Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T02:05:24.596Z Has data issue: false hasContentIssue false

Chapter 21 - Fetal Hydrops (Content last reviewed: 15th March 2020)

from Section 3 - Late Prenatal – Fetal Problems

Published online by Cambridge University Press:  15 November 2017

David James
Affiliation:
University of Nottingham
Philip Steer
Affiliation:
Imperial College London
Carl Weiner
Affiliation:
University of Kansas
Bernard Gonik
Affiliation:
Wayne State University, Detroit
Stephen Robson
Affiliation:
University of Newcastle
Get access

Summary

The pathophysiology of immune and nonimmune fetal hydrops is multifactorial and complex. Fetal hydrops is a sign, not a diagnosis, and should prompt the question “What is the cause?”

Type
Chapter
Information
High-Risk Pregnancy
Management Options
, pp. 538 - 566
Publisher: Cambridge University Press
First published in: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Norton, ME, Chauhan, SP, Dashe, JS. Society for Maternal-Fetal Medicine (SMFM) Clinical Guideline #7: nonimmune hydrops fetalis. Am J Obstet Gynecol 2015; 212: 127–39. doi: 10.1016/j.ajog.2014.12.018.Google Scholar
Désilets, V, Audibert, F, Wilson, R, et al. Investigation and management of non-immune fetal hydrops. J Obstet Gynaecol Can 2013; 35: 923–38.Google Scholar
Weiner, CP. Fetal hemolytic disease. In James, D, Steer, PJ, Weiner, CP, et al. (eds), High Risk Pregnancy: Management Options, 4th edn. St. Louis, MO: Elsevier Saunders, 2011, pp. 209–28.Google Scholar
Smoleniec, JS. Fetal hydrops. In James, D, Steer, PJ, Weiner, CP, et al. (eds), High Risk Pregnancy: Management Options, 4th edn. St. Louis, MO: Elsevier Saunders, 2011, pp. 437–48.Google Scholar
Bianchi, D, Crombleholme, TM, D’Alton, ME, Malone, FD. Immune hydrops. In Fetology: Diagnosis and Management of the Fetal Patient, 2nd edn. New York, NY: McGraw-Hill, 2010, pp. 885–92.Google Scholar
Bianchi, D, Crombleholme, TM, D’Alton, ME, Malone, FD. Non-immune hydrops fetalis. In Fetology: Diagnosis and Management of the Fetal Patient, 2nd edn. New York, NY: McGraw-Hill, 2010, pp. 893–9Google Scholar
Moise, KJ. Hemolytic disease of the fetus and newborn. In Creasy, RK, Resnik, R, Iams, JD, et al. (eds), Creasy and Resnik’s Maternal–Fetal Medicine Principles and Practice, 7th edn. Philadelphia, PA: Elsevier Saunders, 2014, pp. 558–68.Google Scholar
Wilkins, I. Nonimmune Hydrops. In Creasy, RK, Resnik, R, Iams, JD, et al. (eds), Creasy and Resnik’s Maternal–Fetal Medicine Principles and Practice, 7th edn. Philadelphia, PA: Elsevier Saunders, 2014, pp. 569–77.Google Scholar
Moise, KJ. Ultrasound evaluation of hydrops fetalis. In Callen, PW (ed.), Ultrasonography in Obstetrics and Gynecology, 5th edn. Philadelphia, PA: Saunders Elsevier, 2008, pp. 676–97.Google Scholar
Gilbert-Barnes, E, Debich-Spicer, D. Fetal Hydrops and Cystic Hygroma. Embryo and Fetal Pathology; Color Atlas with Ultrasound Correlation. Cambridge: Cambridge University Press, 2004, pp. 321–34.Google Scholar
Bellini, C, Hennekam, RCM. Non-immune hydrops fetalis: a short review of etiology and pathophysiology. Am J Med Genet A 2012; 158A: 597605.Google Scholar
Bellini, C, Hennekam, RCM, Banjola, E. A diagnostic flow chart for non-immune hydrops fetalis. Am J Med Genet A 2009; 149A: 852–3.Google Scholar
Ng, ZM, Seet, MJ, Erng, MN, et al. Nonimmune hydrops fetalis in a children’s hospital: a six-year series. Singapore Med J 2013; 54: 487–90.Google Scholar
Moreno, CA, Kanazawa, T, Barini, R, et al. Non-immune hydrops fetalis: A prospective study of 53 cases. Am J Med Genet A 2013; 161A: 3078–86.Google ScholarPubMed
Takci, S, Gharibzadeh, M, Yurdakok, M, et al. Etiology and outcome of hydrops fetalis: report of 62 cases. Pediatr Neonatol 2014; 55: 108–13.Google Scholar
Turgal, M, Ozyuncu, O, Boyraz, G, Yazicioglu, A, Sinan Baksac, M. Non-immune hydrops fetalis as a diagnostic and survival problems: what do we tell the parents? J Perinat Med 2015; 43: 353–8. doi: 10.1515/jpm-2014-0094.Google Scholar
Lin, SM, Wang, Ch, Zhu, XY, et al. Clinical Study on 156 cases with hydrops fetalis. Zhonghua Fu Chan Ke Za Zhi 2011; 46: 905–10.Google Scholar
Laterre, M, Bernard, P, Vikkula, M, Sznajer, Y. Improved diagnosis in nonimmune hydrops fetalis using a standardized algorithm. Prenat Diagn 2018; 38: 337–43. doi: 10.1002/pd.5243Google Scholar
Wilson, RD, Langlois, S, Johnson, JA, et al. Mid-trimester amniocentesis fetal loss rate. J Obstet Gynecol 2007; 194: 586–90.Google Scholar
