Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T15:46:28.373Z Has data issue: false hasContentIssue false

Section 1 - Recipient Selection for Hematopoietic Cell Transplantation

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 23 - 58
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Thomas, ED, Blume, KG, Forman, SJ, eds. Hematopoietic Cell Transplantation. 2nd edition. Blackwell Science, Inc., Boston, MA: 1999Google Scholar
Atkinson, K, ed. Clinical Bone Marrow and Blood Stem Cell Transplantation. 2nd edition. Cambridge University Press, Cambridge, UK: 2000Google Scholar
Fried, LP, Bandeen-Roche, K, Kasper, JD, Guralnik, JM. Association of comorbidity with disability in older women: the Women’s Health and Aging Study. J Clin Epidemiol 52(1): 2737, 1999CrossRefGoogle ScholarPubMed
van Spronsen, DJ, Janssen-Heijnen, ML, Breed, WP, Coebergh, JW. Prevalence of co-morbidity and its relationship to treatment among unselected patients with Hodgkin’s disease and non-Hodgkin’s lymphoma, 1993–1996. Ann Hematol 78(7): 315–9, 1999Google Scholar
Greimel, ER, Padilla, GV, Grant, MM. Physical and psychosocial outcomes in cancer patients: a comparison of different age groups. Br J Cancer 76(2): 251–5, 1997CrossRefGoogle ScholarPubMed
Kurtz, ME, Kurtz, JC, Stommel, M, Given, CW, Given, B. The influence of symptoms, age, comorbidity and cancer site on physical functioning and mental health of geriatric women patients. Women Health 29(3): 112, 1999Google Scholar
Given, CW, Given, B, Azzouz, F, Stommel, M, Kozachik, S. Comparison of changes in physical functioning of elderly patients with new diagnoses of cancer. Med Care 38(5): 482–93, 2000CrossRefGoogle ScholarPubMed
Pinto, A, Zagonel, V, Ferrara, F. Acute myeloid leukemia in the elderly: biology and therapeutic strategies (Review). Crit Rev Oncol Hematol 39(3): 275–87, 2001CrossRefGoogle Scholar
van Spronsen, DJ, Janssen-Heijnen, ML, Lemmens, VE, Peters, WG, Coebergh, JW. Independent prognostic effect of co-morbidity in lymphoma patients: results of the population-based Eindhoven Cancer Registry. Eur J Cancer 41(7): 1051–7, 2005CrossRefGoogle ScholarPubMed
Extermann, M, Overcash, J, Lyman, GH, Parr, J, Balducci, L. Comorbidity and functional status are independent in older cancer patients. J Clin Oncol 16(4): 1582–7, 1998Google Scholar
Charlson, ME, Pompei, P, Ales, KL, MacKenzie, CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5): 373–83, 1987Google Scholar
Sorror, ML, Maris, MB, Storer, B, Sandmaier, BM, Diaconescu, R, Flowers, C, et al. Comparing morbidity and mortality of HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative and myeloablative conditioning: influence of pretransplant comorbidities. Blood 104(4): 961–8, 2004Google Scholar
Sorror, ML, Maris, MB, Storb, R, Baron, F, Sandmaier, BM, Maloney, DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106(8): 2912–9, 2005Google Scholar
Sorror, ML, Sandmaier, BM, Storer, BE, Maris, MB, Baron, F, Maloney, DG, et al. Comorbidity and disease status-based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation. J Clin Oncol 25(27): 4246–54, 2007Google Scholar
Lim, ZY, Ingram, W, Brand, R, Ho, A, Kenyon, M, Devereux, S, et al. Impact of pretransplant comorbidities on alemtuzumab-based reduced-intensity conditioning allogeneic hematopoietic SCT for patients with high-risk myelodysplastic syndrome and AML. Bone Marrow Transplant 45(4): 633–9, 2010CrossRefGoogle ScholarPubMed
Mohty, M, Labopin, M, Basara, N, Cornelissen, JJ, Tabrizi, R, Malm, C, et al. Association between the Hematopoietic Cell Transplantation-Specific Comorbidity Index (CI) and non-relapse mortality (NRM) after reduced intensity conditioning (RIC) allogeneic stem cell transplantation (allo-SCT) for acute myeloid leukemia (AML) in first complete remission (CR1). [Abstract] Blood 114(22): 270, #650,2009CrossRefGoogle Scholar
Kerbauy, DMB, Chyou, F, Gooley, T, Sorror, ML, Scott, B, Pagel, JM, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia. Biol Blood Marrow Transplant 11: 713–20, 2005Google Scholar
Sorror, ML, Storer, BE, Maloney, DG, Sandmaier, BM, Martin, PJ, Storb, R. Outcomes after allogeneic hematopoietic cell transplantation with nonmyeloablative or myeloablative regimens for treatment of lymphoma and chronic lymphocytic leukemia. Blood 111(1): 446–52, 2008CrossRefGoogle ScholarPubMed
Farina, L, Bruno, B, Patriarca, F, Spina, F, Sorasio, R, Morelli, M, et al. The hematopoietic cell transplantation comorbidity index (HCT-CI) predicts clinical outcomes in lymphoma and myeloma patients after reduced-intensity or non-myeloablative allogeneic stem cell transplantation. Leukemia 23(6): 1131–8, 2009CrossRefGoogle ScholarPubMed
Pollack, SM, Steinberg, SM, Odom, J, Dean, RM, Fowler, DH, Bishop, MR. Assessment of the hematopoietic cell transplantation comorbidity index in non-Hodgkin lymphoma patients receiving reduced-intensity allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 15(2): 223–30, 2009Google Scholar
Sorror, ML, Storer, BE, Sandmaier, BM, Maris, M, Shizuru, J, Maziarz, R, et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J Clin Oncol 26(30): 4912–20, 2008Google Scholar
Pavlu, J, Kew, AK, Taylor-Roberts, B, Auner, HW, Marin, D, Olavarria, E, et al. Optimizing patient selection for myeloablative allogeneic hematopoietic cell transplantation in chronic myeloid leukemia in chronic phase. Blood 115(20): 4018–20, 2010CrossRefGoogle ScholarPubMed
