, 54, 641–79.
Hacker, J., Bender, L., Ott, M., et al. (1990). Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog, 8, 213–25.
Hall, R. M., and Collis, C. M. (1995). Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol, 15, 593–600.
Hanssen, A. M., and Ericson Sollid, J. U. (2006). SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol, 46, 8–20.
Hare, J. M., and McDonough, K. A. (1999). High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J Bacteriol, 181, 4896–904.
Hava, D. L., and Camilli, A. (2002). Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol, 45, 1389–406.
Herbert, M. A., Beveridge, C. J., McCormick, D., et al. (2005). Genetic islands of Streptococcus agalactiae strains NEM316 and 2603VR and their presence in other Group B streptococcal strains. BMC Microbiol, 5, 31.
Hiramatsu, K., Cui, L., Kuroda, M., and Ito, T. (2001). The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol, 9, 486–93.
Hochhut, B., Dobrindt, U., and Hacker, J. (2006a). The contribution of pathogenicity islands to the evolution of bacterial pathogens. In Seifert, H. S., and Dirita, V. J. (Eds.). Evolution of microbial pathogens. Washington, DC: American Society for Microbiology.
Hochhut, B., Wilde, C., Balling, G., et al. (2006b). Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol Microbiol, 61, 584–95.
Ito, T., Katayama, Y., Asada, K., et al. (2001). Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 45, 1323–36.
Jakubovics, N. S., Stromberg, N., Dolleweerd, C. J., Kelly, C. G., and Jenkinson, H. F. (2005). Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol, 55, 1591–605.
Janda, J. M., and Abbott, S. L. (2006). The genus Hafnia: from soup to nuts. Clin Microbiol Rev, 19, 12–8.
Jores, J., Rumer, L., and Wieler, L. H. (2004). Impact of the locus of enterocyte effacement pathogenicity island on the evolution of pathogenic Escherichia coli. Int J Med Microbiol, 294, 103–13.
Kelly, M., Hart, E., Mundy, R., et al. (2006). Essential role of the type III secretion system effector NleB in colonization of mice by Citrobacter rodentium. Infect Immun, 74, 2328–37.
Lewis, D. A., Jones, A., Parkhill, J., et al. (2005). Identification of DNA markers for a transmissible Pseudomonas aeruginosa cystic fibrosis strain. Am J Respir Cell Mol Biol, 33, 56–64.
Liang, X., Pham, X. Q., Olson, M. V., and Lory, S. (2001). Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J Bacteriol, 183, 843–53.
Luong, T. T., Ouyang, S., Bush, K., and Lee, C. Y. (2002). Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J Bacteriol, 184, 3623–9.
Maurelli, A. T., Fernandez, R. E., Bloch, C. A., Rode, C. K., and Fasano, A. (1998). “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci USA, 95, 3943–8.
Mazel, D. (2006). Integrons: agents of bacterial evolution. Nat Rev Microbiol, 4, 608–20.
McDaniel, T. K., and Kaper, J. B. (1997). A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol, 23, 399–407.
Middendorf, B., Hochhut, B., Leipold, K., et al. (2004). Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol, 186, 3086–96.
Mirold, S., Rabsch, W., Rohde, M., et al. (1999). Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci USA, 96, 9845–50.
Mongkolrattanothai, K., Boyle, S., Murphy, T. V., and Daum, R. S. (2004). Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob Agents Chemother, 48, 1823–36.
Mora, M., Bensi, G., Capo, S., et al. (2005). Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci USA, 102, 15641–6.
Nandi, S., Maurer, J. J., Hofacre, C., and Summers, A. O. (2004). Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci USA, 101, 7118–22.
Navarre, W. W., Halsey, T. A., Walthers, D., et al. (2005). Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol, 56, 492–508.
Nougayrede, J. P., Homburg, S., Taieb, F., et al. (2006). Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science, 313, 848–51.
Obert, C., Sublett, J., Kaushal, D., et al. (2006). Identification of a candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect Immun, 74, 4766–77.
Oelschlaeger, T. A., Zhang, D., Schubert, S., et al. (2003). The high-pathogenicity island is absent in human pathogens of Salmonella enterica subspecies I but present in isolates of subspecies III and VI. J Bacteriol, 185, 1107–11.
Okinaka, R. T., Cloud, K., Hampton, O., et al. (1999). Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol, 181, 6509–15.
Parkhill, J., Dougan, G., James, K. D., et al. (2001). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848–52.
Parks, A. R., and Peters, J. E. (2007). Transposon Tn7 is widespread in diverse bacteria and forms genomic islands. J Bacteriol, 189, 2170–3.
Perna, N. T., Plunkett, G. 3rd, Burland, V., et al. (2001). Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 409, 529–33.
Ruzin, A., Lindsay, J., and Novick, R. P. (2001). Molecular genetics of SaPI1 – a mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol, 41, 365–77.
Schubert, S., Rakin, A., and Heesemann, J. (2004). The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol, 294, 83–94.
Shankar, N., Coburn, P., Pillar, C., Haas, W., and Gilmore, M. (2004). Enterococcal cytolysin: activities and association with other virulence traits in a pathogenicity island. Int J Med Microbiol, 293, 609–18.
Stabler, R. A., Gerding, D. N., Songer, J. G., et al. (2006). Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol, 188, 7297–305.
Tettelin, H., Masignani, V., Cieslewicz, M. J., et al. (2005). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.”Proc Natl Acad Sci USA, 102, 13950–5.
Thorne, C. (1993). Bacillus anthracis. In Soneshein, A. L. (Ed.). Bacillus subtilis and other gram-positive bacteria. Washington, DC: American Society for Microbiology.
Tong, H. H., James, M., Grants, I., et al. (2001). Comparison of structural changes of cell surface carbohydrates in the eustachian tube epithelium of chinchillas infected with a Streptococcus pneumoniae neuraminidase-deficient mutant or its isogenic parent strain. Microb Pathog, 31, 309–17.
Auwera, G. A., Andrup, L., and Mahillon, J. (2005). Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 6, 103–110.
Auwera, G.A., and Mahillon, J. (2005). TnXO1, a germination-associated class II transposon from Bacillus anthracis. Plasmid, 53, 251–7.
Waterhouse, J. C., Swan, D. C., and Russell, R. R. (2007). Comparative genome hybridization of Streptococcus mutans strains. Oral Microbiol Immunol, 22, 103–10.
Wolfgang, M. C., Kulasekara, B. R., Liang, X., et al. (2003). Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 100, 8484–9.
Zhang, S., Green, N. M., Sitkiewicz, I., Lefebvre, R. B., and Musser, J. M. (2006). Identification and characterization of an antigen I/II family protein produced by group A Streptococcus. Infect Immun, 74, 4200–13.