Tabor, A, Vestergaard, CHF, Lidegaard, O. Fetal loss rate after chorionic villus sampling and amniocentesis: an 11-year national registry study. Ultrasound Obstet Gynecol 2009; 34: 1924.Google Scholar
Alfireziv, Z, Mujezinovic, F, Sundberg, K. Anmiocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev 2003; (3): CD003252.Google Scholar
Tabor, A, Alfirevic, Z. Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther 2010; 27: 17.Google Scholar
Mujezinovic, F, Alfirevic, Z. Analgesia for amniocentesis or chorionic villus sampling. Cochrane Database Syst Rev 2011; (11): CD008580.Google Scholar
Mujezinovic, F, Alfirevic, Z. Technique modifications for reducing the risks from amniocentesis or chorionic villus sampling. Cochrane Database Syst Rev 2012; (8): CD008678.Google Scholar
Collins, SL, Impey, L. Prenatal diagnosis: types and techniques. Early Hum Dev 2012; 88: 38.Google Scholar
Agarwal, K, Alfirevic, Z. Pregnancy loss after chorionic villus sampling and genetic amniocentesis in twin pregnancies: a systemic review. Ultrasound Obstet Gynecol 2012; 40: 128–34.Google Scholar
Young, C, von Dadelszen, P, Alfirevic, Z. Instruments for chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev 2013; (1): CD000114.Google Scholar
Berry, SJ, Stone, J, Norton, ME, Johnson, D, Berghella, V; Society for Maternal-Fetal Medicine (SMFM). Fetal blood sampling. Am J Obstet Gynecol 2013; 209: 170–80. doi: 10.1016/j.ajog.2013.07.014.Google Scholar
Kim, SA, Lee, SM, Hong, JS, et al. Ultrasonographic severity scoring of non-immune hydrops: a predictor of perinatal mortality. J Perinat Med 2015; 43: 53–9. doi: 10.1515/jpm-2013-0208.Google Scholar
Hartge, DR, Weichert, J, Gembicki, M, Krapp, M. Confirmation of etiology in fetal hydrops by sonographic evaluation of fluid allocation patterns. Eur J Obstet Gynecol Reprod Biol 2015; 195: 128–32.Google Scholar
Wapner, RJ, Martin, CL, Levy, B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 2012; 367: 2175–84Google Scholar
Reddy, UM, Page, GP, Saade, GR, et al. Karyotype versus microarray testing for genetic abnormalities after stillbirth. N Engl J Med 2012; 367: 2185–93.Google Scholar
Talkowski, ME, Ordulu, Z, Pillalamarri, V, et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N Engl J Med 2912; 367: 2226–32.Google Scholar
Yang, Y, Muzny, DM, Reid, JG, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 2013; 369: 1502–11.Google Scholar
Biesecker, LG, Green, RC. Diagnostic clinical genome and exome sequencing. N Engl J Med 2014; 370: 2418–25.Google Scholar
Adzick, NS. Prospects for fetal surgery. Early Hum Dev 2013; 89: 881–6.Google Scholar
Wenstrom, KD, Carr, SR. Fetal surgery: principles, indications and evidence. Obstet Gynecol 2014; 123: 817–35.Google Scholar
Van de Velde, M, De Buck, F. Fetal and maternal analgesia/anesthesia for fetal procedures. Fetal Diagn Ther 2012; 31: 201–9.Google Scholar
Guibaud, L, Collardeau-Frachon, S, Lacalm, A, et al. Antenatal manifestations of inborn errors of metabolism: prenatal imaging findings. J Inherit Metab Dis 2017; 40: 103–12.Google Scholar
Vianey-Saban, C, Acquaviva, C, Cheillan, D, et al. Antenatal manifestations of inborn errors of metabolism: biological diagnosis. J Inherit Metab Dis 2016; 39: 611–24.Google Scholar
Bruwer, Z, Al Riyami, N, Al Dughaishi, T, et al. Inborn errors of metabolism in a cohort of pregnancies with non-immune hydrops fetalis: a single center experience. J Perinatal Med 2017; doi: 10.1515/jpm-2017-0124.Google Scholar
Yuan, SM. Cardiac etiologies of hydrops fetalis. Z Geburtshilfe Neonatol 2017; 1: 6772.Google Scholar
Yuan, SM. Congenital pulmonary lymphangiectasia. J Perinatal Med 2017; doi: 10.1515/jpm-2016-0407.Google Scholar
Gilby, DM, Mee, JB, Kamlin, COF, et al. Outcomes following antenatal identification of hydrops fetalis: a single-centre experience from 2001 to 2012. Arch Dis Child Fetal Neonatal Ed 2019; 104: F253–8. doi: 10.1136/archdischild-2017-313604.Google Scholar
Sparks, TN, Thao, K, Lianoglou, BR, et al. Nonimmune hydrops fetalis: identifying the underlying genetic etiology. Genet Med 2019; 21: 1339–44. doi: 10.1038/s41436-018-0352-6.Google Scholar
Meng, D, Li, O, Hu, X, et al. Etiology and outcome of non-immune hydrops fetalis in southern China: report of 1004 cases. Sci Rep 2019; 9: 10726. https://doi.org/10.1038/s41598-019-47050-6.Google Scholar
Liu, H, Zhang, H, Tong, XM. Clinical features and prognosis of neonates with nonimmune hydrops fetalis. Zhongguo Dang Dai Er Ke Za Zhi 2019; 21: 253–8.Google Scholar
McPherson, E. Hydrops fetalis in a cohort of 3,137 stillbirths and second trimester miscarriages. Am J Med Genet A 2019; 179: 2338–42. 2019. https://doi.org/10.1002/ajmg.a.61340.Google Scholar
