Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T16:43:19.281Z Has data issue: false hasContentIssue false

Section 2 - Clinical phenotypes

Published online by Cambridge University Press:  05 May 2016

Bradford C. Dickerson
Affiliation:
Department of Neurology, Massachusetts General Hospital
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Rosso, S, Donker Kaat, L, Baks, T, Joosse, M, de Koning, I, Pijnenburg, Y, de Jong, D, Dooijes, D, Kamphorst, W, Ravid, R et al. Frontotemporal dementia in the Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 2003;126(Pt 9):20162022.Google Scholar
Borroni, B, Alberici, A, Grassi, M, Turla, M, Zanetti, O, Bianchetti, A, Dalla Volta, G, Rozzini, R, Gilberti, N, Bellelli, G et al. Is frontotemporal lobar degeneration a rare disorder? Evidence from a preliminary study in Brescia county, Italy. J Alzheimers Dis 2010;19(1):111116. doi: 110.3233/JAD-2010–1208.Google Scholar
Bernardi, L, Frangipane, F, Smirne, N, Colao, R, Puccio, G, Curcio, SA, Mirabelli, M, Maletta, R, Anfossi, M, Gallo, M et al. Epidemiology and genetics of frontotemporal dementia: a door-to-door survey in southern Italy. Neurobiol Aging 2012;33(12):2948.e1–2948.e10.Google Scholar
Ikeda, M, Ishikawa, T, Tanabe, H. Epidemiology of frontotemporal lobar degeneration. Dement Geriatr Cogn Disord 2004;17(4):265268.Google Scholar
Ratnavalli, E, Brayne, C, Dawson, K, Hodges, JR. The prevalence of frontotemporal dementia. Neurology 2002;58(11):16151621.Google Scholar
Knopman, DS, Roberts, RO. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J Mol Neurosci 2011;45(3):330335.CrossRefGoogle ScholarPubMed
Onyike, CU, Diehl-Schmid, J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry 2013;25(2):130137.Google Scholar
Snowden, JS, Neary, D, Mann, DM. Autopsy proven sporadic frontotemporal dementia due to microvacuolar-type histology, with onset at 21 years of age. J Neurol Neurosurg Psychiatry 2004;75(9):13371339.Google Scholar
Baborie, A, Griffiths, TD, Jaros, E, McKeith, IG, Burn, DJ, Richardson, A, Ferrari, R, Moreno, J, Momeni, P, Duplessis, D et al. Pathological correlates of frontotemporal lobar degeneration in the elderly. Acta Neuropathol 2011;121(3):365371.Google Scholar
Kipps, CM, Hodges, JR. Theory of mind in frontotemporal dementia. Soc Neurosci 2006;1(3–4):235244.Google Scholar
Adenzato, M, Cavallo, M, Enrici, I. Theory of mind ability in the behavioural variant of frontotemporal dementia: an analysis of the neural, cognitive, and social levels. Neuropsychologia 2010;48(1):212.Google Scholar
Snowden, JS, Bathgate, D, Varma, A, Blackshaw, A, Gibbons, ZC, Neary, D. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J Neurol Neurosurg Psychiatry 2001;70(3):323332.CrossRefGoogle ScholarPubMed
Snowden, JS, Rollinson, S, Thompson, JC, Harris, JM, Stopford, CL, Richardson, AM, Jones, M, Gerhard, A, Davidson, YS, Robinson, A et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012;135(Pt 3):693708.Google Scholar
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, Kertesz, A, Mendez, M, Cappa, SF, Ogar, JM, Rohrer, JD, Black, S, Boeve, BF et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76(11):10061014.CrossRefGoogle ScholarPubMed
Snowden, JS, Thompson, JC, Neary, D. Knowledge of famous faces and names in semantic dementia. Brain 2004;127(Pt 4):860872.Google Scholar
Neary, D, Snowden, JS, Gustafson, L, Passant, U, Stuss, D, Black, S, Freedman, M, Kertesz, A, Robert, PH, Albert, M et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):15461554.Google Scholar
Josephs, KA, Duffy, JR, Strand, EA, Whitwell, JL, Layton, KF, Parisi, JE, Hauser, MF, Witte, RJ, Boeve, BF, Knopman, DS et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129(Pt 6):13851398.Google Scholar
Gorno-Tempini, ML, Brambati, SM, Ginex, V, Ogar, J, Dronkers, NF, Marcone, A, Perani, D, Garibotto, V, Cappa, SF, Miller, BL. The logopenic/phonological variant of primary progressive aphasia. Neurology 2008;71(16):12271234.CrossRefGoogle ScholarPubMed
Mercy, L, Hodges, JR, Dawson, K, Barker, RA, Brayne, C. Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology 2008;71(19):14961499.Google Scholar
Garre-Olmo, J, Genis Batlle, D, del Mar Fernandez, M, Marquez Daniel, F, de Eugenio Huelamo, R, Casadevall, T, Turbau Recio, J, Turon Estrada, A, Lopez-Pousa, S. Incidence and subtypes of early-onset dementia in a geographically defined general population. Neurology 2010;75(14):12491255.CrossRefGoogle Scholar
Alladi, S, Xuereb, J, Bak, T, Nestor, P, Knibb, J, Patterson, K, Hodges, JR. Focal cortical presentations of Alzheimer's disease. Brain 2007;130(10):26362645.Google Scholar
Stopford, CL, Snowden, JS, Thompson, JC, Neary, D. Variability in cognitive presentation of Alzheimer's disease. Cortex 2008;44(2):185195.Google Scholar
Harris, JM, Gall, C, Thompson, JC, Richardson, AM, Neary, D, du Plessis, D, Pal, P, Mann, DM, Snowden, JS, Jones, M. Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. Neurology 2013;80(20):18811887.Google Scholar
Mendez, MF, McMurtray, A. Frontotemporal dementia-like phenotypes associated with presenilin-1 mutations. Am J Alzheimers Dis Other Demen 2006;21(4):281286.Google Scholar
Graham, A, Davies, R, Xuereb, J, Halliday, G, Kril, J, Creasey, H, Graham, K, Hodges, J. Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain 2005;128(Pt 3):597605.Google Scholar
Knibb, J, Xuereb, J, Patterson, K, Hodges, J. Clinical and pathological characterization of progressive aphasia. Ann Neurol 2006;59(1):156165.Google Scholar
Harris, JM, Gall, C, Thompson, JC, Richardson, AM, Neary, D, du Plessis, D, Pal, P, Mann, DM, Snowden, JS, Jones, M. Classification and pathology of primary progressive aphasia. Neurology 2013;81(21):18321837.Google Scholar
Snowden, J, Thompson, J, Stopford, C, Richardson, A, Gerhard, A, Neary, D, Mann, D. The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain 2011;134(Pt 9):24782492.Google Scholar
Harris, J, Gall, C, Thompson, J, Richardson, A, Neary, D, du Plessis, D, Pal, P, Mann, D, Snowden, J, Jones, M. Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. Neurology 2013;80(20):18811887.Google Scholar
Claassen, DO, Parisi, JE, Giannini, C, Boeve, BF, Dickson, DW, Josephs, KA. Frontotemporal dementia mimicking dementia with Lewy bodies. Cogn Behav Neurol 2008;21(3):157163.Google Scholar
Snowden, JS, Rollinson, S, Lafon, C, Harris, J, Thompson, J, Richardson, AM, Jones, M, Gerhard, A, Neary, D, Mann, DM et al. Psychosis, C9ORF72 and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 2012;83(10):10311032.Google Scholar
Kobylecki, C, Thompson, JC, Jones, M, Mills, SJ, Shaunak, S, Ironside, JW, Snowden, JS, Richardson, AM. Sporadic Creutzfeldt-Jakob disease presenting as progressive nonfluent aphasia with speech apraxia. Alzheimer Dis Assoc Disord 2013;27(4):384386.Google Scholar
Roman, GC, Tatemichi, TK, Erkinjuntti, T, Cummings, JL, Masdeu, JC, Garcia, JH, Amaducci, L, Orgogozo, JM, Brun, A, Hofman, A et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993;43(2):250260.Google Scholar
Bathgate, D, Snowden, JS, Varma, A, Blackshaw, A, Neary, D. Behaviour in frontotemporal dementia, Alzheimer's disease and vascular dementia. Acta Neurol Scand 2001;103(6):367378.CrossRefGoogle ScholarPubMed
Cherrier, MM, Mendez, MF, Perryman, KM, Pachana, NA, Miller, BL, Cummings, JL. Frontotemporal dementia versus vascular dementia: differential features on mental status examination. J Am Geriatr Soc 1997;45(5):579583.Google Scholar
Woolley, JD, Khan, BK, Murthy, NK, Miller, BL, Rankin, KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011;72(2):126133.Google Scholar
Rankin, KP, Santos-Modesitt, W, Kramer, JH, Pavlic, D, Beckman, V, Miller, BL. Spontaneous social behaviors discriminate behavioral dementias from psychiatric disorders and other dementias. J Clin Psychiatry 2008;69(1):6073.Google Scholar
Hornberger, M, Shelley, BP, Kipps, CM, Piguet, O, Hodges, JR. Can progressive and non-progressive behavioural variant frontotemporal dementia be distinguished at presentation? J Neurol Neurosurg Psychiatry 2009;80(6):591593.Google Scholar
Kipps, CM, Davies, RR, Mitchell, J, Kril, JJ, Halliday, GM, Hodges, JR. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord 2007;23(5):334342.Google Scholar
Davies, RR, Kipps, CM, Mitchell, J, Kril, JJ, Halliday, GM, Hodges, JR. Progression in frontotemporal dementia: identifying a benign behavioral variant by magnetic resonance imaging. Arch Neurol 2006;63(11):16271631.Google Scholar
Brodtmann, A, Cowie, T, McLean, C, Darby, D. Phenocopy or variant: a longitudinal study of very slowly progressive frontotemporal dementia. BMJ Case Rep 2013;2013.Google Scholar
Khan, BK, Yokoyama, JS, Takada, LT, Sha, SJ, Rutherford, NJ, Fong, JC, Karydas, AM, Wu, T, Ketelle, RS, Baker, MC et al. Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion. J Neurol Neurosurg Psychiatry 2012;83(4):358364.Google Scholar
Kertesz, A, Ang, LC, Jesso, S, MacKinley, J, Baker, M, Brown, P, Shoesmith, C, Rademakers, R, Finger, EC. Psychosis and hallucinations in frontotemporal dementia with the C9ORF72 mutation: a detailed clinical cohort. Cogn Behav Neurol 2013;26(3):146154.Google Scholar