Sorror, ML, Giralt, S, Sandmaier, BM, de Lima, M, Shahjahan, M, Maloney, DG, et al. Hematopoietic cell transplantation-specific comorbidity index as an outcome predictor for patients with acute myeloid leukemia in first remission: Combined FHCRC and MDACC experiences. Blood 110(13): 4608–13, 2007Google Scholar
Appelbaum, FR, Gundacker, H, Head, DR, Slovak, ML, Willman, CL, Godwin, JE, et al. Age and acute myeloid leukemia. Blood 107(9): 3481–5, 2006CrossRefGoogle ScholarPubMed
Artz, AS, Pollyea, DA, Kocherginsky, M, Stock, W, Rich, E, Odenike, O, et al. Performance status and comorbidity predict transplant-related mortality after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 12(9): 954–64, 2006Google Scholar
Sorror, M, Storer, B, Sandmaier, BM, Maloney, DG, Chauncey, TR, Langston, A, et al. Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation. Cancer 112: 19922001, 2008Google Scholar
Gratwohl, A, Stern, M, Brand, R, Apperley, J, Baldomero, H, de Witte, T, et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer 115(20): 4715–26, 2009Google Scholar
Gratwohl, A, Hermans, J, Goldman, JM, Arcese, W, Carreras, E, Devergie, A, et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Lancet 352(9134): 1087–92, 1998Google Scholar
Elsawy, M, Storer, BE, Sorror, ML. “To combine or not to combine”: Optimizing risk assessment before allogeneic hematopoietic cell transplantation (Letter). Biol Blood Marrow Transplant 20(9):1455–6, 2014Google Scholar
Appelbaum, FR. Preparative regimens and ageism. Biol Blood Marrow Transplant 17(10): 1419–20, 2011Google Scholar
Sorror, ML, Storb, R, Sandmaier, BM, Maziarz, RT, Pulsipher, MA, Maris, MB, et al. Comorbidity-age index: a clinical measure of biological age prior to allogeneic hematopoietic cell transplantation. J Clin Oncol 32(29):3249–56, 2014CrossRefGoogle Scholar
Orszag, PR, Emanuel, EJ. Health care reform and cost control. N Engl J Med 363(7): 601–3, 2010Google Scholar
Kahl, C, Storer, BE, Sandmaier, BM, Mielcarek, M, Maris, MB, Blume, KG, et al. Relapse risk among patients with malignant diseases given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood 110(7): 2744–8, 2007Google Scholar
Sorror, ML, Sandmaier, BM, Storer, BE, Franke, GN, Laport, GG, Chauncey, TR, et al. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies. JAMA 306(17): 1874–83, 2011Google Scholar
Djousse, L, Rothman, KJ, Cupples, LA, Levy, D, Ellison, RC. Serum albumin and risk of myocardial infarction and all-cause mortality in the Framingham Offspring Study. Circulation 106(23): 2919–24, 2002Google Scholar
Deeg, HJ, Spaulding, E, Shulman, HM. Iron overload, hematopoietic cell transplantation, and graft-versus-host disease. Leuk Lymphoma 50(10): 1566–72, 2009Google ScholarPubMed
Sorror, ML, Storer, BE, Schoch, G, Sandmaier, BM, Martin, PJ, Scott, BL, et al. Low albumin, high ferritin, and thrombocytopenia before transplant predict non-relapse mortality (NRM) independent of the hematopoeitic cell transplantation comorbidity index (HCT-CI). [Abstract] Blood 114(22): 271, #651,2009. https://www.ncbi.nlm.nih.gov/pubmed/25862589CrossRefGoogle Scholar
Sherman, AE, Motyckova, G, Fega, KR, DeAngelo, DJ, Abel, GA, Steensma, D, et al. Geriatric assessment in older patients with acute myeloid leukemia: a retrospective study of associated treatment and outcomes. Leuk Res 37(9): 998-1003, 2013Google Scholar
Deschler, B, Ihorst, G, Platzbecker, U, Germing, U, Marz, E, de Figuerido, M, et al. Parameters detected by geriatric and quality of life assessment in 195 older patients with myelodysplastic syndromes and acute myeloid leukemia are highly predictive for outcome. Haematologica 98(2): 208–16, 2013Google Scholar
Muffly, LS, Kocherginsky, M, Stock, W, Chu, Q, Bishop, MR, Godley, LA, et al. Geriatric assessment to predict survival in older allogeneic hematopoietic cell transplantation recipients. Haematologica;99(8):1373–9, 2014Google Scholar
Sorror, ML, Martin, PJ, Storb, R, Bhatia, S, Maziarz, RT, Pulsipher, MA, et al. Pretransplant comorbidities predict severity of acute graft-versus-host disease and subsequent mortality. Blood 124(2): 287–95, 2014Google Scholar
Sorror, ML, Yi, JC, Storer, BE, Rock, EE, Artherholt, SB, Storb, R, et al. Association of pre-transplant comorbidities with long-term quality of life (QOL) among survivors after allogeneic hematopoietic cell transplantation (HCT). [Abstract] Biol Blood Marrow Transplant 19(2): S153, 2013Google Scholar
Sorror, ML, Logan, BR, Zhu, X, Rizzo, JD, Cooke, KR, McCarthy, PL, et al. Prospective validation of the predictive power of the hematopoietic cell transplantation comorbidity index: a Center for International Blood and Marrow Transplant Research study. Biol Blood Marrow Transplant 21(8): 1479–87, 2015Google Scholar
Sorror, ML, Ostronoff, F, Storb, R, Bhatia, S, Maziarz, RT, Pulsipher, MA, et al. Multi-institutional validation of the predictive power of the hematopoietic cell transplantation comorbidity index (HCT-CI) for HCT outcomes. [Abstract] Blood 118(21): #145, 2011CrossRefGoogle Scholar
Smith, AR, Majhail, NS, MacMillan, ML, Defor, TE, Jodele, S, Lehmann, LE, et al. Hematopoietic cell transplantation comorbidity index predicts transplantation outcomes in pediatric patients. Blood 117(9): 2728–34, 2011CrossRefGoogle ScholarPubMed
Ratan, R, Ceberio, I, Hilden, P, Devlin, SM, Malloy, MA, Barker, JN, et al. The Hematopoietic Cell Transplant-Co-Morbidity Index (HCT-CI) predicts outcomes after T cell depleted (TCD) allogeneic HCT for AML and MDS. [Abstract] Blood 122(21): 2045, 2013Google Scholar