Mardy, AH, Chetty, SP, Norton, ME, Sparks, TN. A system-based approach to the genetic etiologies of non-immune hydrops fetalis. Prenat Diagn 2019; 39: 732–50. https://doi.org/10.1002/pd.5479.Google Scholar
Mardy, AH, Rangwala, N, Hernandez-Cruz, Y, et al. Utility of chromosomal microarray for diagnosis in cases of nonimmune hydrops fetalis. Prenat Diagn 2020; 40: 492–6. https://doi.org/10.1002/pd.5617.Google Scholar
Wu, Q, Ma, X, Shi, H, et al. Genetic analysis of a family with recurrent hydrops fetalis and dilated cardiomyopathy. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2019; 36: 1028–30. https://doi.org/10.3760/cma.j.issn.1003-9406.2019.10.020.Google Scholar
Shanes, E, Propst, L, Ouyang, DW, Ernst, LM. Recurrent non immune fetal hydrops associated with IPEX syndrome. Pediatr Dev Pathol 2019; 22: 465–71. https://doi.org/10.1177/1093526619834809.Google Scholar
Monteiro, FP, Curry, CJ, Hevner, R, et al. Biallelic loss of function varients in ATP1A2 cause hydrops fetalis, microcephaly, arthrogryposis and extensive cortical malformations. Eur J Med Genet 2020; 63: 103624. https://doi.org/10.1016/j.ejmg.2019.01.014.Google Scholar
Swearingen, C, Colvin, ZA, Leuthner, SR, et al. Nonimmune hydrops fetalis. Clin Perinatol 2020; 47: 105–21. https://doi.org/10.1016/j.clp.2019.10.001.Google Scholar
Desilets, V, De Bie, I, Audibert, F. No. 363. Investigation and management of non-immune fetal hydrops. J Obstet Gynaecol Can 2018; 40: 1077–90. doi: 10.1016/j.jogc.2017.12.011.Google Scholar
Zhao, Z, Reece, EA. New concepts in diabetic embryopathy. Clin Lab Ned 2013; 33: 207233.Google Scholar
Teramo, K, Klemetti, M, Tikkanen, M, Nuutila, M. Maternal diabetes and fetal hypoxia. Duodecim 2013; 129: 228–34.Google Scholar
Vento, M, Terramo, K. Evaluating the fetus at risk for cardiopulmonary compromise. Semin Fetal Neonatal Med 2013; 18: 324–9.Google Scholar
Khoo, CM, Lee, KO. Endocrine emergencies in pregnancy. Best Pract Res Clin Obstet Gynaecol 2013; 27: 885–91.Google Scholar
Taylor, PN, Vaidya, B. Side effects of anti-thyroid drugs and their impact on the choice of treatment for thyrotoxicosis in pregnancy. Eur Thyroid J 2012; 1: 176–85.Google Scholar
Clementi, M, Di Gianantonio, E, Cassina, M, et al. Treatment of hyperthyroidism in pregnancy and birth defects. J Clin Endocrinol Metab 2010; 95: E337–41.Google Scholar
Gatta, A, Verardo, A, Bolognesi, M. Hypoalbuminemia. Intern Emerg Med (2013); 7 (Suppl 3): S193–9.Google Scholar
Lata, I. Hepatobiliary diseases during pregnancy and their management: an update. Int J Crit Illn Inj Sci 2013; 3: 175–82.Google Scholar
Horowitz, KM, Ingardia, CJ, Borgida, AF. Anemia in pregnancy. Clin Lab Med 2013; 33: 281–91.Google Scholar
Räisänen, S, Kancherla, V, Gissler, M, Kramer, MR, Heinonen, S. Adverse perinatal outcomes associated with moderate or severe maternal anaemia based on parity in Finland during 2006–10. Paediatr Perinat Epidemiol 2014; 28: 372–80.Google Scholar
Bili, E, Tsolakidis, D, Stangou, S, Tarlatzis, B. Pregnancy management and outcome in women with chronic kidney disease. Hippokratia 2013, 17: 163–8.Google Scholar
Nadeau-Fredette, AC, Hladunewich, M, Hui, D, Keunen, J, Chan, CT. End-stage renal disease and pregnancy. Adv Chronic Kidney Dis 2013; 20: 246–52.Google Scholar
Mosquera, C, Miller, RS, Simpson, LL. Twin-twin transfusion syndrome. Semin Perinat 2012; 2: 182–9.Google Scholar
Simpson, LL; Society for Maternal-Fetal Medicine (SMFM). Twin-twin transfusion syndrome. Am J Obstet Gynecol 2013; 208: 318. doi: 10.1016/j.ajog.2012.10.880. Erratum in: Am J Obstet Gynecol 2013; 208: 392.Google Scholar
Lewi, L, Deprest, J, Hecher, K. The vascular anastomoses in monochorionic twin pregnancies and their clinical consequences. Am J Obset Gynecol 2013; 208: 1930. doi: 10.1016/j.ajog.2012.09.025.Google Scholar
Baud, B, Windrim, R, Van Mieghem, T, et al. Twin-twin transfusion syndrome: a frequently missed diagnosis with important consequences. Ultrasound Obstet Gynecol 2014; 44: 205–9.Google Scholar
Roberts, D, Nielson, JP, Kilby, MD, Gates, S. Interventions for the treatment of twin-twin transfusion syndrome. Cochrane Database Syst Rev 2014; (1): CD002073.Google Scholar
Van Mieghem, T, De Heus, R, Lewi, L, et al. Prenatal management of monoamniotic twin pregnancies. Obstet Gynecol 2014; 123: 498506.Google Scholar
Has, R, Kalelioglu, I, Corbacioglu Esmer, A, et al. Stage-related outcome after fetoscopic laser ablation in twin-to-twin transfusion syndrome. Fetal Diagn Ther 2014; 36: 287–92.Google Scholar