Dobson-Stone, C, Hallupp, M, Bartley, L, Shepherd, CE, Halliday, GM, Schofield, PR, Hodges, JR, Kwok, JB. C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts. Neurology 2012;79(10):9951001.Google Scholar
Pasquier, F, Richard, F, Lebert, F. Natural history of frontotemporal dementia: comparison with Alzheimer's disease. Dement Geriatr Cogn Disord 2004;17(4):253257.Google Scholar
Roberson, ED, Hesse, JH, Rose, KD, Slama, H, Johnson, JK, Yaffe, K, Forman, MS, Miller, CA, Trojanowski, JQ, Kramer, JH et al. Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology 2005;65(5):719725.Google Scholar
Hodges, JR, Davies, R, Xuereb, J, Kril, J, Halliday, G. Survival in frontotemporal dementia. Neurology 2003;61(3):349354.Google Scholar
Xie, SX, Forman, MS, Farmer, J, Moore, P, Wang, Y, Wang, X, Clark, CM, Coslett, HB, Chatterjee, A, Arnold, SE et al. Factors associated with survival probability in autopsy-proven frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 2008;79(2):126129.Google Scholar
Nunnemann, S, Last, D, Schuster, T, Forstl, H, Kurz, A, Diehl-Schmid, J. Survival in a German population with frontotemporal lobar degeneration. Neuroepidemiol-ogy 2011;37(3–4):160165.Google Scholar
Mioshi, E, Foxe, D, Leslie, F, Savage, S, Hsieh, S, Miller, L, Hodges, JR, Piguet, O. The impact of dementia severity on caregiver burden in frontotemporal dementia and Alzheimer disease. Alzheimer Dis Assoc Disord 2013;27(1):6873.Google Scholar
de Vugt, ME, Riedijk, SR, Aalten, P, Tibben, A, van Swieten, JC, Verhey, FR. Impact of behavioural problems on spousal caregivers: a comparison between Alzheimer's disease and frontotemporal dementia. Dement Geriatr Cogn Disord 2006;22(1):3541.Google Scholar
Mioshi, E, Bristow, M, Cook, R, Hodges, JR. Factors underlying caregiver stress in frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord 2009;27(1):7681.CrossRefGoogle ScholarPubMed
Diehl-Schmid, J, Schmidt, EM, Nunnemann, S, Riedl, L, Kurz, A, Forstl, H, Wagenpfeil, S, Cramer, B. Caregiver burden and needs in frontotemporal dementia. J Geriatr Psychiatry Neurol 2013;26(4):221229.Google Scholar
Wong, CC, Wallhagen, MI. Frontotemporal dementia: the impact of patient behavioral symptoms on the physical and mental health of family caregivers. Dement Geriatr Cogn Dis Extra 2012;2(1):516528.Google Scholar
Bei, H, Ross, L, Neuhaus, J, Knopman, D, Kramer, J, Boeve, B, Caselli, RJ, Graff-Radford, N, Mendez, MF, Miller, BL et al. Off-label medication use in frontotemporal dementia. Am J Alzheimers Dis Other Demen 2010;25(2):128133.Google Scholar
Huey, ED, Putnam, KT, Grafman, J. A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology 2006;66(1):1722.Google Scholar
Deakin, JB, Rahman, S, Nestor, PJ, Hodges, JR, Sahakian, BJ. Paroxetine does not improve symptoms and impairs cognition in frontotemporal dementia: a double-blind randomized controlled trial. Psychopharmacology (Berl) 2004;172(4):400408.Google Scholar
Bowen, DM, Procter, AW, Mann, DM, Snowden, JS, Esiri, MM, Neary, D, Francis, PT. Imbalance of a serotonergic system in frontotemporal dementia: implication for pharmacotherapy. Psychopharmacology (Berl) 2008;196(4):603610.CrossRefGoogle ScholarPubMed
Lebert, F, Stekke, W, Hasenbroekx, C, Pasquier, F. Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement Geriatr Cogn Disord 2004;17(4):355359.Google Scholar
Kertesz, A, Morlog, D, Light, M, Blair, M, Davidson, W, Jesso, S, Brashear, R. Galantamine in frontotemporal dementia and primary progressive aphasia. Dement Geriatr Cogn Disord 2008;25(2):178185.Google Scholar
Rinne, JO, Laine, M, Kaasinen, V, Norvasuo-Heila, MK, Nagren, K, Helenius, H. Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology 2002;58(10):14891493.Google Scholar
Pijnenburg, YA, Sampson, EL, Harvey, RJ, Fox, NC, Rossor, MN. Vulnerability to neuroleptic side effects in frontotemporal lobar degeneration. Int J Geriatr Psychiatry 2003;18(1):6772.Google Scholar
Boxer, AL, Lipton, AM, Womack, K, Merrilees, J, Neuhaus, J, Pavlic, D, Gandhi, A, Red, D, Martin-Cook, K, Svetlik, D et al. An open-label study of memantine treatment in 3 subtypes of frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord 2009;23(3):211217.Google Scholar
Diehl-Schmid, J, Forstl, H, Perneczky, R, Pohl, C, Kurz, A. A 6-month, open-label study of memantine in patients with frontotemporal dementia. Int J Geriatr Psychiatry 2008;23(7):754759.Google Scholar
Boxer, AL, Knopman, DS, Kaufer, DI, Grossman, M, Onyike, C, Graf-Radford, N, Mendez, M, Kerwin, D, Lerner, A, Wu, CK et al. Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2013;12(2):149156.CrossRefGoogle ScholarPubMed
Finger, EC. New potential therapeutic approaches in frontotemporal dementia: oxytocin, vasopressin, and social cognition. J Mol Neurosci 2011;45(3):696701.Google Scholar
Jesso, S, Morlog, D, Ross, S, Pell, MD, Pasternak, SH, Mitchell, DG, Kertesz, A, Finger, EC. The effects of oxytocin on social cognition and behaviour in frontotemporal dementia. Brain 2011;134(Pt 9):24932501.Google Scholar
Kortte, KB, Rogalski, EJ. Behavioural interventions for enhancing life participation in behavioural variant frontotemporal dementia and primary progressive aphasia. Int Rev Psychiatry 2013;25(2):237245.Google Scholar

References

Johnson, JK, Diehl, J, Mendez, MF, Neuhaus, J, Shapira, JS, Forman, M, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol 2005;62: 925–30.Google Scholar
Rascovsky, K, Hodges, JR, Knopman, D, Mendez, MF, Kramer, JH, Neuhaus, J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456–77.Google Scholar
Garcin, B, Lillo, P, Hornberger, M, Piguet, O, Dawson, K, Nestor, PJ, et al. Determinants of survival in behavioral variant frontotemporal dementia. Neurology 2009;73:1656–61.Google Scholar
Rascovsky, K, Grossman, M. Clinical diagnostic criteria and classification controversies in frontotemporal lobar degeneration. Int Rev Psychiatry 2013;25:145–58.Google Scholar
Seeley, WW, Crawford, R, Rascovsky, K, Kramer, JH, Weiner, M, Miller, BL, et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol 2008;65:249–55.Google Scholar
Woolley, JD, Khan, BK, Murthy, NK, Miller, BL, Rankin, KP. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 2011;72:126–33.Google Scholar
Brun, A, Englund, B, Gustafson, L, Passant, U, Mann, DMA, Neary, D, et al. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 1994;57:416–18.Google Scholar
Neary, D, Snowden, JS, Gustafson, L, Passant, U, Stuss, D, Black, S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546–54.Google Scholar
McKhann, GM, Albert, MS, Grossman, M, Miller, B, Dickson, D, Trojanowski, JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001;58:1803–9.CrossRefGoogle Scholar
Lamarre, AK, Rascovsky, K, Bostrom, A, Toofanian, P, Wilkins, S, Sha, SJ, et al. Interrater reliability of the new criteria for behavioral variant frontotemporal dementia. Neurology 2013;80:1973–7.Google Scholar
Harris, JM, Gall, C, Thompson, JC, Richardson, AMT, Neary, D, du Plessis, D, et al. Sensitivity and specificity of FTDC criteria for behavioral variant frontotemporal dementia. Neurology 2013;80:1881–7.Google Scholar
Mendez, MF, Chen, AK, Shapira, JS, Miller, BL. Acquired sociopathy and frontotemporal dementia. Dement Geriatr Cogn Disord 2005;20:99104.CrossRefGoogle ScholarPubMed
Diehl-Schmid, J, Perneczky, R, Koch, J, Nedopil, N, Kurz, A. Guilty by suspicion? Criminal behavior in frontotemporal lobar degeneration. Cogn Behav Neurol 2013;26:73–7.Google Scholar
Bathgate, D, Snowden, JS, Varma, A, Blackshaw, A, Neary, D. Behaviour in frontotemporal dementia, Alzheimer's disease and vascular dementia. Acta Neurol Scand 2001;103:367–78.Google Scholar
Bozeat, S, Gregory, CA, Ralph, MA, Hodges, JR. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? J Neurol Neurosurg Psychiatry 2000;69:178–86.Google Scholar
de Vugt, ME, Riedijk, SR, Aalten, P, Tibben, A, van Swieten, JC, Verhey, FRJ. Impact of behavioural problems on spousal caregivers: a comparison between Alzheimer's disease and frontotemporal dementia. Dement Geriatr Cogn Disord 2006;22:3541.Google Scholar
Kertesz, A, Nadkarni, N, Davidson, W, Thomas, AW. The Frontal Behavioral Inventory in the differential diagnosis of frontotemporal dementia. J Int Neuropsychol Soc 2000;6:460–8.Google Scholar
Rankin, KP, Santos-Modesitt, W, Kramer, JH, Pavlic, D, Beckman, V, Miller, BL. Spontaneous social behaviors discriminate behavioral dementias from psychiatric disorders and other dementias. J Clin Psychiatry 2008;69:6073.Google Scholar
Rosen, HJ, Hartikainen, KM, Jagust, W, Kramer, JH, Reed, BR, Cummings, JL, et al. Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology 2002;58:1608–15.Google Scholar
Barber, R, Snowden, JS, Craufurd, D. Frontotemporal dementia and Alzheimer's disease: retrospective differentiation using information from informants. J Neurol Neurosurg Psychiatry 1995;59:6170.Google Scholar
Mendez, MF, Lauterbach, EC, Sampson, SM. An evidence-based review of the psychopathology of frontotemporal dementia: a report of the ANPA Committee on Research. J Neuropsychiatry Clin Neurosci 2008;20:130–49.Google Scholar