Bokhari, SW, Watson, L, Nagra, S, Cook, M, Byrne, JL, Craddock, C, et al. Role of HCT-comorbidity index, age and disease status at transplantation in predicting survival and non-relapse mortality in patients with myelodysplasia and leukemia undergoing reduced-intensity-conditioning hemopoeitic progenitor cell transplantation. Bone Marrow Transplant 47(4): 528–34, 2012Google Scholar
Le, RQ, Jain, NA, Tian, X, Ito, S, Lu, K, Haggerty, J, et al. Comorbidity measures in ex vivo T cell depleted allogeneic hematopoietic stem cell transplantation (HCT). [Abstract] Blood 122(21), 2013Google Scholar
Sorror, ML. Comorbidities and hematopoietic cell transplantation outcomes. pp. 237–47. In Gewirtz, AM, Mikhael, JR, Schwartz, BS, Crowther, MA, editors. Hematology 2010: American Society of Hematology Education Program Book. American Society of Hematology, Washington, DC: 2010Google Scholar
Kerbauy, DMB, Gooley, TA, Sale, GE, Flowers, MED, Doney, KC, Georges, GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant 13(3): 355–65, 2007Google Scholar
Maruyama, D, Fukuda, T, Kato, R, Yamasaki, S, Usui, E, Morita-Hoshi, Y, et al. Comparable antileukemia/lymphoma effects in nonremission patients undergoing allogeneic hematopoietic cell transplantation with a conventional cytoreductive or reduced-intensity regimen. Biol Blood Marrow Transplant 13(8): 932–41, 2007Google Scholar
Artz, AS, Wickrema, A, Dinner, S, Godley, LA, Kocherginsky, M, Odenike, O, et al. Pretreatment C-reactive protein is a predictor for outcomes after reduced-intensity allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 14(11): 1209–16, 2008Google Scholar
Majhail, NS, Brunstein, CG, McAvoy, S, Defor, TE, Al-Hazzouri, A, Setubal, D, et al. Does the hematopoietic cell transplantation specific comorbidity index predict transplant outcomes? A validation study in a large cohort of umbilical cord blood and matched related donor transplants. Biol Blood Marrow Transplant 14(9): 985–92, 2008Google Scholar
Kataoka, K, Nannya, Y, Ueda, K, Kumano, K, Takahashi, T, Kurokawa, M. Differential prognostic impact of pretransplant comorbidity on transplant outcomes by disease status and time from transplant: a single Japanese transplant centre study. Bone Marrow Transplant 45(3): 513–20, 2010Google Scholar
Barba, P, Piñana, JL, Martino, R, Valcárcel, D, Amorós, A, Sureda, A, et al. Comparison of two pretransplant predictive models and a flexible HCT-CI using different cut points to determine low-, intermediate-, and high-risk groups: the flexible HCT-CI is the best predictor of NRM and OS in a population of patients undergoing allo-RIC. Biol Blood Marrow Transplant 16(3): 413–20, 2010Google Scholar
Raimondi, R, Tosetto, A, Oneto, R, Cavazzina, R, Rodeghiero, F, Bacigalupo, A, et al. Validation of the Hematopoietic Cell Transplantation-Specific Comorbidity Index: a prospective, multicenter GITMO study. Blood 120(6): 1327–33, 2012Google Scholar
Hashmi, S, Oliva, JL, Liesveld, JL, Phillips, GL, Milner, L, Becker, MW. The hematopoietic cell transplantation specific comorbidity index and survival after extracorporeal photopheresis, pentostatin, and reduced dose total body irradiation conditioning prior to allogeneic stem cell transplantation. Leuk Res 37(9): 1052–6, 2013CrossRefGoogle ScholarPubMed
Mo, XD, Xu, LP, Liu, DH, Zhang, XH, Chen, H, Chen, YH, et al. The hematopoietic cell transplantation-specific comorbidity index (HCT-CI) is an outcome predictor for partially matched related donor transplantation. Am J Hematol 88(6): 497502, 2013Google Scholar
Bayraktar, UD, Shpall, EJ, Liu, P, Ciurea, SO, Rondon, G, de LM, et al. Hematopoietic cell transplantation-specific comorbidity index predicts inpatient mortality and survival in patients who received allogeneic transplantation admitted to the intensive care unit. J Clin Oncol 31(33): 4207–14, 2013Google Scholar
Chemnitz, JM, Chakupurakal, G, Basler, M, Holtick, U, Theurich, S, Shimabukuro-Vornhagen, A, et al. Pretransplant comorbidities maintain their impact on allogeneic stem cell transplantation outcome 5 years posttransplant: a retrospective study in a single German institution. ISRN Hematology: Article ID 853435, 2014Google Scholar
DeFor, TE, Majhail, NS, Weisdorf, DJ, Brunstein, CG, McAvoy, S, Arora, M, et al. A modified comorbidity index for hematopoietic cell transplantation. Bone Marrow Transplant 45(5): 933–8, 2010Google Scholar
Birninger, N, Bornhäuser, M, Schaich, M, Ehninger, G, Schetelig, J. The hematopoietic cell transplantation-specific comorbidity index fails to predict outcomes in high-risk AML patients undergoing allogeneic transplantation: investigation of potential limitations of the index. Biol Blood Marrow Transplant 17(12): 1822–32, 2011Google Scholar
Terwey, TH, Hemmati, PG, Martus, P, Dietz, E, Vuong, LG, Massenkeil, G, et al. A modifed EBMT risk score and the hematopoietic cell transplantation-specific comorbidity index for pre-transplant risk assessment in adult acute lymphoblastic leukemia. Haematologica 95(5): 810–8, 2010Google Scholar
Xhaard, A, Porcher, R, Chien, JW, de Latour, RP, Robin, M, Ribaud, P, et al. Impact of comorbidity indexes on non-relapse mortality. Leukemia 22(11): 2062–9, 2008Google Scholar
Guilfoyle, R, Demers, A, Bredeson, C, Richardson, E, Rubinger, M, Szwajcer, D, et al. Performance status, but not the hematopoietic cell transplantation comorbidity index (HCT-CI), predicts mortality at a Canadian transplant center. Bone Marrow Transplant 43(2): 133–9, 2009Google Scholar
Castagna, L, Furst, S, Marchetti, N, El, CJ, Faucher, C, Mohty, M, et al. Retrospective analysis of common scoring systems and outcome in patients older than 60 years treated with reduced-intensity conditioning regimen and alloSCT. Bone Marrow Transplant 46(7): 1000–5, 2011Google Scholar
