Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T05:46:24.557Z Has data issue: false hasContentIssue false

17 - The rational use of blood and its components in obstetrical and gynecological bleeding complications

Published online by Cambridge University Press:  01 February 2010

Katharine A. Downes M.D.
Affiliation:
Assistant Professor Department of Pathology, University Hospitals of Cleveland, Cleveland, Ohio, USA
Ravindra Sarode M.D.
Affiliation:
Professor of Pathology, University of Texas Southwestern Medical Center; Director: Tran sfusio n Medicine and Hemostasis, Dallas, Texas, USA
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goodnough, L. T., Brecher, M. E., Kanter, M. H., et al. Transfusion medicine. First of two parts – blood transfusion. N. Engl. J. Med., 1999; 340(6): 438–47.CrossRefGoogle ScholarPubMed
Bausch, M. Blood safety in the new millennium. In Stramer, S., ed., American Association of Blood Banks. Bethesda, MD: 2001; Closing the windows on viral transmission by blood transfusion. pp. 33–54.Google Scholar
Busch, M. P., Kleinman, S. H., Jackson, B., et al. Committee report. Nucleic acid amplification testing of blood donors for transfusion-transmitted infectious diseases: Report of the Interorganizational Task Force on Nucleic Acid Amplification Testing of Blood Donors. Transfusion, 2000; 40(2): 143–59.Google ScholarPubMed
Roth, W. K., Weber, M., Seifried, E.Feasibility and efficacy of routine PCR screening of blood donations for hepatitis C virus, hepatitis B virus, and HIV-1 in a blood-bank setting. Lancet, 1999; 353(9150): 359–63.CrossRefGoogle Scholar
Kuhns, M., McNamara, A., Peterson, B., et al. Detection of hepatitis B seroconversion by highly sensitive assays for surface antigen and HBV DNA (abstract). Transfusion, 1998; 3(Suppl.): 91S.Google Scholar
Peddada, L., Heldebrant, C., Smith, R., et al. HBV viremia preceding HbsAg positivity: Implications for minipool (MP) and individual donation (ID) HBV nucleic acid testing (NAT) (abstract). Transfusion, 2000; 40(Suppl.): 14–15S.Google Scholar
Stramer, S. L.Nucleic acid testing for transfusion-transmissible agents. Curr. Opin. Hematol., 2000; 7(6): 387–91.CrossRefGoogle ScholarPubMed
Kleinman, S. H., Busch, M. P.The risks of transfusion-transmitted infection: direct estimation and mathematical modelling. Baillieres Best Pract. Res. Clin. Haematol., 2000; 13(4): 631–49.CrossRefGoogle ScholarPubMed
Saldanha, J.Validation and standardisation of nucleic acid amplification technology (NAT) assays for the detection of viral contamination of blood and blood products. J. Clin. Virol., 2001; 20(1–2): 7–13.CrossRefGoogle ScholarPubMed
Holmes, H., Davis, C., Heath, A., et al. An international collaborative study to establish the 1st international standard for HIV-1 RNA for use in nucleic acid-based techniques. J. Virol. Methods, 2001; 92(2): 141–50.CrossRefGoogle ScholarPubMed
Downes, K. A., Yomtovian, R.Advances in pretransfusion infectious disease testing: ensuring the safety of transfusion therapy. Clin. Lab. Med., 2002; 22(2): 475–90.CrossRefGoogle ScholarPubMed
Dodd, R. Y.Emerging infections, transfusion safety, and epidemiology. N. Engl. J. Med., 2003; 349(13): 1205–6.CrossRefGoogle Scholar
Goodman, C., Chan, S., Collins, P., et al. Ensuring blood safety and availability in the US: technological advances, costs, and challenges to payment – final report. Transfusion, 2003; 43(8 Suppl.): 3S–46S.CrossRefGoogle ScholarPubMed
Dodd, R. Y., Leiby, D. A.Emerging infectious threats to the blood supply. Annu. Rev. Med., 2004; 55: 191–207.CrossRefGoogle ScholarPubMed
Pealer, L. N., Marfin, A. A., Petersen, L. R., et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N. Engl. J. Med., 2003; 349(13): 1236–45.CrossRefGoogle ScholarPubMed
Mather, T., Takeda, T., Tassello, J., et al. West Nile virus in blood: stability, distribution, and susceptibility to PEN110 inactivation. Transfusion, 2003; 43(8): 1029–37.CrossRefGoogle ScholarPubMed
Harrington, T., Kuehnert, M. J., Kamel, H., et al. West Nile virus infection transmitted by blood transfusion. Transfusion, 2003; 43(8): 1018–22.CrossRefGoogle ScholarPubMed
Biggerstaff, B. J., Petersen, L. R.Estimated risk of transmission of the West Nile virus through blood transfusion in the US, 2002. Transfusion, 2003; 43(8): 1007–17.CrossRefGoogle ScholarPubMed
Biggerstaff, B. J., Petersen, L. R.Estimated risk of West Nile virus transmission through blood transfusion during an epidemic in Queens, New York City. Transfusion, 2002; 42(8): 1019–26.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention CfDCaP. Detection of West Nile virus in blood donations – United States. MMRR, 2003; 52(32): 769–72.