Massimo, L, Powers, C, Moore, P, Vesely, L, Avants, B, Gee, J, et al. Neuroanatomy of apathy and disinhibition in frontotemporal lobar degeneration. Dement Geriatr Cogn Disord 2009;27:96104.Google Scholar
Hornberger, M, Geng, J, Hodges, JR. Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain 2011;134:2502–12.Google Scholar
Zamboni, G, Huey, ED, Krueger, F, Nichelli, PF, Grafman, J. Apathy and disinhibition in frontotemporal dementia: insights into their neural correlates. Neurology 2008;71:736–42.Google Scholar
Le Ber, I, Guedj, E, Gabelle, A, Verpillat, P, Volteau, M, Thomas-Anterion, C, et al. Demographic, neurological and behavioural characteristics and brain perfusion SPECT in frontal variant of frontotemporal dementia. Brain 2006;129:3051–65.Google Scholar
McMurtray, AM, Chen, AK, Shapira, JS, Chow, TW, Mishkin, F, Miller, BL, et al. Variations in regional SPECT hypoperfusion and clinical features in frontotemporal dementia. Neurology 2006;66:517–22.Google Scholar
Chow, TW, Binns, MA, Cummings, JL, Lam, I, Black, SE, Miller, BL, et al. Apathy symptom profile and behavioral associations in frontotemporal dementia vs dementia of Alzheimer type. Arch Neurol 2009;66:888–93.Google Scholar
Merrilees, J, Dowling, GA, Hubbard, E, Mastick, J, Ketelle, R, Miller, BL. Characterization of apathy in persons with frontotemporal dementia and the impact on family caregivers. Alzheimer Dis Assoc Disord 2013;27:62–7.Google Scholar
Rankin, KP, Gorno-Tempini, ML, Allison, SC, Stanley, CM, Glenn, S, Weiner, MW, et al. Structural anatomy of empathy in neurodegenerative disease. Brain 2006;129:2945–56.CrossRefGoogle ScholarPubMed
Eslinger, PJ, Moore, P, Anderson, C, Grossman, M. Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia. J Neuropsychiatry Clin Neurosci 2011;23:7482.Google Scholar
Mendez, MF, Shapira, JS, Miller, BL. Stereotypical movements and frontotemporal dementia. Mov Disord 2005;20:742–5.Google Scholar
Nyatsanza, S, Shetty, T, Gregory, C, Lough, S, Dawson, K, Hodges, JR. A study of stereotypic behaviours in Alzheimer's disease and frontal and temporal variant frontotemporal dementia. J Neurol Neurosurg Psychiatry 2003;74:1398–402.Google Scholar
Rosso, SM, Roks, G, Stevens, M, de Koning, I, Tanghe, HL, Kamphorst, W, et al. Complex compulsive behaviour in the temporal variant of frontotemporal dementia. J Neurol 2001;248:965–70.Google Scholar
Woolley, JD, Gorno-Tempini, ML, Seeley, WW, Rankin, K, Lee, SS, Matthews, BR, et al. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology 2007;69:1424–33.Google Scholar
Whitwell, JL, Sampson, EL, Loy, CT, Warren, JE, Rossor, MN, Fox, NC, et al. VBM signatures of abnormal eating behaviours in frontotemporal lobar degeneration. Neuroimage 2007;35:207–13.CrossRefGoogle ScholarPubMed
Piguet, O, Petersen, A, Yin Ka, Lam B, Gabery, S, Murphy, K, Hodges, JR, et al. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol 2011;69:312–19.Google Scholar
Ibanez, A, Manes, F. Contextual social cognition and the behavioral variant of frontotemporal dementia. Neurology 2012;78:1354–62.Google Scholar
Cummings, JL, Mega, M, Gray, K, Rosenberg-Thompson, S, Carusi, DA, Gornbein, J. The Neuropsychiatric Inventory comprehensive assessment of psychopathology in dementia. Neurology 1994;44:2308–8.Google Scholar
Wedderburn, C, Wear, H, Brown, J, Mason, SJ, Barker, RA, Hodges, J, et al. The utility of the Cambridge Behavioural Inventory in neurodegenerative disease. J Neurol Neurosurg Psychiatry 2008;79:500–3.Google Scholar
Mioshi, E, Bristow, M, Cook, R, Hodges, JR. Factors underlying caregiver stress in frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord 2009;27:7681.Google Scholar
Massimo, L, Morgan, B, Chandrasekaran, K, Boller, A, Camp, E, Rascovsky, K, et al. Initiation difficulty and apathy in behavioral variant frontotemporal degeneration. Neurology 2012;78:PD7001.Google Scholar
Ghosh, A, Dutt, A, Bhargava, P, Snowden, J. Environmental dependency behaviours in frontotemporal dementia: have we been underrating them? J Neurol 2012;260:861–8.Google Scholar
Bickart, KC, Brickhouse, M, Negreira, A, Sapolsky, D, Barrett, LF, Dickerson, BC. Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale. J Neurol Neurosurg Psychiatry 2014;85:438–48. doi:10.1136/jnnp-2012– 304656.Google Scholar
Wittenberg, D, Possin, KL, Rascovsky, K, Rankin, KP, Miller, BL, Kramer, JH. The early neuropsychological and behavioral characteristics of frontotemporal dementia. Neuropsychol Rev 2008;18:91102.Google Scholar
Rascovsky, K, Salmon, DP, Hansen, LA, Thal, LJ, Galasko, D. Disparate letter and semantic category fluency deficits in autopsy-confirmed frontotemporal dementia and Alzheimer's disease. Neuropsychology 2007;21:2030.Google Scholar
Libon, DJ, McMillan, C, Gunawardena, D, Powers, C, Massimo, L, Khan, A, et al. Neurocognitive contributions to verbal fluency deficits in frontotemporal lobar degeneration. Neurology 2009;73:535–42.Google Scholar
Rascovsky, K, Salmon, DP, Ho, GJ, Galasko, D, Peavy, GM, Hansen, LA, et al. Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology 2002;58:1801–8.Google Scholar
Rascovsky, K, Salmon, DP, Hansen, LA, Galasko, D. Distinct cognitive profiles and rates of decline on the Mattis Dementia Rating Scale in autopsy-confirmed frontotemporal dementia and Alzheimer's disease. J Int Neuropsychol Soc 2008;14:373–83.Google Scholar
Hutchinson, AD, Mathias, JL. Neuropsychological deficits in frontotemporal dementia and Alzheimer's disease: a meta-analytic review. J Neurol Neurosurg Psychiatry 2007;78:917–28.Google Scholar
Torralva, T, Roca, M, Gleichgerrcht, E, Lopez, P, Manes, F. INECO Frontal Screening (IFS): a brief, sensitive, and specific tool to assess executive functions in dementia. J Int Neuropsychol Soc 2009;15:777–86.Google Scholar
Hornberger, M, Savage, S, Hsieh, S, Mioshi, E, Piguet, O, Hodges, JR. Orbitofrontal dysfunction discriminates behavioral variant frontotemporal dementia from Alzheimer's disease. Dement Geriatr Cogn Disord 2010;30:547–52.Google Scholar
Kramer, JH, Jurik, J, Sha, SJ, Rankin, KP, Rosen, HJ, Johnson, JK, et al. Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cogn Behav Neurol 2003;16:211–18.Google Scholar
Thompson, JC, Stopford, CL, Snowden, JS, Neary, D. Qualitative neuropsychological performance characteristics in frontotemporal dementia and Alzheimer's disease. J Neurol Neurosurg Psychiatry 2005;76:920–7.Google Scholar
Torralva, T, Roca, M, Gleichgerrcht, E, Bekinschtein, T, Manes, F. A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain 2009;132:1299–309.Google Scholar
Mendez, MF, McMurtray, AM, Licht, EA, Saul, RE. Frontal-executive versus posterior-perceptual mental status deficits in early-onset dementias. Am J Alzheimers Dis Other Demen 2009;24:220–7.Google Scholar
Xie, SX, Libon, DJ, Wang, X, Massimo, L, Moore, P, Vesely, L, et al. Longitudinal patterns of semantic and episodic memory in frontotemporal lobar degenera-tion and Alzheimer's disease. J Int Neuropsychol Soc 2010;16:278–86.Google Scholar
Avants, BB, Libon, DJ, Rascovsky, K, Boller, A, McMillan, CT, Massimo, L, et al. Sparse canonical correlation analysis relates network-level atrophy to multivariate cognitive measures in a neurodegenerative population. Neuroimage 2014;84:698711.Google Scholar
Hornberger, M, Piguet, O, Graham, AJ, Nestor, PJ, Hodges, JR. How preserved is episodic memory in behavioral variant frontotemporal dementia? Neurology 2010;74:472–9.CrossRefGoogle ScholarPubMed
Graham, A, Davies, R, Xuereb, J, Halliday, G, Kril, J, Creasey, H, et al. Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain 2005;128:597605.Google Scholar
Baborie, A, Griffiths, TD, Jaros, E, McKeith, IG, Burn, DJ, Richardson, A, et al. Pathological correlates of frontotemporal lobar degeneration in the elderly. Acta Neuropathol 2010;121:365–71.Google Scholar
Ascher, EA, Sturm, VE, Seider, BH, Holley, SR, Miller, BL, Levenson, RW. Relationship satisfaction and emotional language in frontotemporal dementia and Alzheimer disease patients and spousal caregivers. Alzheimer Dis Assoc Disord 2010;24:4955.Google Scholar
Kipps, CM, Nestor, PJ, Acosta-Cabronero, J, Arnold, R, Hodges, JR. Understanding social dysfunction in the behavioural variant of frontotemporal dementia: the role of emotion and sarcasm processing. Brain 2009;132:592603.Google Scholar
Werner, KH, Roberts, NA, Rosen, HJ, Dean, DL, Kramer, JH, Weiner, MW, et al. Emotional reactivity and emotion recognition in frontotemporal lobar degeneration. Neurology 2007;69:148–55.Google Scholar
Sturm, VE, Ascher, EA, Miller, BL, Levenson, RW. Diminished self-conscious emotional responding in frontotemporal lobar degeneration patients. Emotion 2008;8:861–9.Google Scholar
Adenzato, M, Cavallo, M, Enrici, I. Theory of mind ability in the behavioural variant of frontotemporal dementia: an analysis of the neural, cognitive, and social levels. Neuropsychologia 2010;48:212.Google Scholar
Freedman, M, Binns, MA, Black, SE, Murphy, C, Stuss, DT. Theory of mind and recognition of facial emotion in dementia: challenge to current concepts. Alzheimer Dis Assoc Disord 2013;27: 5661.Google Scholar