Williams, M, Murray, J, Kulkarni, S, Bloor, A. HCT-CI correlates poorly with outcome following allogeneic stem cell transplant: impact of underlying diagnosis, patient selection and assessment of organ function. 38th Annual Meeting of the European Group for Blood and Marrow Transplantation. [Abstract] Bone Marrow Transplant 47(1): S205S206, #646, 2012Google Scholar
Nakaya, A, Mori, T, Tanaka, M, Tomita, N, Nakaseko, C, Yano, S, et al. Does the hematopoietic cell transplantation specific comorbidity index predict transplantation outcomes? Biol Blood Marrow Transplant 20(10):1553–9, 2014Google Scholar
Elsawy, M, Storer, BE, Pulsipher, MA, Maziarz, RT, Bhatia, S, Maris, MB, et al. Multi-centre validation of the prognostic value of the haematopoietic cell transplantation-specific comorbidity index among recipient of allogenic haematopoietic cell transplantation. Br J Haematol. 2015;170(4):574–83CrossRefGoogle ScholarPubMed
Imamura, K, McKinnon, M, Middleton, R, Black, N. Reliability of a comorbidity measure: the Index of Co-Existent Disease (ICED). J Clin Epidemiol 50(9): 1011–6, 1997Google Scholar
Sorror, M. How I assess comorbidities prior to hematopoietic cell transplantation. Blood 121(15): 2854–63, 2013CrossRefGoogle Scholar
Pasquini, MC, Griffith, LM, Arnold, DL, Atkins, HL, Bowen, JD, Chen, JT, et al. Hematopoietic stem cell transplantation for multiple scerosis: collaboration of the CIBMTR and EBMT to facilitate international clinical studies. Biol Blood Marrow Transplant 16(8): 1076–83, 2010CrossRefGoogle Scholar
Bentley, TS, Hanson, SG. U.S. organ and tissue transplant cost estimates and discussion. Milliman Research Report. Available at http://publications.milliman.com/research/health-rr/pdfs/2011-us-organ-tissue.pdf, 2011Google Scholar
Ortner, NJ. U.S. organ and tissue transplant cost estimates and discussion. Milliman Research Report, Available at: http://publications.milliman.com/research/health-rr/pdfs/US-Organ-Tissue-Transplant-2005-RR06-01–05.pdf, 2005Google Scholar
Comorbidity and Regimen Related Toxicity (RRT) Committee Report. Improving prognostic assessment for patients 60 years and older undergoing allogeneic HCT. BMT CTN State of the Science Symposium, Feb 24–25, 2014. Available at http://www.cvent.com/events/bmt-ctn-state-of-the-science-symposium/custom-17-d54c4d401ae642c4b2f549b39e52c539.aspx, 2014Google Scholar
Armand, P, Gibson, CJ, Cutler, C, Ho, VT, Koreth, J, Alyea, EP, et al. A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood 120(4): 905–13, 2012CrossRefGoogle ScholarPubMed
Deeg, HJ, Scott, BL, Fang, M, Shulman, HM, Gyurkocza, B, Myerson, D, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood 120(7): 1398–408, 201Google Scholar
Elsawy, M, Storer, BE, Sandmaier, B, Delaney, C, Appelbaum, F, Woolfrey, AE, et al. Role of comorbidities in prognostic evaluation of outcomes following allogeneic hematopoietic cell transplantation from HLA-mismatched and umbilical cord blood donor grafts. Blood 124:2583, 2014Google Scholar
Sorror, ML, Logan, BR, Zhu, X, Rizzo, JD, Cooke, KR, McCarthy, PL, et al. Prospective validation of the predictive power of the hematopoietic cell transplantation comorbidity index. Biol Blood Marrow Transplant 21(8):1479–87, 2015CrossRefGoogle ScholarPubMed

References

Myers, LA, Patel, DD, Puck, JM, Buckley, RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99(3):872–8.CrossRefGoogle ScholarPubMed
Sorror, ML, Maris, MB, Storb, R, Baron, F, Sandmaier, BM, Maloney, DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9.Google Scholar
Sorror, ML. How I assess comorbidities before hematopoietic cell transplantation. Blood. 2013;121(15):2854–63.Google Scholar
Zhang, P, Song, A, Wang, Z, Feng, S, Qiu, L, Han, M. Hematopoietic SCT in patients with a history of invasive fungal infection. Bone Marrow Transplant. 2009;43(7):533–7.Google Scholar
Georgiadou, SP, Lewis, RE, Best, L, Torres, HA, Champlin, RE, Kontoyiannis, DP. The impact of prior invasive mold infections in leukemia patients who undergo allo-SCT in the era of triazole-based secondary prophylaxis. Bone Marrow Transplant. 2013;48(1):141–3.Google Scholar
Kinnebrew, MA, Lee, YJ, Jenq, RR, Lipuma, L, Littmann, ER, Gobourne, A, et al. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation. PLoS one. 2014;9(3):e90158.Google Scholar
Zacharioudakis, IM, Ziakas, PD, Mylonakis, E. Clostridium difficile infection in the hematopoietic unit: a meta-analysis of published studies. Biol Blood Marrow Transplant. 2014.[Epub ahead of print].Google Scholar
Kumar, D, Humar, A, Plevneshi, A, Siegal, D, Franke, N, Green, K, et al. Invasive pneumococcal disease in adult hematopoietic stem cell transplant recipients: a decade of prospective population-based surveillance. Bone Marrow Transplant. 2008;41(8):743–7.Google Scholar
Prabhu, RM, Piper, KE, Litzow, MR, Steckelberg, JM, Patel, R. Emergence of quinolone resistance among viridans group streptococci isolated from the oropharynx of neutropenic peripheral blood stem cell transplant patients receiving quinolone antimicrobial prophylaxis. Eur J Clin Microbiol Infect Dis. 2005;24(12):832–8.Google Scholar
Guthrie, KA, Yong, M, Frieze, D, Corey, L, Fredricks, DN. The impact of a change in antibacterial prophylaxis from ceftazidime to levofloxacin in allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45(4):675–81.CrossRefGoogle ScholarPubMed
Giaccone, L, Festuccia, M, Marengo, A, Resta, I, Sorasio, R, Pittaluga, F, et al. Hepatitis B virus reactivation and efficacy of prophylaxis with lamivudine in patients undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2010;16(6):809–17.Google Scholar