Weingertner, AS, Kohler, A, Mager, C, et al. Fetoscopic laser coagulation in 100 consecutive monochorionic pregnancies with severe twin-to-twin transfusion syndrome. J Gynecol Obstet Biol Reprod (Paris) 2011; 40: 444–51.Google Scholar
Rustico, MA, Lanna, MM, Faiola, S, et al. Fetal and maternal complications after selective fetoscopic laser surgery for twin-to-twin transfusion syndrome: a single-center experience. Fetal Diagn Ther 2012; 31: 170–8.Google Scholar
Khalek, N, Johnson, MP, Bebbington, MW. Fetoscopic laser therapy for twin-to-twin transfusion syndrome. Semin Pediatr Surg 2013; 22: 1823.Google Scholar
Hecher, K, Campbell, S, Doyle, P, Harrington, K, Nicolaides, K. Assessment of fetal compromise by Doppler ultrasound investigation of fetal circulation in arterial, intracardiac, and venous blood flow velocity studies. Circulation 1994; 91: 129–38.Google Scholar
Jelin, E, Hirose, S, Rand, L, et al. Perinatal outcomes of conservative management versus fetal intervention for TRAP with small acardiac twin. Fetal Diagn Ther 2010; 27: 138–41.Google Scholar
Oliver, ER, Coleman, BG, Goff, DA, et al. Twin reversed arterial perfusion sequence: a new method of parabiotic twin mass estimation correlated with pump twin compromise. J Ultrasound Med 2013; 32: 2115–23.Google Scholar
Ilagan, JG, Wilson, RD, Bebbington, M, et al. Pregnancy outcomes following bipolar umbilical cord cauterization for selective termination in complicated monochorionic multiple gestations. Fetal Diagn Ther 2008; 23: 153–8.Google Scholar
Lee, H, Bebbington, M, Crombleholme, TM et al. The North American Fetal Therapy Network Registry data on outcomes of radiofrequency ablation for twin-reversed arterial perfusion sequence. Fetal Diagn Ther 2013; 33: 224–9.Google Scholar
Lu, J, Ting, YH, Law, KM, Lau, TK, Leung, TY. Radiofrequency ablation for selective reduction in complicated monochorionic multiple pregnancies. Fetal Diagn Ther 2013; 34: 211–16.Google Scholar
Peeters, SHP, Devlieger, R, Middeldorp, JM, et al. Fetal surgery in complicated monoamniotic pregnancies: case series and systematic review of the literature. Prenat Diagn 2014; 34: 586–91.Google Scholar
Prefumo, F, Fichera, A, Zanardini, C, Frusca, T. Fetoscopic cord transaction for treatment of monoamniotic twin reversed arterial perfusion sequence. Ultrasound Obstet Gynecol 2014; 43: 233–5.Google Scholar
Stephenson, CD, Temming, LA, Pollack, R, Iannitti, DA. Microwave ablation for twin-reversed perfusion sequence: a novel application of technology. Fetal Diagn Ther 2015; 38: 3540. doi: 10.1159/000369384.Google Scholar
Cabassa, P, Fichera, A, Prefumo, F, et al. The use of radiofrequency in the treatment of twin reversed arterial perfusion sequence: a case series and review of the literature. Eur J Obstet Gynecol Reprod Biol 2013; 166: 127–32.Google Scholar
Pagani, G, D’Antonio, F, Khalil, A, et al. Intrafetal laser treatment for twin reversed arterial perfusion sequence: cohort study and meta-analysis. Ultrasound Obstet Gynecol 2013; 42: 614.Google Scholar
Chaveeva, P, Poon, LC, Sotiriadis, A, Kosinski, P, Nicolaides, KH. Optimal method and timing of intrauterine intervention in twin reversed arterial perfusion sequence: case study and meta-analysis. Fetal Diagn Ther 2014; 35: 267–79.Google Scholar
Quintero, RA, Morales, WJ, Allen, MH, et al. Staging of twin-twin transfusion syndrome. J Perinatol 1999; 8: 550–5.Google Scholar
Senat, MV, Deprest, J, Boulvain, M, et al. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med 2004; 351: 136–44.Google Scholar
Lim, FY, Coleman, A, Polzin, W, et al. Giant chorioangiomas: perinatal outcomes and techniques in fetoscopic devascularization. Fetal Diagn Ther 2015; 37: 1823.Google Scholar
Donofrio, MD, Moon-Grady, AJ, Hornberger, LK, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014; 129: 2183–242. doi: 10.1161/01.cir.0000437597.44550.5d.Google Scholar
Sekarski, N, Jeijboom, EJ, Di Bernardo, S, Ksontini, TB, Mivelaz, Y. Perinatal arrhythmias. Eur J Pediatr 2014; 173: 983–96.Google Scholar
MacColl, CE, Manlhiot, C, Page, C, et al. Factors associated with in utero demise of fetuses that have underlying cardiac pathologies. Pediatr Cardiol 2014; 35: 1403–14. doi: 10.1007/s00246-014-0943-1.Google Scholar
Cetiner, N, Altunyuva Usta, S, Akalin, F. Coronary arteriovenous fistula causing hydrops fetalis. Case Rep Obstet Gynecol 2014; 2014: 487281.Google Scholar
Rasiah, SV, Ewer, AK, Miller, P, Kilby, MD. Prenatal diagnosis, management and outcome of fetal dysrhythmia: a tertiary fetal medicine centre experience over an eight-year period. Fetal Diagn Ther 2011; 30: 122–7.Google Scholar