Mendez, MF, Anderson, E, Shapira, JS. An investigation of moral judgement in frontotemporal dementia. Cogn Behav Neurol 2005;18:193–7.Google Scholar
Mendez, MF, Shapira, JS. Altered emotional morality in frontotemporal dementia. Cogn Neuropsychiatry 2009;14:165–79.Google Scholar
Gleichgerrcht, E, Torralva, T, Roca, M, Pose, M, Manes, F. The role of social cognition in moral judgment in frontotemporal dementia. Soc Neurosci 2011;6:113–22.Google Scholar
Gleichgerrcht, E, Ibanez, A, Roca, M, Torralva, T, Manes, F. Decision-making cognition in neurodegenerative diseases. Nat Rev Neurol 2010;6:611–23.Google Scholar
Fellows, LK, Farah, MJ. Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex 2005;15: 5863.Google Scholar
Grossman, M, Eslinger, PJ, Troiani, V, Anderson, C, Avants, B, Gee, JC, et al. The role of ventral medial prefrontal cortex in social decisions: converging evidence from fMRI and frontotemporal lobar degeneration. Neuropsychologia 2010;48:3505–12.Google Scholar
Goodkind, MS, Sollberger, M, Gyurak, A, Rosen, HJ, Rankin, KP, Miller, B, et al. Tracking emotional valence: the role of the orbitofrontal cortex. Hum Brain Mapp 2011;33:753–62.Google Scholar
Sarazin, M, Dubois, B, de Souza, LC, Bertoux, M. Should the Social Cognition and Emotional Assessment replace standard neuropsychological tests for frontotemporal dementia? Expert Rev Neurother 2012;12:633–5.Google Scholar

References

Rogalski, E, Johnson, N, Weintraub, S, Mesulam, M. Increased frequency of learning disability in patients with primary progressive aphasia and their first-degree relatives. Arch Neurol 2008;65(2):244–8.Google Scholar
Miller, ZA, Mandelli, ML, Rankin, KP, Henry, ML, Babiak, MC, Frazier, DT, et al. Handedness and language learning disability differentially distribute in progressive aphasia variants. Brain 2013;136(Pt 11):3461–73.Google Scholar
Luzzatti, C, Poeck, K. An early description of slowly progressive aphasia. Arch Neurol 1991;48(2):228–9.Google Scholar
Mesulam, MM. Slowly progressive aphasia without generalized dementia. Ann Neurol 1982;11:592–8.Google Scholar
Mesulam, MM. Primary progressive aphasia and the language network: the 2013 H. Houston Merritt Lecture. Neurology 2013;81(5):456–62.Google Scholar
Mesulam, MM. Primary progressive aphasia. Ann Neurol 2001;49(4):425–32.Google Scholar
Mesulam, MM, Wieneke, C, Thompson, C, Rogalski, E, Weintraub, S. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain 2012;135(Pt 5):1537–53.Google Scholar
Rabinovici, GD, Miller, BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 2010;24(5):375–98.Google Scholar
Harris, JM, Gall, C, Thompson, JC, Richardson, AM, Neary, D, du Plessis, D, et al. Classification and pathology of primary progressive aphasia. Neurology 2013;81(21):1832–9.Google Scholar
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, Kertesz, A, Mendez, M, Cappa, SF, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76(11):1006–14.Google Scholar
Gorno-Tempini, ML, Dronkers, NF, Rankin, KP, Ogar, JM, Phengrasamy, L, Rosen, HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55:335–46.Google Scholar
Cappa, SF, Gorno-Tempini, ML. Clinical phenotypes of progressive aphasia. Fut Neurol 2009;4:153–60.Google Scholar
Kertesz, A. Western Aphasia Battery New York: Grune and Stratton; 1982.Google Scholar
Wilson, SM, Henry, ML, Besbris, M, Ogar, JM, Dronkers, NF, Jarrold, W, et al. Connected speech production in three variants of primary progressive aphasia. Brain 2010;133(Pt 7):2069–88.Google Scholar
Weintraub, S, Mesulam, MM, Wieneke, C, Rademaker, A, Rogalski, EJ, Thompson, CK. The northwestern anagram test: measuring sentence production in primary progressive aphasia. Am J Alzheimers Dis Other Demen 2009;24(5):408–16.Google Scholar
Hodges, JR, Graham, N, Patterson, K. Charting the progression in semantic dementia: implications for the organisation of semantic memory. Memory 1995;3(3–4):463–95.Google Scholar
Catricala, E, Della Rosa, PA, Ginex, V, Mussetti, Z, Plebani, V, Cappa, SF. An Italian battery for the assessment of semantic memory disorders. Neurol Sci 2013;34(6):985–93.Google Scholar
Wilson, SM, Galantucci, S, Tartaglia, MC, Gorno-Tempini, ML. The neural basis of syntactic deficits in primary progressive aphasia. Brain Lang 2012;122(3):190–8.Google Scholar
Wilson, SM, Brambati, SM, Henry, RG, Handwerker, DA, Agosta, F, Miller, BL, et al. The neural basis of surface dyslexia in semantic dementia. Brain 2009;132(Pt 1):7186.Google Scholar
Rozzini, L, Bianchetti, A, Lussignoli, G, Cappa, SF, Trabucchi, M. Surface dyslexia in an Italian patient with semantic dementia. Neurocase 1997;3:307–12.Google Scholar
Sapolsky, D, Bakkour, A, Negreira, A, Nalipinski, P, Weintraub, S, Mesulam, MM, et al. Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology 2010;75(4):358–66.Google Scholar
Goodglass, H, Kaplan, E. Assessment of Aphasia and Related Disorders Philadelphia: Lea & Febiger; 1983.Google Scholar
Hodges, JR, Patterson, K. Nonfluent progressive aphasia and semantic dementia: a comparative neuropsychological study. J Int Neuropsychol Soc 1996;2(6):511–24.Google Scholar
Ogar, J, Slama, H, Dronkers, N, Amici, S, Gorno-Tempini, ML. Apraxia of speech: an overview. Neurocase 2005;11(6):427–32.Google Scholar
Rohrer, JD, Rossor, MN, Warren, JD. Apraxia in progressive nonfluent aphasia. J Neurol 2010;257(4):569–74.Google Scholar
Josephs, KA, Duffy, JR, Strand, EA, Machulda, MM, Senjem, ML, Lowe, VJ, et al. Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA. Neurology 2013;81(4):337–45.Google Scholar
Hillis, AE, Oh, S, Ken, L. Deterioration of naming nouns versus verbs in primary progressive aphasia. Ann Neurol 2004;55(2):268–75.Google Scholar
Cotelli, M, Borroni, B, Manenti, R, Alberici, A, Calabria, M, Agosti, C, et al. Action and object naming in frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration. Neuropsychology 2006;20(5):558–65.Google Scholar
Ash, S, Moore, P, Antani, S, McCawley, G, Work, M, Grossman, M. Trying to tell a tale: discourse impairments in progressive aphasia and frontotem-poral dementia. Neurology 2006;66(9):1405–13.Google Scholar
Ash, S, Evans, E, O'Shea, J, Powers, J, Boller, A, Weinberg, D, et al. Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology 2013;81(4):329–36.Google Scholar
Grossman, M, Mickanin, J, Onishi, K, Hughes, E, D'Esposito, M, Ding, XS, et al. Progressive nonfluent aphasia: language, cognitive, and PET measures contrasted with probable Alzheimer's disease. J Cogn Neurosci 1996;8(2):135–54.Google Scholar
Charles, D, Olm, C, Powers, J, Ash, S, Irwin, DJ, McMillan, CT, et al. Grammatical comprehension deficits in non-fluent/agrammatic primary progressive aphasia. J Neurol Neurosurg Psychiatry 2014;85(3):249–56.Google Scholar
Josephs, KA, Duffy, JR, Strand, EA, Machulda, MM, Senjem, ML, Master, AV, et al. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain 2012;135(Pt 5):1522–36.Google Scholar
Josephs, KA, Duffy, JR, Strand, EA, Whitwell, JL, Layton, KF, Parisi, JE, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129(Pt 6):1385–98.Google Scholar
Josephs, KA, Duffy, JR. Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Curr Opin Neurol 2008;21(6):688–92.Google Scholar
Gorno-Tempini, ML, Murray, RC, Rankin, KP, Weiner, MW, Miller, BL. Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase 2004;10(6):426–36.Google Scholar
Kertesz, A, Martinez-Lage, P, Davidson, W, Munoz, DG. The corticobasal degeneration syndrome overlaps progressive aphasia and frontotemporal dementia. Neurology 2000;55(9):1368–75.Google Scholar
Rogalski, E, Cobia, D, Harrison, TM, Wieneke, C, Weintraub, S, Mesulam, MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology 2011;76(21):1804–10.Google Scholar
Nestor, PJ, Graham, NL, Fryer, TD, Williams, GB, Patterson, K, Hodges, JR. Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain 2003;126(Pt 11):2406–18.Google Scholar
Rohrer, JD, Warren, JD, Modat, M, Ridgway, GR, Douiri, A, Rossor, MN, et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 2009;72(18):1562–9.Google Scholar
Galantucci, S, Tartaglia, MC, Wilson, SM, Henry, ML, Filippi, M, Agosta, F, et al. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain 2011;134(Pt 10):3011–29.Google Scholar
Whitwell, JL, Avula, R, Senjem, ML, Kantarci, K, Weigand, SD, Samikoglu, A, et al. Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology 2010;74(16):1279–87.Google Scholar
Wilson, SM, Galantucci, S, Tartaglia, MC, Rising, K, Patterson, DK, Henry, ML, et al. Syntactic processing depends on dorsal language tracts. Neuron 2011;72(2):397403.Google Scholar
Cappa, SF, Perani, D, Messa, C, Miozzo, A, Fazio, F. Varieties of progressive non-fluent aphasia. Ann N Y Acad Sci 1996;777:243–8.Google Scholar
Grossman, M. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol 2012;11(6):545–55.Google Scholar
Mackenzie, IR, Neumann, M, Baborie, A, Sampathu, DM, Du Plessis, D, Jaros, E, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 2011;122(1):111–13.Google Scholar
Mesulam, MM, Wieneke, C, Hurley, R, Rademaker, A, Thompson, CK, Weintraub, S, et al. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain 2013;139(Pt 2):601–18.Google Scholar