Peffault de Latour, R, Lévy, V, Asselah, T, Marcellin, P, Scieux, C, Adès, L, et al. Long-term outcome of hepatitis C infection after bone marrow transplantation. Blood. 2003;103(5):1618–24.Google Scholar
Nakasone, H, Kurosawa, S, Yakushijin, K, Taniguchi, S, Murata, M, Ikegame, K, et al. Impact of hepatitis C virus infection on clinical outcome in recipients after allogeneic hematopoietic cell transplantation. Am J Hematol. 2013;88(6):477–84.Google Scholar
Tomblyn, M, Chen, M, Kukreja, M, Aljurf, MD, Al Mohareb, F, Bolwell, BJ, et al. No increased mortality from donor or recipient hepatitis B- and/or hepatitis C-positive serostatus after related-donor allogeneic hematopoietic cell transplantation. Transpl Infect Dis. 2012;14(5):468–78.Google Scholar
Tomblyn, M, Chiller, T, Einsele, H, Gress, R, Sepkowitz, K, Storek, J, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15(10):1143–238.Google Scholar
Re, A, Michieli, M, Casari, S, Allione, B, Cattaneo, C, Rupolo, M, et al. High-dose therapy and autologous peripheral blood stem cell transplantation as salvage treatment for AIDS-related lymphoma: long-term results of the Italian Cooperative Group on AIDS and Tumors (GICAT) study with analysis of prognostic factors. Blood. 2009;114(7):1306–13.Google Scholar
Krishnan, A, Palmer, JM, Zaia, JA, Tsai, NC, Alvarnas, J, Forman, SJ. HIV status does not affect the outcome of autologous stem cell transplantation (ASCT) for non-Hodgkin lymphoma (NHL). Biol Blood Marrow Transplant. 2010;16(9):1302–8.Google Scholar
Durand, CM, Ambinder, RF. Hematopoietic stem cell transplantation in HIV-1-infected individuals: clinical challenges and the potential for viral eradication. Curr Opin Oncol. 2013;25(2):180–6.Google Scholar
Hutter, G, Zaia, JA. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: the experiences of more than 25 years. Clin Exp Immunol. 2011;163(3):284–95.Google Scholar
Dictar, M, Sinagra, A, Veron, MT, Luna, C, Dengra, C, De Rissio, A, et al. Recipients and donors of bone marrow transplants suffering from Chagas’ disease: management and preemptive therapy of parasitemia. Bone Marrow Transplant. 1998;21(4):391–3.Google Scholar
Villeneuve, L, Cassaing, S, Magnaval, JF, Boisseau, M, Huynh, A, Demur, C, et al. Plasmodium falciparum infection following allogeneic bone-marrow transplantation. Ann Trop Med Parasitol. 1999;93(5):533–5.Google Scholar
Mejia, R, Booth, GS, Fedorko, DP, Hsieh, MM, Khuu, HM, Klein, HG, et al. Peripheral blood stem cell transplant-related Plasmodium falciparum infection in a patient with sickle cell disease. Transfusion. 2012;52(12):2677–82.Google Scholar
Klein, MB, Miller, JS, Nelson, CM, Goodman, JL. Primary bone marrow progenitors of both granulocytic and monocytic lineages are susceptible to infection with the agent of human granulocytic ehrlichiosis. J Infect Dis. 1997;176(5):1405–9.Google Scholar
Goldman, KE. Dental management of patients with bone marrow and solid organ transplantation. Dent Clin North Am. 2006;50(4):659–76, viii.Google Scholar
Yamagata, K, Onizawa, K, Yanagawa, T, Hasegawa, Y, Kojima, H, Nagasawa, T, et al. A prospective study to evaluate a new dental management protocol before hematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;38(3):237–42.Google Scholar
Elad, S, Thierer, T, Bitan, M, Shapira, MY, Meyerowitz, C. A decision analysis: the dental management of patients prior to hematology cytotoxic therapy or hematopoietic stem cell transplantation. Oral Oncol. 2008;44(1):3742.Google Scholar
George, B, Pati, N, Gilroy, N, Ratnamohan, M, Huang, G, Kerridge, I, et al. Pre-transplant cytomegalovirus (CMV) serostatus remains the most important determinant of CMV reactivation after allogeneic hematopoietic stem cell transplantation in the era of surveillance and preemptive therapy. Transpl Infect Dis. 2010;12(4):322–9.Google Scholar
Chemaly, RF, Ullmann, AJ, Stoelben, S, Richard, MP, Bornhauser, M, Groth, C, et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med. 2014;370(19):1781–9.Google Scholar
Zallio, F, Primon, V, Tamiazzo, S, Pini, M, Baraldi, A, Corsetti, MT, et al. Epstein–Barr virus reactivation in allogeneic stem cell transplantation is highly related to cytomegalovirus reactivation. Clin Transplant. 2013;27(4):E491–7.CrossRefGoogle ScholarPubMed
Kato, K, Kanda, Y, Eto, T, Muta, T, Gondo, H, Taniguchi, S, et al. Allogeneic bone marrow transplantation from unrelated human T-cell leukemia virus-I-negative donors for adult T-cell leukemia/lymphoma: retrospective analysis of data from the Japan Marrow Donor Program. Biol Blood Marrow Transplant. 2007;13(1):90–9.Google Scholar
Pfeiffer, CD, Fine, JP, Safdar, N. diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis. 2006;42(10):1417–727.Google Scholar
Lee, J, Lee, MH, Kim, WS, Kim, K, Park, SH, Lee, SH, et al. Tuberculosis in hematopoietic stem cell transplant recipients in Korea. Int J Hematol. 2004;79(2):185–8.Google Scholar
Kobashi, Y, Mouri, K, Obase, Y, Fukuda, M, Miyashita, N, Oka, M. Clinical evaluation of QuantiFERON TB-2G test for immunocompromised patients. Eur Respir J. 2007;30(5):945–50.Google Scholar
Moon, SM, Lee, SO, Choi, SH, Kim, YS, Woo, JH, Yoon, DH, et al. Comparison of the QuantiFERON-TB Gold In-Tube test with the tuberculin skin test for detecting latent tuberculosis infection prior to hematopoietic stem cell transplantation. Transpl Infect Dis. 2013;15(1):104–9.CrossRefGoogle ScholarPubMed