Yap, P. L., Leaver, H. A., Gillon, J.Prions: properties, occurrence, modes of transmission and relevance for blood transfusion and blood derivatives. Vox Sang, 1998; 74 (Suppl. 2): 131–4.CrossRefGoogle ScholarPubMed
Brown, P., Rohwer, R. G., Dunstan, B. C., et al. The distribution of infectivity in blood components and plasma derivatives in experimental models of transmissible spongiform encephalopathy. Transfusion, 1998; 38(9): 810–16.CrossRefGoogle ScholarPubMed
Linden, J. V.Errors in transfusion medicine. Scope of the problem. Arch. Pathol. Lab. Med., 1999; 123(7): 563–5.Google Scholar
Myhre, B. A.Fatalities from blood transfusion. JAMA, 1980; 244(12): 1333–5.CrossRefGoogle ScholarPubMed
Dzik, W. H., Corwin, H., Goodnough, L. T., et al. Patient safety and blood transfusion: new solutions. Transfus. Med. Rev., 2003; 17(3): 169–80.CrossRefGoogle ScholarPubMed
Voak, D., Chapman, J. F., Phillips, P.Quality of transfusion practice beyond the blood transfusion laboratory is essential to prevent ABO-incompatible death. Transfus. Med., 2000; 10(2): 95–6.CrossRefGoogle ScholarPubMed
Janatpour, K., Holland, P. V.Noninfectious serious hazards of transfusion. Curr. Hematol. Rep., 2002; 1(2): 149–55.Google ScholarPubMed
Domen, R. E., Hoeltge, G. A.Allergic transfusion reactions: an evaluation of 273 consecutive reactions. Arch. Pathol. Lab. Med., 2003; 127(3): 316–20.Google ScholarPubMed
Silliman, C. C.Transfusion-related acute lung injury. Transfus. Med. Rev., 1999; 13(3): 177–86.CrossRefGoogle ScholarPubMed
Kopko, P. M., Marshall, C. S., MacKenzie, M. R., et al. Transfusion-related acute lung injury: report of a clinical look-back investigation. JAMA, 2002; 287(15): 1968–71.CrossRefGoogle ScholarPubMed
Perrotta, P. L., Snyder, E. L.Non-infectious complications of transfusion therapy. Blood. Rev., 2001; 15(2): 69–83.CrossRefGoogle ScholarPubMed
Popovsky, M. A.Breathlessness and blood: a combustible combination. Vox Sang, 2002; 83 (Suppl. 1): 147–50.CrossRefGoogle ScholarPubMed
Moroff, G., Luban, N. L.The irradiation of blood and blood components to prevent graft-versus-host disease: technical issues and guidelines. Transfus. Med. Rev., 1997; 11(1): 15–26.CrossRefGoogle ScholarPubMed
Schroeder, M. L.Transfusion-associated graft-versus-host disease. Br. J. Haematol., 2002; 117(2): 275–87.CrossRefGoogle ScholarPubMed
Wagner, F. F., Flegel, W. A.Transfusion-associated graft-versus-host disease: risk due to homozygous HLA haplotypes. Transfusion, 1995; 35(4): 284–91.CrossRefGoogle ScholarPubMed
Shulman, I. A., Downes, K. A., Sazama, K., et al. Pretransfusion compatibility testing for red blood cell administration. Curr. Opin. Hematol., 2001; 8(6): 397–404.CrossRefGoogle ScholarPubMed
Gorlin, J, ed. XXII edn. Standards for Blood Banks and Transfusion Services. Bethesda, MD: American Association of Blood Banks; 2003.Google Scholar
Blood component preparation, storage, shipping, and transportation. In American Association of Blood Banks Technical Manual. Bethesda, MD: AABB Press; 1999. p. 169.