Kang, SL, How, D, Coleman, M, Roman, K, Gnanapragasam, J. Foetal supraventricular tachycardia with hydrops fetalis: a role for direct intraperitoneal amiodarone. Cardiol Young 2014; 9: 17.Google Scholar
Wilson, RD, Hedrick, H, Flake, AQ, et al. Sacrococcygeal teratomas: prenatal surveillance, growth and pregnancy outcome. Fetal Diagn Ther 2009; 25: 1520.Google Scholar
Coleman, A, Shaaban, A, Keswani, S, Lim, FY. Sacrococcygeal teratoma growth rate predicts adverse outcomes. J Pediatr Surg 2014; 49: 985–9.Google Scholar
Adzick, NS. Open fetal surgery for life-threatening fetal anomalies. Semin Fetal Neonatal Med 2010; 15: 18.Google Scholar
Roybal, JL, Moldenhauer, JS, Khalek, N, et al. Early delivery as an alternative management strategy for selected high risk fetal sacrococcygeal teratomas. J Pediatr Surg 2011; 46: 1325–32.Google Scholar
Van Meighem, T, Al-Ibrahim, A, Deprest, J, et al. Minimally invasive therapy for fetal sacrococcyeal teratoma: case series and systematic review of the literature. Ultrasound Obstet Gynecol 2014; 43: 611–19.Google Scholar
Fuchs, F, Michaux, K, Rousseau, C, Ovetchkine, P, Audibert, F. Syphilis infection: an uncommon etiology of infectious nonimmune fetal hydrops with anemia. Fetal Diagn Ther 2016; 39: 74–7. doi: 10.1159/000364804. Epub 2014 Aug 14.Google Scholar
Mace, G, Sauvan, M, Castaigne, V, et al. Clinical presentation and outcome of 20 fetuses with parvovirus B19 infection complicated by severe anemia and/or fetal hydrops. Prenat Diagn 2014; 34: 1023–30.Google Scholar
Kyeong, KS, Won, HS, Lee, MY, et al. Clinical features of 10 fetuses with prenatally diagnosed parvovirus B19 infection and fetal hydrops. Fetal Pediat Pathol 2015; 34: 4956.Google Scholar
Lindenburg, IT, van Klink, JM, Smits-Wintjens, VE, et al. Long-term neurodevelopmental and cardiovascular outcome after intrauterine transfusions for fetal anaemia: a review. Prenat Diagn 2013; 33: 815–22.Google Scholar
Yuan, SM, Xu, ZY. Fetal arrhythmias: prenatal evaluation and intrauterine therapeutics. Ital J Pediatr 2020; 46: 21. https://doi.org/10.1186/s13052-020-0785-9.Google Scholar
Refaat, M, Ei, Dick J, Sabra, M, et al. Sotalol as an effective adjunct therapy in the management of supraventricular tachycardia induced fetal hydrops fetalis. J Neonatal Perinatal Med 2019; 10.3233/NPM-190268. https://doi.org/10.3233/NPM-190268.Google Scholar
Nagel, HT, de Haan, TR, Vandenbussche, FP, Oepkes, D, Walther, FJ. Long-term outcome after fetal transfusion for hydrops associated with parvovirus B19 infection. Obstet Gynecol 2007; 109: 42–7.Google Scholar
Hichijo, A, Morine, M. A case of fetal parvovirus B19 myocarditis that caused terminal heart failure. Case Rep Obstet Gynecol 2014; 2014: 463571. doi: 10.1155/2014/463571.Google Scholar
Li, JJ, Henwood, T, Van Hal, S, Charlton, A. Parvovirus infection: an immunohistochemical study using fetal and placental tissue. Pediatr Dev Pathol 2015; 18: 30–9. doi: 10.2350/14-05-1495-OA.1.Google Scholar
Grabowska, K, Wilson, RD. Fetal lung growth, development, and lung fluid: clinical management of pleural effusion and pulmonary pathology. In Kilby, MD, Oepkes, D, Johnson, A (eds), Fetal Therapy: Scientific Basis and Critical Appraisal of Clinical benefits. Cambridge: Cambridge University Press, 2013, pp. 282300.Google Scholar
Witlox, RS, Lopriore, E, Oepkes, D. Prenatal interventions for fetal lung lesions. Prenat Diag 2011; 31: 628–36.Google Scholar
Mann, S, Johnson, MP, Wilson, RD. Fetal thoracic and bladder shunts. Semin Fetal Neonatal Med 2010; 14: 2833.Google Scholar
Adzick, NS. Management of fetal lung lesions. Clin Perinatol 2009; 36: 363–76.Google Scholar
Ruano, R, Ramalho, AS, de Freitas, RC, et al. Three dimensional ultrasonographic assessment of fetal lung volume as a prognostic factor in primary pleural effusion. J Ultrasound Med 2012; 31: 1731–9.Google Scholar
Zamora, IJ, Sheikh, F, Cassady, CI, et al. Fetal MRI lung volumes are predictive of perinatal outcomes in fetuses with congenital lung masses. J Pediatr Surg 2014; 49: 853–8.Google Scholar
Rodeck, CH, Fisk, NM, Fraser, DI, Nicolini, U. Long-term in utero drainage of fetal hydrothorax. N Engl J Med 1988; 319: 1135–8.Google Scholar
Nicolaides, KH, Azar, GB. Thoraco-amniotic shunting. Fetal Diagn Ther 1990; 5: 153–64.Google Scholar
Bernaschek, G, Deutinger, J, Hansmann, M, et al. Feto-amniotic shunting: report of the experience of four European centres. Prenat Diagn 1994; 14: 821–33.Google Scholar
Picone, O, Benachi, A, Mandelbrot, L, et al. Thoracoamniotic shunting for fetal pleural effusions with hydrops. Am J Obstet Gynecol 2004; 191: 2047–50.Google Scholar