Onozawa, M, Hashino, S, Darmanin, S, Okada, K, Morita, R, Takahata, M, et al. HB vaccination in the prevention of viral reactivation in allogeneic hematopoietic stem cell transplantation recipients with previous HBV infection. Biol Blood Marrow Transplant. 2008;14(11):1226–30.Google Scholar
Hsiao, LT, Chiou, TJ, Liu, JH, Chu, CJ, Lin, YC, Chao, TC, et al. Extended lamivudine therapy against hepatitis B virus infection in hematopoietic stem cell transplant recipients. Biol Blood Marrow Transplant. 2006;12(1):8494.Google Scholar
Lin, PC, Poh, SB, Lee, MY, Hsiao, LT, Chen, PM, Chiou, TJ. Fatal fulminant hepatitis B after withdrawal of prophylactic lamivudine in hematopoietic stem cell transplantation patients. Int J Hematol. 2005;81(4):349–51.Google Scholar
Ramos, CA, Saliba, RM, de Padua, Silva L, Khorshid, O, Shpall, EJ, Giralt, S, et al. Resolved hepatitis B virus infection is not associated with worse outcome after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2010;16(5):686–94.Google Scholar
Shuhart, MC, Myerson, D, Childs, BH, Fingeroth, JD, Perry, JJ, Snyder, DS, et al. Marrow transplantation from hepatitis C virus seropositive donors: transmission rate and clinical course. Blood. 1994;84(9):3229–35.Google Scholar
Ho, VT, Kim, HT, Aldridge, J, Liney, D, Kao, G, Armand, P, et al. Use of matched unrelated donors compared with matched related donors is associated with lower relapse and superior progression-free survival after reduced-intensity conditioning hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17(8):1196–204.Google Scholar
Peffault de Latour, R, Brunstein, CG, Porcher, R, Chevallier, P, Robin, M, Warlick, E, et al. Similar overall survival using sibling, unrelated donor, and cord blood grafts after reduced-intensity conditioning for older patients with acute myelogenous leukemia. Biol Blood Marrow Transplant. 2013;19(9):1355–60.Google Scholar
Bachanova, V, Brunstein, CG, Burns, LJ, Miller, JS, Luo, X, Defor, T, et al. Fewer infections and lower infection-related mortality following non-myeloablative versus myeloablative conditioning for allotransplantation of patients with lymphoma. Bone Marrow Transplant. 2009;43(3):237–44.Google Scholar
Deeg, HJ, Sandmaier, BM. Who is fit for allogeneic transplantation? Blood. 2010;116(23):4762–70.Google Scholar
Xuan, L, Huang, F, Fan, Z, Zhou, H, Zhang, X, Yu, G, et al. Effects of intensified conditioning on Epstein–Barr virus and cytomegalovirus infections in allogeneic hematopoietic stem cell transplantation for hematological malignancies. J Hematol Oncol. 2012;5:46.Google Scholar
Roux, E, Helg, C, Chapuis, B, Jeannet, M, Roosnek, E. T-cell repertoire complexity after allogeneic bone marrow transplantation. Hum Immunol. 1996;48(1–2):135–8.CrossRefGoogle ScholarPubMed
Komanduri, KV, St John, LS, de Lima, M, McMannis, J, Rosinski, S, McNiece, I, et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood. 2007;110(13):4543–51.Google Scholar
Lukenbill, J, Rybicki, L, Sekeres, MA, Zaman, MO, Copelan, A, Haddad, H, et al. Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2013;19(5):720–4.Google Scholar
Renaud, C, Xie, H, Seo, S, Kuypers, J, Cent, A, Corey, L, et al. Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients. Biol Blood Marrow Transplant. 2013;19(8):1220–6.Google Scholar
Kim, YJ, Guthrie, KA, Waghmare, A, Walsh, EE, Falsey, AR, Kuypers, J, et al. Respiratory syncytial virus in hematopoietic cell transplant recipients: factors determining progression to lower respiratory tract disease. J Infect Dis. 2014;209(8):1195–204.Google Scholar
Seo, S, Xie, H, Campbell, AP, Kuypers, JM, Leisenring, WM, Englund, JA, et al. Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplant: viral detection in the lung predicts outcome. Clin Infect Dis. 2014;58(10):1357–68.Google Scholar
Wolfromm, A, Porcher, R, Legoff, J, de Latour, RP, Xhaard, A, de Fontbrune, FS, et al. Viral respiratory infections diagnosed by multiplex PCR after allogeneic hematopoietic stem cell transplantation: long-term incidence and outcome. Biol Blood Marrow Transplant. 2014. [Epub ahead of print].Google Scholar
Abandeh, FI, Lustberg, M, Devine, S, Elder, P, Andritsos, L, Martin, SI. Outcomes of hematopoietic SCT recipients with rhinovirus infection: a matched, case-control study. Bone Marrow Transplant. 2013;48(12):1554–7.Google Scholar
Kumar, D, Chen, MH, Welsh, B, Siegal, D, Cobos, I, Messner, HA, et al. A randomized, double-blind trial of pneumococcal vaccination in adult allogeneic stem cell transplant donors and recipients. Clin Infect Dis. 2007;45(12):1576–82.Google Scholar

References

Pasquini, M, Wang, Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides. 2013.Google Scholar
Artz, A, Ershler, W. Hematopoietic cell transplantation in older adults. In Hurria, A, Cohen, HJ, editors. Practical geriatric oncology. Cambridge, New York: Cambridge University Press; 2010. p. 1 online resource (x, 435 p.).Google Scholar
Ustun, C, Lazarus, HM, Weisdorf, D. To transplant or not: a dilemma for treatment of elderly AML patients in the twenty-first century. Bone Marrow Transplant. 2013;48(12):1497–505.Google Scholar
Oran, B, Weisdorf, DJ. Survival for older patients with acute myeloid leukemia: a population-based study. Haematologica. 2012;97(12):1916–24.Google Scholar
Richa, E, Papari, M, Allen, J, Martinez, G, Wickrema, A, Anastasi, J, et al. Older age but not donor health impairs allogeneic granulocyte colony-stimulating factor (G-CSF) peripheral blood stem cell mobilization. Biol Blood Marrow Transplant. 2009;15(11):1394–9.Google Scholar