Practice guidelines for blood component therapy: A report by the American Society of Anesthesiologists Task Force on Blood Component Therapy. Anesthesiology, 1996; 84(3): 732–47.CrossRef
Laine, E., Steadman, R., Calhoun, L., et al. Comparison of RBCs and FFP with whole blood during liver transplant surgery. Transfusion, 2003; 43(3): 322–7.CrossRefGoogle ScholarPubMed
Holme, S., Elfath, M. D., Whitley, P.Evaluation of in vivo and in vitro quality of apheresis-collected RBC stored for 42 days. Vox Sang, 1998; 75(3): 212–17.CrossRefGoogle ScholarPubMed
Consensus conference. Perioperative red blood cell transfusion. JAMA, 1988; 260(18): 2700–3.CrossRef
Consensus conference. Platelet transfusion therapy. JAMA, 1987; 257(13): 1777–80.CrossRef
Schiffer, C. A., Anderson, K. C., Bennett, C. L., et al. Platelet transfusion for patients with cancer: clinical practice guidelines of the American Society of Clinical Oncology. J. Clin. Oncol., 2001; 19(5): 1519–38.CrossRefGoogle ScholarPubMed
Lozano, M., Cid, J.The clinical implications of platelet transfusions associated with ABO or Rh(D) incompatibility. Transfus. Med. Rev., 2003; 17(1): 57–68.CrossRefGoogle ScholarPubMed
Menitove, J. E.Immunoprophylaxis for D− patients receiving platelet transfusions from D+ [correction of D−] donors?Transfusion, 2002; 42(2): 136–8.CrossRefGoogle Scholar
Practice parameter for the use of fresh-frozen plasma, cryoprecipitate, and platelets. Fresh-Frozen Plasma, Cryoprecipitate, and Platelets Administration Practice Guidelines Development Task Force of the College of American Pathologists. JAMA, 1994; 271(10): 777–81.CrossRef
Downes, K. A., Wilson, E., Yomtovian, R., et al. Serial measurement of clotting factors in thawed plasma stored for 5 days. Transfusion, 2001; 41(4): 570.CrossRefGoogle Scholar
Kaul, V. V., Munoz, S. J.Coagulopathy of liver disease. Curr. Treat. Options. Gastroenterol., 2000; 3(6): 433–8.CrossRefGoogle ScholarPubMed
Amitrano, L., Guardascione, M. A., Brancaccio, V., et al. Coagulation disorders in liver disease. Semin. Liver Dis., 2002; 22(1): 83–96.CrossRefGoogle ScholarPubMed
Dhar, P., Abramovitz, S., DiMichele, D., et al. Management of pregnancy in a patient with severe haemophilia A. Br. J. Anaesth., 2003; 91(3): 432–5.CrossRefGoogle Scholar
Lao, T. T., Lewinsky, R. M., Ohlsson, A., et al. Factor XII deficiency and pregnancy. Obstet. Gynecol., 1991; 78(3 Pt 2): 491–3.Google Scholar
Schved, J. F., Gris, J. C., Neveu, S., et al. Variations of factor XII level during pregnancy in a woman with Hageman factor deficiency. Thromb. Haemost., 1988; 60(3): 526–7.Google Scholar
DiPaola, J., Nugent, D., Young, G.Current therapy for rare factor deficiencies. Haemophilia, 2001; 7 (Suppl. 1): 16–22.CrossRefGoogle Scholar
Bianco, C.Choice of human plasma preparations for transfusion. Transfus. Med. Rev., 1999; 13(2): 84–8.CrossRefGoogle ScholarPubMed
Consensus conference. Fresh-frozen plasma. Indications and risks. JAMA, 1985; 253(4): 551–3.CrossRef
Downes, K., Sarode, R.Massive blood transfusion. Indian J. Pediatr., 2001; 68(2): 145–9.Google ScholarPubMed