Meteyard, L, Patterson, K. The relation between content and structure in language production: an analysis of speech errors in semantic dementia. Brain Lang 2009;110(3):121–34.Google Scholar
Gainotti, G. Why are the right and left hemisphere conceptual representations different? Behav Neurol 2014;2014:603134.Google Scholar
Agosta, F, Henry, RG, Migliaccio, R, Neuhaus, J, Miller, BL, Dronkers, NF, et al. Language networks in semantic dementia. Brain 2010;133(Pt 1):286–99.Google Scholar
Mummery, CJ, Patterson, K, Price, CJ, Ashburner, J, Frackowiak, RSJ, Hodges, JR. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic dementia. Ann Neurol 2000;47:3645.Google Scholar
Galton, CJ, Patterson, K, Graham, K, Lambon-Ralph, MA, Williams, G, Antoun, N, et al. Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology 2001;57(2):216–25.Google Scholar
Chan, D, Fox, NC, Scahill, RI, Crum, WR, Whitwell, JL, Leschziner, G, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 2001;49(4):433–42.Google Scholar
Rosen, HJ, Allison, SC, Ogar, JM, Amici, S, Rose, K, Dronkers, N, et al. Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology 2006;67(10):1752–6.Google Scholar
Diehl, J, Grimmer, T, Drzezga, A, Riemenschneider, M, Forstl, H, Kurz, A. Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 2004;25(8):1051–6.Google Scholar
Rosen, HJ, Gorno-Tempini, ML, Goldman, WP, Perry, RJ, Schuff, N, Weiner, M, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 2002;58(2):198208.Google Scholar
Josephs, KA, Whitwell, JL, Knopman, DS, Boeve, BF, Vemuri, P, Senjem, ML, et al. Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology 2009;73(18):1443–50.Google Scholar
Hodges, JR, Mitchell, J, Dawson, K, Spillantini, MG, Xuereb, JH, McMonagle, P, et al. Semantic dementia: demography, familial factors and survival in a consecutive series of 100 cases. Brain 2010;133(Pt 1):300–6.Google Scholar
Gorno-Tempini, ML, Brambati, SM, Ginex, V, Ogar, J, Dronkers, NF, Marcone, A, et al. The logopenic/phonological variant of primary progressive aphasia. Neurology 2008;71(16):1227–34.Google Scholar
Kohn, SE. Conduction Aphasia Hillsdale: Lawrance Erlbaum Associates; 1992.Google Scholar
Josephs, KA, Duffy, JR, Fossett, TR, Strand, EA, Claassen, DO, Whitwell, JL, et al. Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants. Arch Neurol 2010;67(5):596605.Google Scholar
Rabinovici, GD, Jagust, WJ, Furst, AJ, Ogar, JM, Racine, CA, Mormino, EC, et al. Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 2008;64(4):388401.Google Scholar
Mesulam, M, Wicklund, A, Johnson, N, Rogalski, E, Léger, GC, Rademaker, A, et al. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol 2008;63(6):709–19.Google ScholarPubMed
Teichmann, M, Kas, A, Boutet, C, Ferrieux, S, Nogues, M, Samri, D, et al. Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain 2013;136(Pt 11):3474–88.Google Scholar
Sajjadi, SA, Patterson, K, Arnold, RJ, Watson, PC, Nestor, PJ. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology 2012;78(21):1670–7.Google Scholar
Rohrer, JD, Rossor, MN, Warren, JD. Alzheimer's pathology in primary progressive aphasia. Neurobiol Aging 2012;33(4):744–52.Google Scholar
Caffarra, P, Gardini, S, Cappa, S, Dieci, F, Concari, L, Barocco, F, et al. Degenerative jargon aphasia: unusual progression of logopenic/phonological progressive aphasia? Behav Neurol 2013;26(1–2):8993.Google Scholar
Perez, DL, Dickerson, BC, McGinnis, SM, Sapolsky, D, Johnson, K, Searl, M, et al. You don't say: dynamic aphasia, another variant of primary progressive aphasia? J Alzheimers Dis 2013;34(1):139–44.Google Scholar
Cerami, C, Scarpini, E, Cappa, SF, Galimberti, D. Frontotemporal lobar degeneration: current knowledge and future challenges. J Neurol 2012;259(11):2278–86.Google Scholar
Villa, C, Ghezzi, L, Pietroboni, AM, Fenoglio, C, Cortini, F, Serpente, M, et al. A novel MAPT mutation associated with the clinical phenotype of progressive nonfluent aphasia. J Alzheimers Dis 2011;26(1):1926.Google Scholar
Lee, SE, Tartaglia, MC, Yener, G, Genc, S, Seeley, WW, Sanchez-Juan, P, et al. Neurodegenerative disease phenotypes in carriers of MAPT p.A152T, a risk factor for frontotemporal dementia spectrum disorders and Alzheimer disease. Alzheimer Dis Assoc Disord 2013;27(4):302–9.Google Scholar
Rohrer, JD, Guerreiro, R, Vandrovcova, J, Uphill, J, Reiman, D, Beck, J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009;73(18):1451–6.Google Scholar
Seelaar, H, Rohrer, JD, Pijnenburg, YA, Fox, NC, van Swieten, JC. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 2011;82(5):476–86.Google Scholar
van der Zee, J, Rademakers, R, Engelborghs, S, Gijselinck, I, Bogaerts, V, Vandenberghe, R, et al. A Belgian ancestral haplotype harbours a highly prevalent mutation for 17q21-linked tau-negative FTLD. Brain 2006;129(Pt 4):841–52.Google Scholar
Le Ber, I, Camuzat, A, Hannequin, D, Pasquier, F, Guedj, E, Rovelet-Lecrux, A, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 2008;131(Pt 3):732–46.Google Scholar
Cerami, C, Marcone, A, Galimberti, D, Villa, C, Fenoglio, C, Scarpini, E, et al. Novel missense progranulin gene mutation associated with the semantic variant of primary progressive aphasia. J Alzheimers Dis 2013;36(3):415–20.Google Scholar
Seelaar, H, Kamphorst, W, Rosso, SM, Azmani, A, Masdjedi, R, de Koning, I, et al. Distinct genetic forms of frontotemporal dementia. Neurology 2008;71(16):1220–6.Google Scholar
Goldman, JS, Farmer, JM, Wood, EM, Johnson, JK, Boxer, A, Neuhaus, J, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology 2005;65(11):1817–19.Google Scholar
Rohrer, JD, Crutch, SJ, Warrington, EK, Warren, JD. Progranulin-associated primary progressive aphasia: a distinct phenotype? Neuropsychologia 2010;48(1):288–97.Google Scholar
Calvo, A, Moglia, C, Canosa, A, Cistaro, A, Valentini, C, Carrara, G, et al. Amyotrophic lateral sclerosis/frontotemporal dementia with predominant manifestations of obsessive-compulsive disorder associated to GGGGCC expansion of the c9orf72 gene. J Neurol 2012;259(12):2723–5.Google Scholar
Renton, AE, Majounie, E, Waite, A, Simon-Sanchez, J, Rollinson, S, Gibbs, JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS and FTD. Neuron 2011;72(2):257–68.Google Scholar
DeJesus-Hernandez, M, Desaro, P, Johnston, A, Ross, OA, Wszolek, ZK, Ertekin-Taner, N, et al. Novel p.Ile151Val mutation in VCP in a patient of African American descent with sporadic ALS. Neurology 2011;77(11):1102–3.Google Scholar
Gijselinck, I, Van Langenhove, T, van der Zee, J, Sleegers, K, Philtjens, S, Kleinberger, G, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 2012;11(1):5465.Google Scholar
Dobson-Stone, C, Hallupp, M, Bartley, L, Shepherd, CE, Halliday, GM, Schofield, PR, et al. C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts. Neurology 2012;79(10):9951001.Google Scholar
Galimberti, D, Fenoglio, C, Serpente, M, Villa, C, Bonsi, R, Arighi, A, et al. Autosomal dominant frontotempo-ral lobar degeneration due to the C9ORF72 hexanucleotide repeat expansion: late-onset psychotic clinical presentation. Biol Psychiatry 2013;74(5):384–91.Google Scholar
Cerami, C, Marcone, A, Galimberti, D, Zamboni, M, Fenoglio, C, Serpente, M, et al. Novel evidence of phenotypical variability in the hexanucleotide repeat expansion in chromosome 9. J Alzheimers Dis 2013;35(3):455–62.Google Scholar
Snowden, JS, Rollinson, S, Thompson, JC, Harris, JM, Stopford, CL, Richardson, AM, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012;135(Pt 3):693708.Google Scholar
Farrajota, L, Maruta, C, Maroco, J, Martins, IP, Guerreiro, M, de Mendonca, A. Speech therapy in primary progressive aphasia: a pilot study. Dement Geriatr Cogn Dis Extra 2012;2(1):321–31.CrossRefGoogle ScholarPubMed
Henry, ML, Meese, MV, Truong, S, Babiak, MC, Miller, BL, Gorno-Tempini, ML. Treatment for apraxia of speech in nonfluent variant primary progressive aphasia. Behav Neurol 2013;26(1–2):7788.Google Scholar

References

Bak, TH. Motor neuron disease and frontotemporal dementia: one, two, or three diseases? Annals of Indian Academy of Neurology 2010;13(Suppl 2):S81.CrossRefGoogle ScholarPubMed
Bak, TH. The importance of looking in dark places. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2013;14(1):12.Google Scholar
Snowden, JS, Rollinson, S, Thompson, JC, Harris, JM, Stopford, CL, Richardson, AM, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012;135(3):693708.Google Scholar
Bak, TH, O'Donovan, DG, Xuereb, JH, Boniface, S, Hodges, JR. Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease – dementia – aphasia syndrome. Brain 2001;124(1):103–20.Google Scholar
Lillo, P, Garcin, B, Hornberger, M, Bak, TH, Hodges, JR. Neurobehavioral features in frontotemporal dementia with amyotrophic lateral sclerosis. Archives of Neurology 2010;67(7):826–30.Google Scholar
Mioshi, E, Caga, J, Lillo, P, Hsieh, S, Ramsey, E, Devenney, E, et al. Neuropsychiatric changes precede classic motor symptoms in ALS and do not affect survival. Neurology 2014;82(2):149–55. doi: 10.1212/WNL. 0000000000000023.Google Scholar
Hudson, AJ. Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review. Brain 1981;104(2):217–47.Google Scholar