Alousi, AM, Le-Rademacher, J, Saliba, RM, Appelbaum, FR, Artz, A, Benjamin, J, et al. Who is the better donor for older hematopoietic transplant recipients: an older-aged sibling or a young, matched unrelated volunteer? Blood. 2013;121(13):2567–73.Google Scholar
De Latour, RP, Labopin, M, Cornelissen, J, Vindelov, L, Blaise, D, Milpied, N, et al. Equivalent outcome between older siblings and unrelated donors after reduced intensity allogeneic hematopoietic stem cell transplantation for patients older than 50 years with acute myeloid leukemia in first complete remission: A report from the ALWP of EBMT. Blood 2012;120:Abstract 961.Google Scholar
Sorror, ML, Sandmaier, BM, Storer, BE, Franke, GN, Laport, GG, Chauncey, TR, et al. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies. JAMA : The Journal of the American Medical Association. 2011;306(17):1874–83.Google Scholar
Kroger, N, Zabelina, T, de Wreede, L, Berger, J, Alchalby, H, van Biezen, A, et al. Allogeneic stem cell transplantation for older advanced MDS patients: improved survival with young unrelated donor in comparison with HLA-identical siblings. Leukemia. 2013;27(3):604–9.Google Scholar
Peffault de Latour, R, Brunstein, CG, Porcher, R, Chevallier, P, Robin, M, Warlick, E, et al. Similar overall survival using sibling, unrelated donor, and cord blood grafts after reduced-intensity conditioning for older patients with acute myelogenous leukemia. Biol Blood Marrow Transplant. 2013;19(9):1355–60.Google Scholar
Sorror, ML, Storb, RF, Sandmaier, BM, Maziarz, RT, Pulsipher, MA, Maris, MB, et al. Comorbidity-age index: a clinical measure of biologic age before allogeneic hematopoietic cell transplantation. J Clin Oncol. 2014.Google Scholar
Koreth, J, Aldridge, J, Kim, HT, Alyea, EP 3rd, Cutler, C, Armand, P, et al. Reduced-intensity conditioning hematopoietic stem cell transplantation in patients over 60 years: hematologic malignancy outcomes are not impaired in advanced age. Biol Blood Marrow Transplant. 2010;16(6):792800.Google Scholar
Chevallier, P, Szydlo, RM, Blaise, D, Tabrizi, R, Michallet, M, Uzunov, M, et al. Reduced-intensity conditioning before allogeneic hematopoietic stem cell transplantation in patients over 60 years: a report from the SFGM-TC. Biol Blood Marrow Transplant. 2012;18(2):289–94.Google Scholar
McClune, BL, Weisdorf, DJ, Pedersen, TL, Tunes da Silva, G, Tallman, MS, Sierra, J, et al. Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome. J Clin Oncol. 2010;28(11):1878–87.Google Scholar
Lim, Z, Brand, R, Martino, R, van Biezen, A, Finke, J, Bacigalupo, A, et al. Allogeneic hematopoietic stem-cell transplantation for patients 50 years or older with myelodysplastic syndromes or secondary acute myeloid leukemia. J Clin Oncol. 2010;28(3):405–11.Google Scholar
McClune, BL, Ahn, KW, Wang, HL, Antin, JH, Artz, AS, Cahn, JY, et al. Allotransplantation for patients age ≥40 years with non-Hodgkin lymphoma: encouraging progression-free survival. Biol Blood Marrow Transplant. 2014;20(7):960−8.Google Scholar
Estey, E, de Lima, M, Tibes, R, Pierce, S, Kantarjian, H, Champlin, R, et al. Prospective feasibility analysis of reduced-intensity conditioning (RIC) regimens for hematopoietic stem cell transplantation (HSCT) in elderly patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood. 2007;109(4):1395–400.Google Scholar
Farag, SS, Maharry, K, Zhang, MJ, Perez, WS, George, SL, Mrozek, K, et al. Comparison of reduced-intensity hematopoietic cell transplantation with chemotherapy in patients age 60–70 years with acute myelogenous leukemia in first remission. Biol Blood Marrow Transplant. 2011;17(12):1796–803.Google Scholar
Kurosawa, S, Yamaguchi, T, Uchida, N, Miyawaki, S, Usuki, K, Watanabe, M, et al. Comparison of allogeneic hematopoietic cell transplantation and chemotherapy in elderly patients with non-M3 acute myelogenous leukemia in first complete remission. Biol Blood Marrow Transplant. 2011;17(3):401–11.Google Scholar
Devine, S, Owzar, K, Blum, W, DeAngelo, D, Stone, R, Hsu, J, et al. A Phase II study of allogeneic transplantation for older patients with AML in first complete remission using a reduced intensity conditioning regimen: results from CALGB 100103/BMT CTN 0502. Blood. 2012;120:Abstract 230.Google Scholar
Koreth, J, Pidala, J, Perez, WS, Deeg, HJ, Garcia-Manero, G, Malcovati, L, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol. 2013;31(21):2662–70.Google Scholar
Buchner, T, Berdel, WE, Haferlach, C, Haferlach, T, Schnittger, S, Muller-Tidow, C, et al. Age-related risk profile and chemotherapy dose response in acute myeloid leukemia: a study by the German Acute Myeloid Leukemia Cooperative Group. J Clin Oncol. 2009;27(1):61–9.Google Scholar
Muffly, LS, Kocherginsky, M, Stock, W, Chu, Q, Bishop, MR, Godley, LA, et al. Geriatric assessment to predict survival in older allogeneic hematopoietic cell transplantation recipients. Haematologica. 2014;99(8):1373–9.Google Scholar
Sorror, ML, Maris, MB, Storb, R, Baron, F, Sandmaier, BM, Maloney, DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9.Google Scholar
Sorror, M. Impacts of pretransplant comorbidities on allogeneic hematopoietic cell transplantation (HCT) outcomes. Biol Blood Marrow Transplant. 2009;15(1 Suppl):149–53.Google Scholar
Raimondi, R, Tosetto, A, Oneto, R, Cavazzina, R, Rodeghiero, F, Bacigalupo, A, et al. Validation of the Hematopoietic Cell Transplantation-Specific Comorbidity Index: a prospective, multicenter GITMO study. Blood. 2012;120(6):1327–33.Google Scholar
Giles, FJ, Borthakur, G, Ravandi, F, Faderl, S, Verstovsek, S, Thomas, D, et al. The haematopoietic cell transplantation comorbidity index score is predictive of early death and survival in patients over 60 years of age receiving induction therapy for acute myeloid leukaemia. Br J Haematol. 2007;136(4):624–7.Google Scholar