Kobayashi, T., Asahina, T., Maehara, K., et al. Congenital afibrinogenemia with successful delivery. Gynecol. Obstet. Invest., 1996; 42(1): 66–9.CrossRefGoogle ScholarPubMed
Thompson, H. W., Touris, S., Giambartolomei, S., et al. Treatment of congenital afibrinogenemia with cryoprecipitate collected through a plasmapheresis program using dedicated donors. J. Clin. Apheresis, 1998; 13(4): 143–5.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Deering, S. H., Landy, H. J., Tchabo, N., et al. Hypodysfibrinogenemia during pregnancy, labor, and delivery. Obstet. Gynecol., 2003; 101(5 Pt 2): 1092–4.Google Scholar
Iwaki, T., Sandoval-Cooper, M. J., Paiva, M., et al. Fibrinogen stabilizes placental–maternal attachment during embryonic development in the mouse. Am. J. Pathol., 2002; 160(3): 1021–34.CrossRefGoogle ScholarPubMed
Ness, P. M., Budzynski, A. Z., Olexa, S. A., et al. Congenital hypofibrinogenemia and recurrent placental abruption. Obstet. Gynecol., 1983; 61(4): 519–23.Google ScholarPubMed
Inbal, A., Muszbek, L.Coagulation factor deficiencies and pregnancy loss. Semin. Thromb. Hemost., 2003; 29(2): 171–4.CrossRefGoogle ScholarPubMed
Ichinose, A., Izumi, T., Hashiguchi, T.The normal and abnormal genes of the a and b subunits in coagulation factor XIII. Semin. Thromb. Hemost., 1996; 22(5): 385–91.CrossRefGoogle Scholar
Duckert, F.Documentation of the plasma factor XIII deficiency in man. Ann. NY Acad. Sci., 1972; 202: 190–9.CrossRefGoogle ScholarPubMed
Lak, M., Peyvandi, F., Ali Sharifian, A., et al. Pattern of symptoms in 93 Iranian patients with severe factor XIII deficiency. J. Thromb. Haemost., 2003; 1(8): 1852–3.CrossRefGoogle ScholarPubMed
Koseki-Kuno, S., Yamakawa, M., Dickneite, G., et al. Factor XIII A subunit-deficient mice developed severe uterine bleeding events and subsequent spontaneous miscarriages. Blood, 2003; 102(13): 4410–12.CrossRefGoogle ScholarPubMed
Burrows, R. F., Ray, J. G., Burrows, E. A.Bleeding risk and reproductive capacity among patients with factor XIII deficiency: a case presentation and review of the literature. Obstet. Gynecol. Surv., 2000; 55(2): 103–8.CrossRefGoogle ScholarPubMed
Boda, Z., Pfliegler, G., Muszbek, L., et al. Congenital factor XIII deficiency with multiple benign breast tumours and successful pregnancy with substitutive therapy. A case report. Haemostasis, 1989; 19(6): 348–52.Google ScholarPubMed
Janson, P. A., Jubelirer, S. J., Weinstein, M. J., et al. Treatment of the bleeding tendency in uremia with cryoprecipitate. N. Engl. J. Med., 1980; 303(23): 1318–22.CrossRefGoogle ScholarPubMed
Remuzzi, G.Bleeding in renal failure. Lancet, 1988; 1(8596): 1205–8.CrossRefGoogle ScholarPubMed
The Trial to Reduce Alloimmunization to Platelets (TRAP) Study Group. Leukocyte reduction and ultraviolet irradiation of platelets to prevent alloimmunization and refractoriness to platelet transfusions. N. Eng. J. Med., 1997; 337: 1861–9.CrossRef
Seftel, M. D., Growe, G. H., Petraszko, T., et al. Universal prestorage leukoreduction in Canada decreases platelet alloimmunization and refractoriness. Blood, 2004; 103(1): 333–9.CrossRefGoogle ScholarPubMed