Neary, D, Snowden, J, Mann, D, Northen, B, Goulding, P, Macdermott, N. Frontal lobe dementia and motor neuron disease. Journal of Neurology, Neurosurgery, and Psychiatry 1990;53(1):2332.Google Scholar
Rascovsky, K, Hodges, JR, Knopman, D, Mendez, MF, Kramer, JH, Neuhaus, J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134(9):2456–77.Google Scholar
Gorno-Tempini, M, Hillis, A, Weintraub, S, Kertesz, A, Mendez, M, Cappa, S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76(11):1006–14.Google Scholar
Bak, TH, Hodges, JR. Cognition, language and behaviour in motor neurone disease: evidence of frontotemporal dysfunction. Dementia and Geriatric Cognitive Disorders 1999;10(Suppl 1):2932.Google Scholar
Neumann, M, Sampathu, DM, Kwong, LK, Truax, AC, Micsenyi, MC, Chou, TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314(5796):130–3.Google Scholar
DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, Boxer, AL, Baker, M, Rutherford, NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72(2):245–56.Google Scholar
Renton, AE, Majounie, E, Waite, A, Simon-Sanchez, J, Rollinson, S, Gibbs, JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72(2):257–68.Google Scholar
Bak, TH, Hodges, JR. Motor neurone disease, dementia and aphasia: coincidence, co-occurrence or continuum? Journal of Neurology 2001;248(4):260–70.CrossRefGoogle ScholarPubMed
Lillo, P, Savage, S, Mioshi, E, Kiernan, MC, Hodges, JR. Amyotrophic lateral sclerosis and frontotemporal dementia: a behavioural and cognitive continuum. Amyotrophic Lateral Sclerosis 2012;13(1):102–9.Google Scholar
Strong, MJ, Grace, GM, Freedman, M, Lomen-Hoerth, C, Woolley, S, Goldstein, LH, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis 2009;10(3):131–46.Google Scholar
Taylor, LJ, Brown, RG, Tsermentseli, S, Al-Chalabi, A, Shaw, CE, Ellis, CM, et al. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? Journal of Neurology, Neurosurgery, and Psychiatry 2013;84(5):494–8.CrossRefGoogle ScholarPubMed
Goldstein, L. SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. Journal of Neurology 2009;256(2):234–41.Google Scholar
Canu, E, Agosta, F, Galantucci, S, Chiò, A, Riva, N, Silani, V, et al. Extramotor damage is associated with cognition in primary lateral sclerosis patients. PloS One 2013;8(12):e82017.CrossRefGoogle ScholarPubMed
Silani, V, Poletti, B, Zago, S. Frontotemporal syndromes of primary lateral sclerosis. In Strong, MJ, ed. Amyotrophic Lateral Sclerosis and the Frontotemporal Dementias Oxford, UK: Oxford University Press. 2012; 171–86.Google Scholar
Raaphorst, J, de Visser, M, van Tol, M-J, Linssen, WH, van der Kooi, AJ, de Haan, RJ, et al. Cognitive dysfunction in lower motor neuron disease: executive and memory deficits in progressive muscular atrophy. Journal of Neurology, Neurosurgery, and Psychiatry 2011;82(2):170–5.Google Scholar
Wicks, P, Abrahams, S, Leigh, P, Williams, T, Goldstein, L. Absence of cognitive, behavioral, or emotional dysfunction in progressive muscular atrophy. Neurology 2006;67(9):1718–19.Google Scholar
Goldstein, LH, Abrahams, S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurology 2013;12(4):368–80.CrossRefGoogle ScholarPubMed
Kew, J, Leigh, N. Dementia with motor neurone disease. Bailliere's Clinical Neurology 1992;1(3):611–26.Google Scholar
Barson, F, Kinsella, G, Ong, B, Mathers, S. A neuropsychological investigation of dementia in motor neurone disease (MND). Journal of the Neurological Sciences 2000;180(1):107–13.Google Scholar
Ringholz, G, Appel, S, Bradshaw, M, Cooke, N, Mosnik, D, Schulz, P. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 2005;65(4):586–90.Google Scholar
Phukan, J, Elamin, M, Bede, P, Jordan, N, Gallagher, L, Byrne, S, et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. Journal of Neurology, Neurosurgery, and Psychiatry 2012;83(1):102–8.Google Scholar
Abrahams, S, Leigh, P, Harvey, A, Vythelingum, G, Grise, D, Goldstein, L. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 2000;38(6):734–47.Google Scholar
Raaphorst, J, De Visser, M, Linssen, WH, De Haan, RJ, Schmand, B. The cognitive profile of amyotrophic lateral sclerosis: a meta-analysis. Amyotrophic Lateral Sclerosis 2010;11(1–2):2737.Google Scholar
Abrahams, S, Leigh, P, Goldstein, L. Cognitive change in ALS: a prospective study. Neurology 2005;64(7):1222–6.Google Scholar
Elamin, M, Bede, P, Byrne, S, Jordan, N, Gallagher, L, Wynne, B, et al. Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology 2013;80(17):1590–7.Google Scholar
Olney, R, Murphy, J, Forshew, D, Garwood, E, Miller, B, Langmore, S, et al. The effects of executive and behavioral dysfunction on the course of ALS. Neurology 2005;65(11):1774–7.Google Scholar
Elamin, M, Phukan, J, Bede, P, Jordan, N, Byrne, S, Pender, N, et al. Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology 2011;76(14):1263–9.Google Scholar
Abrahams, S, Goldstein, L, Al-Chalabi, A, Pickering, A, Morris, R, Passingham, R, et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry 1997;62(5):464–72.Google Scholar
Massman, P, Sims, J, Cooke, N, Haverkamp, L, Appel, V, Appel, S. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry 1996;61(5):450–5.Google Scholar
Abrahams, S, Goldstein, L, Kew, J, Brooks, D, Lloyd, C, Frith, C, et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain 1996;119(6):2105–20.Google Scholar
Donaghy, C, Pinnock, R, Abrahams, S, Cardwell, C, Hardiman, O, Patterson, V, et al. Ocular fixation instabilities in motor neurone disease. Journal of Neurology 2009;256(3):420–6.Google Scholar
Witgert, M, Salamone, A, Strutt, A, Jawaid, A, Massman, P, Bradshaw, M, et al. Frontal-lobe mediated behavioral dysfunction in amyotrophic lateral sclerosis. European Journal of Neurology 2010;17(1):103–10.Google Scholar
Libon, DJ, McMillan, C, Avants, B, Boller, A, Morgan, B, Burkholder, L, et al. Deficits in concept formation in amyotrophic lateral sclerosis. Neuropsychology 2012;26(4):422–9.Google Scholar
Pettit, LD, Bastin, ME, Smith, C, Bak, TH, Gillingwater, TH, Abrahams, S. Executive deficits, not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis. Brain 2013;136(11):3290–304.Google Scholar
Girardi, A, MacPherson, SE, Abrahams, S. Deficits in emotional and social cognition in amyotrophic lateral sclerosis. Neuropsychology 2011;25(1):5365.CrossRefGoogle ScholarPubMed
Štukovnik, V, Zidar, J, Podnar, S, Repovš, G. Amyotrophic lateral sclerosis patients show executive impairments on standard neuropsychological measures and an ecologically valid motor-free test of executive functions. Journal of Clinical and Experimental Neuropsychology 2010;32(10):1095–109.Google Scholar
Meier, SL, Charleston, AJ, Tippett, LJ. Cognitive and behavioural deficits associated with the orbitomedial prefrontal cortex in amyotrophic lateral sclerosis. Brain 2010;133(11):3444–57.Google Scholar
Caselli, RJ, Windebank, AJ, Petersen, RC, Komori, T, Parisi, JE, Okazaki, H, et al. Rapidly progressive aphasic dementia and motor neuron disease. Annals of Neurology 1993;33(2):200–7.Google Scholar
Bak, T, Hodges, J. Noun-verb dissociation in three patients with motor neuron disease and aphasia. Brain and Language 1997;60(1):3841.Google Scholar
Bak, TH, Hodges, JR. The effects of motor neurone disease on language: further evidence. Brain and Language 2004;89(2):354–61.Google Scholar
Hillis, AE, Heidler-Gary, J, Newhart, M, Chang, S, Ken, L, Bak, TH. Naming and comprehension in primary progressive aphasia: the influence of grammatical word class. Aphasiology 2006;20(02–04):246–56.Google Scholar
Grossman, M, Anderson, C, Khan, A, Avants, B, Elman, L, McCluskey, L. Impaired action knowledge in amyotrophic lateral sclerosis. Neurology 2008;71(18):1396–401.Google Scholar
Bak, TH, Chandran, S. What wires together dies together: verbs, actions and neurodegeneration in motor neuron disease. Cortex 2012;48(7):936–44.Google Scholar
Bak, TH. The neuroscience of action semantics in neurodegenerative brain diseases. Current Opinion in Neurology 2013;26(6):671–7.Google Scholar
Ichikawa, H, Hieda, S, Ohno, H, Ohnaka, Y, Shimizu, Y, Nakajima, M, et al. Kana versus kanji in amyotrophic lateral sclerosis: a clinicoradiological study of writing errors. European Neurology 2010;64(3):148–55.Google Scholar
Abrahams, S, Newton, J, Niven, E, Foley, J, Bak, TH. Screening for cognition and behaviour changes in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2014;15(1–2):914.Google Scholar
Abrahams, S. Executive dysfunction in ALS is not the whole story. Journal of Neurology, Neurosurgery, and Psychiatry 2013;84(5):474–5.Google Scholar
Bak, TH, Hodges, JR. Kissing and dancing – a test to distinguish the lexical and conceptual contributions to noun/verb and action/object dissociation. Preliminary results in patients with frontotemporal dementia. Journal of Neurolinguistics 2003;16(2):169–81.Google Scholar
Cavallo, M, Adenzato, M, MacPherson, SE, Karwig, G, Enrici, I, Abrahams, S. Evidence of social understanding impairment in patients with amyotrophic lateral sclerosis. PloS One 2011;6(10):e25948.CrossRefGoogle ScholarPubMed