Smith, RP, Illanes, S, Denbow, ML, Soothill, PW. Outcome of fetal pleural effusions treated by thoracoamniotic shunting. Ultrasound Obstet Gynecol 2005; 26: 63–6.Google Scholar
Vanspranghels, R, Houfflin-Debarge, V, Vaast, P, et al. Does an intrauterine exchange transfusion improve the fetal prognosis in parvovirus infection cases? Transfusion 2019; 59: 185–90. https://doi.org/10.1111/trf.14968.Google Scholar
Grubman, O, Hussain, FN, Nelson, Z, Brustman, L. Maternal parvovirus B19 infection causing first-trimester increased nuchal transluncency and fetal hydrops. Case Rep Obstet Gynecol 2019; 2019: 3259760. https://doi.org/10.1155/2019/3259760.Google Scholar
Rustico, MA, Lanna, M, Coviello, D, Smoleniec, J, Nicolini, U. Fetal pleural effusion. Prenat Diagn 2007; 27: 793–9.Google Scholar
Yinon, Y, Grisaru-Granovsky, S, Chadha, V, et al. Perinatal outcome following fetal chest shunt insertion for pleural effusion. Ultrasound Obstet Gynecol 2010; 36: 5864.Google Scholar
Caserio, S, Gallego, C, Martin, P, et al. Congenital chylothorax: from foetal life to adolescence. Acta Paediatr 2010; 99: 1571–7.Google Scholar
Walsh, J, Mahony, R, Higgins, S, et al. Thoraco-amniotic shunting for fetal pleural effusion: a case series. Ir Med J 2011; 104: 205208.Google Scholar
Takahashi, Y, Kawabata, I, Sumie, M, et al. Thoracoamniotic shunting for fetal pleural effusions using a double-basket shunt. Prenat Diagn 2012; 32: 1282–7.Google Scholar
Pellegrinelli, JM, Kohler, A, Hohler, M, Weingertner, AS, Favre, R. Prenatal management and thoracoamniotic shunting in primary fetal pleural effusions: a single centre experience. Prenat Diagn 2012; 32: 467–71.Google Scholar
Petersen, S, Kaur, R, Thomas, JT, Cincotta, R, Gardener, G. The outcome of isolated primary fetal hydrothorax: a 10-year review from a tertiary center. Fetal Diagn Ther 2013; 34: 6976.Google Scholar
White, SB, Tutton, SM, Rilling, WS, et al. Percutaneous in utero thoracoamniotic shunt creation for fetal thoracic abnormalities leading to nonimmune hydrops. J Vas Interv Radiol 2014; 25: 889–94.Google Scholar
Derderian, SC, Trivedi, S, Farrell, J, et al. Outcomes of fetal intervention for primary hydrothorax. J Pediatr Surg 2014; 49: 900–3.Google Scholar
Nowakowska, D, Gaj, Z, Grzesiak, M, Gulczyńska, E, Wilczyński, J. Successful treatment of fetal bilateral primary chylothorax: report of the two cases. Ginekol Pol 2014; 85: 708–12.Google Scholar
Miyoshi, T, Katsuragi, S, Ikeda, T, et al. Retrospective review of thoracoamniotic shunting using a double-basket catheter for fetal chylothorax. Fetal Diagn Ther 2013; 34: 1925.Google Scholar
Reiterer, R, Grossauer, K, Morris, N, Uhrig, S, Resch, B. Congenital pulmonary lymphangiectasis. Paediatr Respir Rev 2014; 15: 275–80.Google Scholar
Toru, HS, Sanhal, CY, Yilmaz, GT, et al. Rare congenital pulmonary malformation with diagnostic challenging: congenital pulmonary lymphangiectasia, report of four autopsy cases and review of literature. J Matern Fetal Neonatal Med 2015; 28: 1457–60. doi: 10.3109/14767058.2014.956719.Google Scholar
Gray, M, Kovatis, KZ, Stuart, T, et al. Treatment of congenital pulmonary lymphangiectasia using ethiodized oil lymphangiography. J Perinatol 2014; 34: 720–2.Google Scholar
Yang, YS, Ma, GC, Shih, JC, et al. Experimental treatment of bilateral fetal chylothorax using in-utero pleurodesis. Ultrasound Obstet Gynecol 2012; 39: 5662.Google Scholar
Kim, JE, Lee, C, Park, KI, et al. Successful pleurodesis with OK_432 in preterm infants with persistent pleural effusion. Korean J Pediatr 2012; 55: 177–80Google Scholar
Leung, VKT, Suen, SSH, Ting, YH, et al. Intrapleural injection of OK-432 as the primary in-utero treatment for fetal chylothorax. Hong Kong Med J 2013; 18: 156–9.Google Scholar
Mallmann, MR, Geipel, A, Bludau, M, et al. Bronchopulmonary sequestration with massive pleural effusion: pleuroamniotic shunting vs intrafetal vascular laser ablation. Ultrasound Obstet Gynecol 2014; 44: 441–6.CrossRefGoogle ScholarPubMed
Cass, DL, Crombleholme, TM, Howell, LJ, et al. Cystic lung lesions with systemic arterial blood supply: a hybrid of congenital cystic adenomatous malformation and bronchopulmonary sequestration. J Pediatr Surg 1994; 32: 986–90.Google Scholar
Leninger, BJ, Haight, C. Congenital cystic adenomatoid malformation of the left lower lobe with compression of the remaining lung tissue in a newborn. Clin Pediatr (Phila) 1973; 12: 182–6.Google Scholar
Carter, R. Pulmonary sequestration. Ann Thorac Surg 1969; 7: 6888.Google Scholar