Aye, M. T., Palmer, D. S., Giulivi, A., et al. Effect of filtration of platelet concentrates on the accumulation of cytokines and platelet release factors during storage. Transfusion, 1995; 35(2): 117–24.CrossRefGoogle ScholarPubMed
Jahr, J. S., Nesargi, S. B., Lewis, K., et al. Blood substitutes and oxygen therapeutics: an overview and current status. Am. J. Ther., 2002; 9(5): 437–43.CrossRefGoogle ScholarPubMed
Levy, J. H.Hemoglobin-based oxygen-carrying solutions: close but still so far. Anesthesiology, 2000; 92(3): 639–41.CrossRefGoogle ScholarPubMed
Vlahakes, G. J.Hemoglobin solutions come of age. Anesthesiology, 2000; 92(3): 637–8.CrossRefGoogle ScholarPubMed
Winslow, R. M.New transfusion strategies: red cell substitutes. Annu. Rev. Med., 1999; 50: 337–53.CrossRefGoogle ScholarPubMed
Widness, J. A., Clemons, G. K., Garcia, J. F., et al. Plasma immunoreactive erythropoietin in normal women studied sequentially during and after pregnancy. Am. J. Obstet. Gynecol., 1984; 149(6): 646–50.CrossRefGoogle ScholarPubMed
Harstad, T. W., Mason, R. A., Cox, S. M.Serum erythropoietin quantitation in pregnancy using an enzyme-linked immunoassay. Am. J. Perinatol., 1992; 9(4): 233–5.CrossRefGoogle ScholarPubMed
Widness, J. A., Sawyer, S. T., Schmidt, R. L., et al. Lack of maternal to fetal transfer of 125I-labelled erythropoietin in sheep. J. Dev. Physiol., 1991; 15(3): 139–43.Google Scholar
Koury, M. J., Bondurant, M. C., Graber, S. E., et al. Erythropoietin messenger RNA levels in developing mice and transfer of 125I-erythropoietin by the placenta. J. Clin. Invest., 1988; 82(1): 154–9.CrossRefGoogle ScholarPubMed
Braga, J., Marques, R., Branco, A., et al. Maternal and perinatal implications of the use of human recombinant erythropoietin. Acta Obstet. Gynecol. Scand., 1996; 75(5): 449–53.CrossRefGoogle ScholarPubMed
Goodnough, L. T.Erythropoietin therapy versus red cell transfusion. Curr. Opin. Hematol., 2001; 8(6): 405–10.CrossRefGoogle ScholarPubMed
Harris, S. A., Payne, G. Jr., Putman, J. M.Erythropoietin treatment of erythropoietin-deficient anemia without renal disease during pregnancy. Obstet. Gynecol., 1996; 87(5 Pt 2): 812–14.Google ScholarPubMed
Hatzis, T., Cardamakis, E., Tsapanos, V., et al. The effects of recombinant human erythropoietin given immediately after delivery to women with anaemia. Curr. Med. Res. Opin., 2003; 19(4): 346–9.CrossRefGoogle ScholarPubMed
Hou, S., Orlowski, J., Pahl, M., et al. Pregnancy in women with end-stage renal disease: treatment of anemia and premature labor. Am. J. Kidney Dis., 1993; 21(1): 16–22.CrossRefGoogle ScholarPubMed
Szurkowski, M., Wiecek, A., Kokot, F., et al. Safety and efficiency of recombinant human erythropoietin treatment in anemic pregnant women with a kidney transplant. Nephron, 1994; 67(2): 242–3.CrossRefGoogle ScholarPubMed
Yankowitz, J., Piraino, B., Laifer, S. A., et al. Erythropoietin in pregnancies complicated by severe anemia of renal failure. Obstet. Gynecol., 1992; 80(3 Pt 2): 485–8.Google ScholarPubMed