Schmolck, H, Mosnik, D, Schulz, P. Rating the approachability of faces in ALS. Neurology 2007;69(24):2232–5.Google Scholar
Lulé, D, Diekmann, V, Kassubek, J, Kurt, A, Birbaumer, N, Ludolph, AC, et al. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabilitation and Neural Repair 2007;21(6):518–26.Google Scholar
Papps, B, Abrahams, S, Wicks, P, Leigh, P, Goldstein, L. Changes in memory for emotional material in amyotrophic lateral sclerosis (ALS). Neuropsychologia 2005;43(8):1107–14.Google Scholar
Lomen-Hoerth, C, Murphy, J, Langmore, S, Kramer, J, Olney, R, Miller, B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 2003;60(7):1094–7.Google Scholar
Grossman, AB, Woolley-Levine, S, Bradley, WG, Miller, RG. Detecting neurobehavioral changes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis 2007;8(1):5661.Google Scholar
Lillo, P, Mioshi, E, Zoing, MC, Kiernan, MC, Hodges, JR. How common are behavioural changes in amyotrophic lateral sclerosis? Amyotrophic Lateral Sclerosis 2011;12(1):4551.Google Scholar
Raaphorst, J, Beeldman, E, Schmand, B, Berkhout, J, Linssen, WH, van den Berg, LH, et al. The ALS-FTD-Q: a new screening tool for behavioral disturbances in ALS. Neurology 2012;79(13):1377–83.Google Scholar
Bak, TH, Crawford, LM, Berrios, G, Hodges, JR. Behavioural symptoms in progressive supranuclear palsy and frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry 2010;81(9):1057–9.Google Scholar
Woolley, SC, York, MK, Moore, DH, Strutt, AM, Murphy, J, Schulz, PE, et al. Detecting frontotemporal dysfunction in ALS: utility of the ALS Cognitive Behavioral Screen (ALS-CBS™). Amyotrophic Lateral Sclerosis 2010;11(3):303–11.Google Scholar
Chiò, A, Vignola, A, Mastro, E, Giudici, AD, Iazzolino, B, Calvo, A, et al. Neurobehavioral symptoms in ALS are negatively related to caregivers’ burden and quality of life. European Journal of Neurology 2010;17(10):1298–303.Google Scholar
Abrahams, S, Goldstein, L, Simmons, A, Brammer, M, Williams, S, Giampietro, V, et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain 2004;127(7):1507–17.Google Scholar
Bastin, ME, Pettit, LD, Bak, TH, Gillingwater, TH, Smith, C, Abrahams, S. Quantitative tractography and tract shape modeling in amyotrophic lateral sclerosis. Journal of Magnetic Resonance Imaging 2013;38(5):1140–5.Google Scholar
Bede, P, Elamin, M, Byrne, S, McLaughlin, RL, Kenna, K, Vajda, A, et al. Basal ganglia involvement in amyotro-phic lateral sclerosis. Neurology 2013;81(24):2107–15.Google Scholar
Kew, J, Goldstein, L, Leigh, P, Abrahams, S, Cosgrave, N, Passingham, R, et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain 1993;116(6):1399–423.Google Scholar
Goldstein, L, Newsom-Davis, I, Bryant, V, Brammer, M, Leigh, P, Simmons, A. Altered patterns of cortical activation in ALS patients during attention and cognitive response inhibition tasks. Journal of Neurology 2011;258(12):2186–98.Google Scholar
Wicks, P, Turner, MR, Abrahams, S, Hammers, A, Brooks, DJ, Leigh, PN, et al. Neuronal loss associated with cognitive performance in amyotrophic lateral sclerosis: an (11C)-flumazenil PET study. Amyotrophic Lateral Sclerosis 2008;9(1):43–9.Google Scholar
Sarro, L, Agosta, F, Canu, E, Riva, N, Prelle, A, Copetti, M, et al. Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. American Journal of Neuroradiology 2011;32(10):1866–72.Google Scholar
Palmieri, A, Naccarato, M, Abrahams, S, Bonato, M, D'Ascenzo, C, Balestreri, S, et al. Right hemisphere dysfunction and emotional processing in ALS: an fMRI study. Journal of Neurology 2010;257(12):1970–8.Google Scholar
Cerami, C, Dodich, A, Canessa, N, Crespi, C, Iannaccone, S, Corbo, M, et al. Emotional empathy in amyotrophic lateral sclerosis: a behavioural and voxel-based morphometry study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2014;15(1–2):21–9.Google Scholar
Woolley, SC, Zhang, Y, Schuff, N, Weiner, MW, Katz, JS. Neuroanatomical correlates of apathy in ALS using 4 Tesla diffusion tensor MRI. Amyotrophic Lateral Sclerosis 2011;12(1):52–8.Google Scholar
Mioshi, E, Lillo, P, Yew, B, Hsieh, S, Savage, S, Hodges, JR, et al. Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology 2013;80(12):1117–23.Google Scholar
Munoz, DG, Neumann, M, Kusaka, H, Yokota, O, Ishihara, K, Terada, S, et al. FUS pathology in basophilic inclusion body disease. Acta Neuropathologica 2009;118(5):617–27.Google Scholar
Ravits, JM, La Spada, AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 2009;73(10):805–11.Google Scholar
Brettschneider, J, Del Tredici, K, Toledo, JB, Robinson, JL, Irwin, DJ, Grossman, M, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Annals of neurology 2013;74(1):2038.Google Scholar
Brettschneider, J, Del Tredici, K, Irwin, DJ, Grossman, M, Robinson, JL, Toledo, JB, et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathologica 2014;127(3):423–39.Google Scholar
Byrne, S, Heverin, M, Elamin, M, Bede, P, Lynch, C, Kenna, K, et al. Aggregation of neurologic and neuropsychiatric disease in amyotrophic lateral sclerosis kindreds: a population-based case–control cohort study of familial and sporadic amyotrophic lateral sclerosis. Annals of Neurology 2013;74(5):699708.Google Scholar
Czell, D, Andersen, PM, Neuwirth, C, Morita, M, Weber, M. Progressive aphasia as the presenting symptom in a patient with amyotrophic lateral sclerosis with a novel mutation in the OPTN gene. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 2013;14(2):138–40.Google Scholar
Bak, TH. Movement disorders: why movement and cognition belong together. Nature Reviews Neurology 2010;7(1):1012.Google Scholar

References

Pick, A. Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr 1892;17:165–7.Google Scholar
von Braunmühl, A. Krankheit, Picksche. In: Bumke, O, ed. Handbuch der Geisteskrankheiten. Vol. 11. Part VII. Berlin, Germany: Springer-Verlag. 1930;673715. [German].Google Scholar
Akelaitis, AJ. Atrophy of basal ganglia in Pick's disease. Arch Neurol Psychiatry 1944;51:2734.Google Scholar
Steele, JC, Richardson, JC, Olszewski, J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brainstem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 1964;10:333–59.Google Scholar
Rebeiz, JJ, Kolodny, EH, Richardson, EP. Corticodentatonigral degeneration with neuronal achromasia. A progressive disorder of late adult life. Trans Am Neurol Assoc 1967;9:23–6.Google Scholar
Gibb, WR, Luthert, PJ, Marsden, CD. Corticobasal degeneration. Brain 1989;112:1171–92.Google Scholar
Rebeiz, JJ, Kolodny, EH, Richardson, EP Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol 1968;18:2033.Google Scholar
Constantinidis, J, Richard, J, Tissot, R. Pick's disease. Histological and clinical correlations. Eur Neurol 1974;11 (4):208–17.Google Scholar
Munoz-Garcia, D, Ludwin, SK. Classic and generalized variants of Pick's disease: a clinicopathological, ultrastructural, and immunocytochemical comparative study. Ann Neurol 1984;16 (4):467–80.Google Scholar
Neary, D, Snowden, JS, Gustafson, L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51 (6):1546–54.Google Scholar
The Lund and Manchester Groups. Consensus statement. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 1994;57:416–18.Google Scholar
McKhann, GM, Albert, MS, Grossman, M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001;58:1803–9.CrossRefGoogle Scholar
Kertesz, A, McMonagle, P, Blair, M, Davidson, W, Munoz, DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128:19962005.Google Scholar
Spillantini, MG, Goedert, M. Tau mutations in familial frontotemporal dementia. Brain 2000;123:857–9.Google Scholar
Yamada, T, McGeer, PL, McGeer, EG. Appearance of paired nucleated, tau-positive glia on patients with progressive supranuclear palsy brain tissue. Neurosci Lett 1992;135:99102.Google Scholar
Feany, MB, Dickson, DW. Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol 1995;146 (6):1388–96.Google Scholar
Komori, T, Arai, N, Oda, M, et al. Astrocytic plaques and tufts of abnormal fibers do not coexist in corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol 1998;96 (4):401–8.Google Scholar
Goedert, M, Spillantini, MG, Potier, MC, Ulrich, J, Crowther, RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 1989;8 (2):393–9.Google Scholar
Goedert, M, Wischik, CM, Crowther, RA, Walker, JE, Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 1988;85 (11):4051–5.Google Scholar
Goode, BL, Chau, M, Denis, PE, Feinstein, SC. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenerative disease. J Biol Chem 2000;275 (49):38182–9.Google Scholar
Arai, T, Ikeda, K, Akiyama, H, et al. Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Ann Neurol 2004;55 (1):72–9.Google Scholar
Baker, M, Litvan, I, Houlden, H, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 1999;8 (4):711–15.Google Scholar
Di Maria, E, Tabaton, M, Vigo, T, et al. Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Ann Neurol 2000;47 (3):374–7.Google Scholar
Pittman, AM, Myers, AJ, Abou-Sleiman, P, et al. Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. J Med Genet 2005;42 (11):837–46.Google Scholar
Rademakers, R, Melquist, S, Cruts, M, et al. High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Hum Mol Genet 2005;14 (21):3281–92.Google Scholar