Roggin, KK, Breuer, CK, Carr, SR, et al. The unpredictable character of congenital cystic lung lesions. J Pediatr Surg 2000; 35; 801–5.Google Scholar
Laberge, JM, Flageole, H, Pugash, D, et al. Outcome of the prenatally diagnosed congenital cystic adenomatoid lung malformation: a Canadian experience. Fetal Diagn Ther 2001; 16: 178–86.Google Scholar
Gornall, AS, Budd, JLS, Draper, ES, Konje, JC, Kurinczuk, JJ. Congenital cystic adenomatoid malformation: accuracy of prenatal diagnosis, prevalence and outcome in a general population. Prenat Diagn 2003; 23: 9971002.Google Scholar
Stocker, TJ, Manewell, JE, Drake, RM. Congenital cystic adenomatoid malformation of the lung: classification and morphologic spectrum. Hum Pathol 1977; 8: 155–71.Google Scholar
Adzick, NS, Harrison, MR, Glick, PL, et al. Fetal cystic adenomatoid malformation: prenatal diagnosis and natural history. J Pediatr Surg 1985; 20: 483–8.Google Scholar
Liu, YP, Chen, CP, Shih, SL, et al. Fetal cystic lung lesions: evaluation with magnetic resonance imaging. Pediatr Pulmonol 2010; 45: 592600.Google Scholar
Davonport, M, Warne, SA, Cacciaguerra, S, et al. Current outcome of antenatally diagnosed cystic lung disease. J Pediatr Surg 2004; 39: 549–56.Google Scholar
Adzick, NS, Harrison, MR, Crombleholme, TM, Flake, AW, Howell, LJ. Fetal lung lesions: management and outcome. Am J Obstet Gynecol 1998; 179: 884–9.Google Scholar
De Santis, M, Masini, L, Noia, G, et al. Congenital cystic adenomatoid malformation of the lung: antenatal ultrasound findings and fetal-neonatal outcome. Fetal Diagn Ther 2000; 15: 246–50.Google Scholar
Crombleholme, TM, Coleman, B, Hedrick, H, et al. Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J Pediatr Surg 2002: 37: 331–8.Google Scholar
Chon, AH, Chmait, HR, Korst, LM, et al. Long-term outcomes after thoracoamniotic shunt for pleural effusions with secondary hydrops. J Surg Res 2019; 233: 304–9. https://doi.org/10.1016/j.jss.2018.08.022.Google Scholar
Suyama, F, Ozawa, K, Ogawa, K, et al. Fetal lung size after thoracoamniotic shunting refelects survival in primary fetal thorax with hydrops. J Obstet Gynaecol Res 2018; 44: 1216–20. https://doi.org/10.1111/jog.13657.Google Scholar
Guenot, C, Dubrit, K, Lepigeon, K, et al. Effect of maternal betamethasone on hydrops fetalis caused by extralobar pulmonary sequestration: a case report. J Obstet Gynaecol 2019; 39: 120–2. https://doi.org/10.1080/01443615.2018.1428541.Google Scholar
Chon, AH, Korst, LM, Abdel-Sattar, M, et al. Types II and III congenital airway malformation with hydrops treated in utero with percutaneous sclerotherapy. Prenat Diagn 2018; 38: 493–8. https://doi.org/10.1002/pd.5266.Google Scholar
Cass, DL, Olutoye, OO, Cassady, CI, et al. Prenatal diagnosis and outcome of fetal lung masses. J Pediatr Surg 2011; 46: 292–8.Google Scholar
Parenteau, WH, Wilson, RD, Leichty, KW, et al. Effect of maternal betamethasone administration on prenatal congenital cystic adenomatoid malformation growth and fetal survival. Fetal Diagn Ther 2007; 22: 365–71.Google Scholar
Curran, PF, Jelin, EB, Rand, L, et al. Prenatal steroids for microcystic congenital cystic adenomatoid malformations. J Pediatr Surg 2010; 45: 145–50.Google Scholar
Brown, RN. Multiple steroid courses result in tumor shrinkage in congenital pulmonary airway malformation (congenital cystic adenomatoid malformation) Prenat Diagn 2009; 29: 989–91.Google Scholar
Wilson, RD. In utero therapy for fetal thoracic abnormalities. Prenat Diagn 2008; 28: 619–25.Google Scholar
Thorpe-Beeston, JG, Nicolaides, KH. Cystic adenomatoid malformation of the lung: prenatal diagnosis and outcome. Prenat Diagn 1994; 14: 677–88Google Scholar
Dommergues, M, Louis-Sylvestre, C, Mandelbrot, L, et al. Congenital adenomatoid malformation of th lung: when is active fetal therapy indicated? Am J Obstet Gynecol 1997; 177: 953–8.Google Scholar
Morikawa, M, Yamada, H, Oluyama, K, et al. Prenatal diagnosis and fetal therapy of congenital cystic adenomatoid malformation type I of the lung: a report of five cases. Congenit Anom (Kyoto) 2003; 43: 72–8.Google Scholar
Wilson, RD, Baxter, JK, Johnson, MP, et al. Thoracoamniotic shunts: fetal treatment of pleural effusions and congenital cystic adenomatoid malformations. Fetal Diagn Ther 2004; 19: 413–20.Google Scholar
Illanes, S, Hunter, A, Evans, M, Cusick, E, Soothill, P. Prenatal diagnosis of echogenic lung: evolution and outcome. Ultrasound Obstet Gynecol 2004; 26: 145–9.Google Scholar
Ierullo, AM, Ganapathy, R, Crowley, S, et al. Neonatal outcome of antenatally diagnosed congenital cystic adenomatoid malformations. Ultrasound Obstet Gynecol 2004; 26: 150–3.Google Scholar