Sperr, WR, Wimazal, F, Kundi, M, Baumgartner, C, Nosslinger, T, Makrai, A, et al. Comorbidity as prognostic variable in MDS: comparative evaluation of the HCT-CI and CCI in a core dataset of 419 patients of the Austrian MDS Study Group. Ann Oncol. 2010;21(1):114–9.Google Scholar
Hurria, A, Togawa, K, Mohile, SG, Owusu, C, Klepin, HD, Gross, CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol. 2011;29(25):3457–65.Google Scholar
Klepin, HD, Geiger, AM, Tooze, JA, Kritchevsky, SB, Williamson, JD, Pardee, TS, et al. Geriatric assessment predicts survival for older adults receiving induction chemotherapy for acute myelogenous leukemia. Blood. 2013; 121(21):4287−94.Google Scholar
Muffly, LS, Boulukos, M, Swanson, K, Kocherginsky, M, Cerro, PD, Schroeder, L, et al. Pilot Study of Comprehensive Geriatric Assessment (CGA) in Allogeneic Transplant: CGA Captures a High Prevalence of Vulnerabilities in Older Transplant Recipients. Biol Blood Marrow Transplant. 2013;19(3):429–34.Google Scholar
Morris, CL, Siegel, E, Barlogie, B, Cottler-Fox, M, Lin, P, Fassas, A, et al. Mobilization of CD34+ cells in elderly patients (>/ = 70 years) with multiple myeloma: influence of age, prior therapy, platelet count and mobilization regimen. Br J Haematol. 2003;120(3):413–23.Google Scholar
Micallef, IN, Stiff, PJ, Stadtmauer, EA, Bolwell, BJ, Nademanee, AP, Maziarz, RT, et al. Safety and efficacy of upfront plerixafor + G-CSF versus placebo + G-CSF for mobilization of CD34(+) hematopoietic progenitor cells in patients >/ = 60 and <60 years of age with non-Hodgkin’s lymphoma or multiple myeloma. Am J Hematol. 2013;88(12):1017–23.Google Scholar
Jantunen, E, Kuittinen, T, Penttila, K, Lehtonen, P, Mahlamaki, E, Nousiainen, T. High-dose melphalan (200 mg/m2) supported by autologous stem cell transplantation is safe and effective in elderly (>or = 65 years) myeloma patients: comparison with younger patients treated on the same protocol. Bone Marrow Transplant. 2006;37(10):917–22.Google Scholar
Lenhoff, S, Hjorth, M, Westin, J, Brinch, L, Backstrom, B, Carlson, K, et al. Impact of age on survival after intensive therapy for multiple myeloma: a population-based study by the Nordic Myeloma Study Group. Br J Haematol. 2006;133(4):389–96.Google Scholar
Kumar, SK, Dingli, D, Lacy, MQ, Dispenzieri, A, Hayman, SR, Buadi, FK, et al. Autologous stem cell transplantation in patients of 70 years and older with multiple myeloma: Results from a matched pair analysis. Am J Hematol. 2008;83(8):614–7.Google Scholar
El-Cheikh, J, Kfoury, E, Calmels, B, Lemarie, C, Stoppa, AM, Bouabdallah, R, et al. Age at transplantation and outcome after autologous stem cell transplantation in elderly patients with multiple myeloma. Hematol Oncol Stem Cell Ther. 2011;4(1):30–6.Google Scholar
Bashir, Q, Shah, N, Parmar, S, Wei, W, Rondon, G, Weber, DM, et al. Feasibility of autologous hematopoietic stem cell transplant in patients aged >/ = 70 years with multiple myeloma. Leuk Lymphoma. 2012;53(1):118–22.Google Scholar
Offidani, M, Leoni, P, Corvatta, L, Polloni, C, Gentili, S, Savini, A, et al. ThaDD plus high-dose therapy and autologous stem cell transplantation does not appear superior to ThaDD plus maintenance in elderly patients with de novo multiple myeloma. Eur J Haematol. 2010;84(6):474–83.Google Scholar
Facon, T, Mary, JY, Hulin, C, Benboubker, L, Attal, M, Pegourie, B, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06): a randomised trial. Lancet. 2007;370(9594):1209–18.Google Scholar
Jantunen, E, Canals, C, Rambaldi, A, Ossenkoppele, G, Allione, B, Blaise, D, et al. Autologous stem cell transplantation in elderly patients (> or = 60 years) with diffuse large B-cell lymphoma: an analysis based on data in the European Blood and Marrow Transplantation registry. Haematologica. 2008;93(12):1837–42.Google Scholar
Lazarus, HM, Carreras, J, Boudreau, C, Loberiza, FR Jr., Armitage, JO, Bolwell, BJ, et al. Influence of age and histology on outcome in adult non-Hodgkin lymphoma patients undergoing autologous hematopoietic cell transplantation (HCT): a report from the Center For International Blood & Marrow Transplant Research (CIBMTR). Biol Blood Marrow Transplant. 2008;14(12):1323–33.Google Scholar
Wildes, TM, Augustin, KM, Sempek, D, Zhang, QJ, Vij, R, Dipersio, JF, et al. Comorbidities, not age, impact outcomes in autologous stem cell transplant for relapsed non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 2008;14(7):840–6.Google Scholar
Jantunen, E, Canals, C, Attal, M, Thomson, K, Milpied, N, Buzyn, A, et al. Autologous stem-cell transplantation in patients with mantle cell lymphoma beyond 65 years of age: a study from the European Group for Blood and Marrow Transplantation (EBMT). Ann Oncol. 2012;23(1):166–71.Google Scholar
Elstrom, RL, Martin, P, Hurtado Rua, S, Shore, TB, Furman, RR, Ruan, J, et al. Autologous stem cell transplant is feasible in very elderly patients with lymphoma and limited comorbidity. Am J Hematol. 2012;87(4):433–5.Google Scholar
Andorsky, DJ, Cohen, M, Naeim, A, Pinter-Brown, L. Outcomes of auto-SCT for lymphoma in subjects aged 70 years and over. Bone Marrow Transplant. 2011;46(9):1219–25.Google Scholar
Pasquini, M, Logan, B, Ho, V, McCarthy, P Jr., Cooke, K, Rizzo, J, et al. Comorbidity Index (CI) in autologous hematopoietic cell transplantation (HCT) for malignant diseases: validation of the HCT-CI. Blood. 2012:Abstract 814.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×