Schellenberg, GD. A genome-wide association study of progressive supranuclear palsy and corticobasal degeneration: genes that modify risk. Dement Geriatr Cogn Disord 2010;30 (Suppl 1):1819.Google Scholar
Donker Kaat, L, Boon, AJ, Azmani, A, et al. Familial aggregation of parkinsonism in progressive supranuclear palsy. Neurology 2009;73 (2):98105.Google Scholar
Borroni, B, Goldwurm, S, Cerini, C, et al. Familial aggregation in progressive supranuclear palsy and corticobasal syndrome. Eur J Neurol 2011;18(1):195–7.Google Scholar
Schrag, A, Ben-Shlomo, Y, Quinn, NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross sectional study. Lancet 1999;354:1771–5.Google Scholar
Armstrong, MJ, Litvan, I, Lang, AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80 (5):496503.Google Scholar
Litvan, I, Agid, Y, Calne, D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996;47 (1):19.Google Scholar
Boeve, BF. Progressive supranuclear palsy. Parkinsonism Relat Disord 2012;18(Suppl 1):S192–4.Google Scholar
Rohrer, JD, Lashley, T, Schott, JM, et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 2011;134:2565–81.Google Scholar
Dickson, DW, Kouri, N, Murray, ME, Josephs, KA. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci 2011;45 (3):384–9.Google Scholar
Wakabayashi, K, Takahashi, H. Pathological heterogeneity in progressive supranuclear palsy and corticobasal degeneration. Neuropathology 2004;24 (1):7986.Google Scholar
Williams, DR, Lees, AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 2009;8 (3):270–9.Google Scholar
Osaki, Y, Ben-Shlomo, Y, Lees, AJ, et al. Accuracy of clinical diagnosis of progressive supranuclear palsy. Mov Disord 2004;19 (2):181–9.Google Scholar
Hughes, AJ, Daniel, SE, Ben-Shlomo, Y, Lees, AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002;125:861–70.Google Scholar
Litvan, I. Recent advances in atypical parkinsonian disorders. Curr Opin Neurol 1999;12(4):441–6.Google Scholar
Wadia, PM, Lang, AE. The many faces of corticobasal degeneration. Parkinsonism Relat Disord 2007;13(Suppl 3):S336–40.Google Scholar
Boeve, BF, Lang, AE, Litvan, I. Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann Neurol 2003;54(Suppl 5):S1519.Google Scholar
Riley, DE, Lang, AE, Lewis, A, et al. Cortical-basal ganglionic degeneration. Neurology 1990;40:1203–12.Google Scholar
Lang, AE, Riley, DE, Bergeron, C. Cortical-basal ganglionic degeneration. In: Calne, DB, ed. Neurodegenerative Diseases. Philadelphia: W.B. Saunders. 1994;877–94.Google Scholar
Watts, RL, Mirra, SS, Richardson, EP. Cortical-basal ganglionic degeneration. In: Marsden, CD, Fahn, S, eds. Movement Disorders, Vol 3. Oxford: Butterworth Heinemann. 1994;282–99.Google Scholar
Kumar, R, Bergeron, C, Pollanen, M, Lang, AE. Cortical-basal ganglionic degeneration. In: Jankovic, J, Tolosa, E, eds. Parkinson's Disease & Movement Disorders. Baltimore: Williams & Wilkins. 1998;297316.Google Scholar
Litvan, I, Cummings, JL, Mega, M. Neuropsychiatric features of corticobasal degeneration. J Neurol Neurosurg Psychiatry 1998;65:717–21.Google Scholar
Bak, TH, Hodges, JR. Corticobasal degeneration: clinical aspects. Handb Clin Neurol 2008;89:509–21.Google Scholar
Hodges, JR, Davies, RR, Xuereb, JH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol 2004;56 (3):399406.Google Scholar
Josephs, KA, Petersen, RC, Knopman, DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 2006;66 (1):41–8.Google Scholar
McMonagle, P, Blair, M, Kertesz, A. Corticobasal degeneration and progressive aphasia. Neurology 2006;67 (8):1444–51.Google Scholar
Massey, LA, Micallef, C, Paviour, DC, et al. Conven-tional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord 2012;27 (14):1754–62.Google Scholar
Massey, LA, Jäger, HR, Paviour, DC, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 2013;80 (20):1856–61.Google Scholar
Quattrone, A, Nicoletti, G, Messina, D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008;246 (1):214–21.Google Scholar
Borroni, B, Malinverno, M, Gardoni, F, et al. A combination of CSF tau ratio and midsaggital midbrain-to-pons atrophy for the early diagnosis of progressive supranuclear palsy. J Alzheimers Dis 2010;22 (1):195203.Google Scholar
Cosottini, M, Ceravolo, R, Faggioni, L, et al. Assessment of midbrain atrophy in patients with progressive supranuclear palsy with routine magnetic resonance imaging. Acta Neurol Scand 2007;116 (1):3742.Google Scholar
Duchesne, S, Rolland, Y, Vérin, M. Automated computer differential classification in parkinsonian syndromes via pattern analysis on MRI. Acad Radiol 2009;16 (1):6170.Google Scholar
Shi, HC, Zhong, JG, Pan, PL, et al. Gray matter atrophy in progressive supranuclear palsy: meta-analysis of voxel-based morphometry studies. Neurol Sci 2013;34 (7):1049–55.Google Scholar
Padovani, A, Borroni, B, Brambati, SM, et al. Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2006;77 (4):457–63.Google Scholar
Price, S, Paviour, D, Scahill, R, et al. Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson's disease. Neuroimage 2004;23 (2):663–9.Google Scholar
Agosta, F, Kostić, VS, Galantucci, S, et al. The in vivo distribution of brain tissue loss in Richardson's syndrome and PSP-parkinsonism: a VBM-DARTEL study. Eur J Neurosci 2010;32 (4):640–7.Google Scholar
Agosta, F, Pievani, M, Svetel, M, et al. Diffusion tensor MRI contributes to differentiate Richardson's syndrome from PSP-parkinsonism. Neurobiol Aging 2012;33 (12):2817–26.Google Scholar
Focke, NK, Helms, G, Scheewe, S, et al. Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Hum Brain Mapp 2011;32 (11):1905–15.Google Scholar
Sajjadi, SA, Acosta-Cabronero, J, Patterson, K, et al. Diffusion tensor magnetic resonance imaging for single subject diagnosis in neurodegenerative diseases. Brain 2013;136:2253–61.Google Scholar
Ling, H, O'Sullivan, SS, Holton, JL, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 2010;133:2045–57.Google Scholar
Lee, SE, Rabinovici, GD, Mayo, MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011;70 (2):327–40.Google Scholar
Seeley, WW, Crawford, RK, Zhou, J, Miller, BL, Greicius, MD. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009;62 (1):4252.Google Scholar
Borroni, B, Garibotto, V, Agosti, C, et al. White matter changes in corticobasal degeneration syndrome and correlation with limb apraxia. Arch Neurol 2008;65 (6):796801.Google Scholar
Erbetta, A, Mandelli, ML, Savoiardo, M, et al. Diffusion tensor imaging shows different topographic involve-ment of the thalamus in progressive supranuclear palsy and corticobasal degeneration. Am J Neuroradiol 2009;30 (8):1482–7.Google Scholar
Whitwell, JL, Jack, CR, Boeve, BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010;75 (21):1879–87.Google Scholar
Borroni, B, Premi, E, Agosti, C, et al. CSF Alzheimer's disease-like pattern in corticobasal syndrome: evidence for a distinct disorder. J Neurol Neurosurg Psychiatry 2011;82 (8):834–8.Google Scholar
Oh, M, Kim, JS, Kim, JY, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med 2012;53 (3):399406.CrossRefGoogle ScholarPubMed
Srulijes, K, Reimold, M, Liscic, RM, et al. Fluorodeoxyglucose positron emission tomography in Richardson's syndrome and progressive supranuclear palsy-parkinsonism. Mov Disord 2012;27 (1):151–5.Google Scholar
Ceravolo, R, Rossi, C, Cilia, R, et al. Evidence of delayed nigrostriatal dysfunction in corticobasal syndrome: a SPECT follow-up study. Parkinsonism Relat Disord 2013;19 (5):557–9.Google Scholar
Urakami, K, Wada, K, Arai, H, et al. Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy. J Neurol Sci 2001;183 (1):95–8.Google Scholar
Borroni, B, Malinverno, M, Gardoni, F, et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 2008;71 (22):1796–803.Google Scholar
Bugiani, O, Murrell, JR, Giaccone, G, et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 1999;58(6):667–77.Google Scholar
Poorkaj, P, Muma, NA, Zhukareva, V, et al. An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol 2002;52(4):511–16.Google Scholar
Pastor, P, Pastor, E, Carnero, C, et al. Familial atypical progressive supranuclear palsy associated with homozigosity for the delN296 mutation in the tau gene. Ann Neurol 2001;49(2):263–7.Google Scholar
Ferrer, I, Pastor, P, Rey, MJ, et al. Tau phosphorylation and kinase activation in familial tauopathy linked to deln296 mutation. Neuropathol Appl Neurobiol 2003;29(1):2334.Google Scholar
Oliva, R, Pastor, P. Tau gene delN296 mutation, Parkinson's disease, and atypical supranuclear palsy. Ann Neurol 2004;55(3):448–9.Google Scholar
Rossi, G, Gasparoli, E, Pasquali, C, et al. Progressive supranuclear palsy and Parkinson's disease in a family with a new mutation in the tau gene. Ann Neurol 2004;55(3):448.Google Scholar
Rojo, A, Pernaute, RS, Fontán, A, et al. Clinical genetics of familial progressive supranuclear palsy. Brain 1999;122:1233–45.Google Scholar
Ros, R, Thobois, S, Streichenberger, N, et al. A new mutation of the tau gene, G303V, in early-onset familial progressive supranuclear palsy. Arch Neurol 2005;62(9):1444–50.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×