Cavoretto, P, Molina, F, Poggi, S, Davonport, M, Nicolaides, KH. Prenatal diagnosis and outcome of echogenic fetal lung lesions. Ultrasound Obstet Gynecol 2008; 32: 769–83.Google Scholar
Baud, B, Windrim, R, Kachura, JR, et al. Minimally invasive fetal therapy for hydrop lung masses: three different approaches and review of the literature. Ultrasound Obstet Gynecol 2013 Oct; 4: 440–8.Google Scholar
Romero, R, Pilu, G, Jeantry, P, et al. Nonimmune hydrops fetalis. In Romero, R, Pilu, G, Geantry, P, Ghidini, A, Hobbins, JC (eds), Prenatal Diagnosis of Congenital Anomalies. Norwalk, CT: Appleton and Lange, 1988, pp. 414–26.Google Scholar
Wilkins, I. Nonimmune hydrops. In Creasy, RK, Resnik, R (eds), Maternal-Fetal Medicine, 4th edn. Philadelphia, PA: Saunders, 1999, pp. 769–82.Google Scholar
Jones, DC. Nonimmune fetal hydrops: diagnosis and obstetrical management. Semin Perinatol 1995; 19: 447–61.Google Scholar
Ville, YG, Nowakowska, D. Prenatal diagnosis of fetal malformations by ultasound. In Milunsky, A, Milunsky, JM (eds), Genetic Disorders of the Fetus: Diagnosis, Prevention and Treatment, 6th edn. Oxford: Wiley-Blackwell, 2010, p. 860.Google Scholar
Danzer, E, Siegle, J, D’Agostino, JA, et al. Early neurodevelopmental outcome of infants with high-risk fetal lung lesions. Fetal Diagn Ther 2012; 31: 210–15.Google Scholar
Vrecenak, JD, Howell, LJ, Khalek, N, et al. Outcomes of prenatally diagnosed lung lesions in multigestational pregnancies. Fetal Diagn Ther 2014; 36: 312–19.Google Scholar
Désilets, V, Oligny, LL, Wilson, RD, et al. Fetal and perinatal autopsy in prenatally diagnosed fetal abnormalities with normal karyotype. J Obstet Gynaecol Can 2011; 33: 1047–57.Google Scholar
Swenson, E, Schema, L, McPherson, E. Radiographic evaluation of stillbirth: what does it contribute? Am J Med Genet A 2014; 164A: 2270–5.Google Scholar
Blumenfeld, Z, Khatib, N, Zimmer, EZ, Bronshtein, M. Fetal demise in the early second trimester: sonographic findings. J Clin Ultrasound 2015; 43: 109–12.Google Scholar
Nicolas, CT, Lynch-Salamon, D, Bendel-Stenzel, E, et al. Fetoscopy-assisted percutaneous decompression of the distal trachea and lungs reverses hydrops fetalis and fetal distress in a fetus with laryngeal atresia. Fetal Diagn Ther 2019; 46: 7580. https://doi.org/10.1159/000500455.Google Scholar
King, AJ, Higgs, DR. Potential new approaches to the management of the Hb Bart's hydrops fetalis syndrome: the most severe form of α-thalassemia. Hematology Am Soc Hematol Educ Program 2018; 2018: 353–60. https://doi.org/10.1182/asheducation-2018.1.353.Google Scholar
Jatavan, P, Chattipakorn, N, Tongsong, T. Fetal hemoglobin Bart’s hydrops fetalis: pathophysiology, prenatal diagnosis and possibility of intrauterine treatment. J Mat Fetal Neonat Med 2018; 31: 946–57. https://dx.doi.org/10.1080/14767058.1301423.Google Scholar
Yang, J, Peng, CF, Qi, Y, et al. Noninvasive prenatal detection of hemoglobin Bart hydrops fetalis via maternal plasma dispensed with parental haplotyping using the semiconductor sequencing platform. Am J Obstet Gynecol 2020; 222: 185.e117. https://doi.org/10.1016/j.ajog.2019.07.044.Google Scholar
Sudrié-Arnaud, B, Marguet, F, Patrier, S, et al. Metabolic causes of nonimmune hydrops fetalis: a next-generation sequencing panel as a first-line investigation. Clin Chim Acta 2018; 481: 18. https://doi.org/10.1016/j.cca.2018.02.023.Google Scholar
Michael, E, Hedberg-Oldfors, C, Wilmar, P, et al. Long-term follow-up and characteristic pathological findings in severe nemaline myopathy due to LMOD3 mutations. Neuromuscul Disord 2019; 29: 108–13. https://doi.org/10.1016/j.nmd.2018.12.009.Google Scholar
Schlotawa, L, Dierks, T, Christoph, S, et al. Severe neonatal multiple sulfatase deficiency presenting with hydrops fetalis in a preterm birth patient. JIMD Rep 2019; 49: 4852. https://doi.org/10.1002/jmd2.12074.Google Scholar
Lee, K, Fisher, R, Quinonez, SC, Ahmad, A. Infantile onset Pompe disease presenting with non-immune hydrops fetalis. Mol Genet Metab Rep 2019; 21: 100503; https://doi.org/10.1016/j.ymgmr.2019.100503.Google Scholar
Berger, VK, Sparks, TN, Jelin, AC, et al. Non-immune hydrops fetalis: do placentomegaly and polyhydramnios matter? J Ultrasound Med 2018; 37: 1185–91. https://doi.org/10.1002/jum.14462.Google Scholar
Chan, WY, Leung, AW, Luk, CW, et al. Outcomes and morbidities of patients who survive haemoglobin Bart’s hydrops fetalis syndrome: 20-year retrospective review. Hong Kong Med J 2018; 24: 107–18. https://doi.org/10.12809/hkmj176336.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×