Smith, R.Applications of darbepoietin-alpha, a novel erythropoiesis-stimulating protein, in oncology. Curr. Opin. Hematol., 2002; 9(3): 228–33.CrossRefGoogle Scholar
Smith, R. E. Jr., Jaiyesimi, I. A., Meza, L. A., et al. Novel erythropoiesis stimulating protein (NESP) for the treatment of anaemia of chronic disease associated with cancer. Br. J. Cancer, 2001; 84 (Suppl. 1): 24–30.CrossRefGoogle ScholarPubMed
Glaspy, J., Jadeja, J. S., Justice, G., et al. A dose-finding and safety study of novel erythropoiesis stimulating protein (NESP) for the treatment of anaemia in patients receiving multicycle chemotherapy. Br. J. Cancer, 2001; 84 (Suppl. 1): 17–23.CrossRefGoogle ScholarPubMed
Overbay, D. K., Manley, H. J.Darbepoetin-alpha: a review of the literature. Pharmacotherapy, 2002; 22(7): 889–97.CrossRefGoogle ScholarPubMed
Joy, M. S.Darbepoetin alfa: a novel erythropoiesis-stimulating protein. Ann. Pharmacother., 2002; 36(7–8): 1183–92.CrossRefGoogle ScholarPubMed
Fisher, J. W.Erythropoietin: physiology and pharmacology update. Exp. Biol. Med. (Maywood), 2003; 228(1): 1–14.CrossRefGoogle ScholarPubMed
Dutton, R. P., Hess, J. R., Scalea, T. M.Recombinant factor VIIa for control of hemorrhage: early experience in critically ill trauma patients. J. Clin. Anesth., 2003; 15(3): 184–8.CrossRefGoogle ScholarPubMed
Hedner, U., Ingerslev, J.Clinical use of recombinant FVIIa (rFVIIa). Transfus. Sci., 1998; 19(2): 163–76.CrossRefGoogle Scholar
Eskandari, N., Feldman, N., Greenspoon, J. S.Factor VII deficiency in pregnancy treated with recombinant factor VIIa. Obstet. Gynecol., 2002; 99(5 Pt 2): 935–7.Google ScholarPubMed
Sherer, D. M., Lerner, R.Glanzmann's thrombasthenia in pregnancy: a case and review of the literature. Am. J. Perinatol., 1999; 16(6): 297–301.CrossRefGoogle ScholarPubMed
Bell, J. A., Savidge, G. F.Glanzmann's thrombasthenia proposed optimal management during surgery and delivery. Clin. Appl. Thromb. Hemost., 2003; 9(2): 167–70.CrossRefGoogle Scholar
Segal, S., Shemesh, I. Y., Blumenthal, R., et al. Treatment of obstetric hemorrhage with recombinant activated factor VII (rFVIIa). Arch. Gynecol. Obstet., 2003; 268(4): 266–7.CrossRefGoogle Scholar
Sacks, D. A., Koppes, R. H.Caring for the female Jehovah's Witness: balancing medicine, ethics, and the First Amendment. Am. J. Obstet. Gynecol., 1994; 170(2): 452–5.CrossRefGoogle ScholarPubMed
Gyamfi, C., Gyamfi, M. M., Berkowitz, R. L.Ethical and medicolegal considerations in the obstetric care of a Jehovah's Witness. Obstet. Gynecol., 2003; 102(1): 173–80.Google ScholarPubMed
Drew, N. C.The pregnant Jehovah's Witness. J. Med. Ethics, 1981; 7(3): 137–9.CrossRefGoogle ScholarPubMed
Singla, A. K., Lapinski, R. H., Berkowitz, R. L., et al. Are women who are Jehovah's Witnesses at risk of maternal death?Am. J. Obstet. Gynecol., 2001; 185(4): 893–5.CrossRefGoogle ScholarPubMed
Migden, D. R., Braen, G. R.The Jehovah's Witness blood refusal card: ethical and medicolegal considerations for emergency physicians. Acad. Emerg. Med., 1998; 5(8): 815–24.CrossRefGoogle ScholarPubMed
Smoller, B. R., Kruskall, M. S.Phlebotomy for diagnostic laboratory tests in adults. Pattern of use and effect on transfusion requirements. N. Engl. J. Med., 1986; 314(19): 1233–5.CrossRefGoogle ScholarPubMed
Lusher, J. M.Systemic causes of excessive uterine bleeding. Semin. Hematol., 1999; 36(3 Suppl. 4): 10–20.Google ScholarPubMed
Lops, V. R., Hunter, L. P., Dixon, L. R.Anemia in pregnancy. Am. Fam. Physician, 1995; 51(5): 1189–97.Google ScholarPubMed
Pahlavan, P., Nezhat, C.Hemorrhage in obstetrics and gynecology. Curr. Opin. Obstet. Gynecol., 2001; 13(4): 419–24.CrossRefGoogle ScholarPubMed
Crane, S., Chun, B., Acker, D.Treatment of obstetrical hemorrhagic emergencies. Curr. Opin. Obstet. Gynecol., 1993; 5(5): 675–82.CrossRefGoogle ScholarPubMed
Bonnar, J.Massive obstetric haemorrhage. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol., 2000; 14(1): 1–18.CrossRefGoogle ScholarPubMed
Broek, N. R., White, S. A., Ntonya, C., et al. Reproductive health in rural Malawi: a population-based survey. BJOG, 2003; 110(10): 902–8.CrossRefGoogle ScholarPubMed
Pattinson, R. C., Buchmann, E., Mantel, G., et al. Can enquiries into severe acute maternal morbidity act as a surrogate for maternal death enquiries?BJOG, 2003; 110(10): 889–93.CrossRefGoogle ScholarPubMed
Ronsmans, C., Etard, J. F., Walraven, G., et al. Maternal mortality and access to obstetric services in West Africa. Trop. Med. Int. Health, 2003; 8(10): 940–8.CrossRefGoogle ScholarPubMed
Fenton, P. M., Whitty, C. J., Reynolds, F.Caesarean section in Malawi: prospective study of early maternal and perinatal mortality. BMJ, 2003; 327(7415): 587.CrossRefGoogle ScholarPubMed
Adamu, Y. M., Salihu, H. M., Sathiakumar, N., et al. Maternal mortality in Northern Nigeria: a population-based study. Eur. J. Obstet. Gynecol. Reprod. Biol., 2003; 109(2): 153–9.CrossRefGoogle ScholarPubMed
Okogbenin, S. A., Gharoro, E. P., Otoide, V. O., et al. Obstetric hysterectomy: fifteen years' experience in a Nigerian tertiary centre. J. Obstet. Gynaecol., 2003; 23(4): 356–9.CrossRefGoogle Scholar
Chichakli, L. O., Atrash, H. K., MacKay, A. P., et al. Pregnancy-related mortality in the United States due to hemorrhage: 1979–1992. Obstet. Gynecol., 1999; 94(5 Pt 1): 721–5.Google ScholarPubMed
Chang, J., Elam-Evans, L. D., Berg, C. J., et al. Pregnancy-related mortality surveillance – United States, 1991–1999. MMWR Surveill. Summ., 2003; 52(2): 1–8.Google ScholarPubMed
Nagaya, K., Fetters, M. D., Ishikawa, M., et al. Causes of maternal mortality in Japan. JAMA, 2000; 283(20): 2661–7.CrossRefGoogle ScholarPubMed
Chamberlain, G., Steer, P.ABC of labour care: obstetric emergencies. BMJ, 1999; 318(7194): 1342–5.CrossRefGoogle ScholarPubMed
Stainsby, D., MacLennan, S., Hamilton, P. J.Management of massive blood loss: a template guideline. Br. J. Anaesth., 2000; 85(3): 487–91.CrossRefGoogle ScholarPubMed
Shevell, T., Malone, F. D.Management of obstetric hemorrhage. Semin. Perinatol., 2003; 27(1): 86–104.CrossRefGoogle ScholarPubMed
Schierhout, G., Roberts, I.Fluid resuscitation with colloid or crystalloid solutions in critically ill patients: a systematic review of randomised trials. BMJ, 1998; 316(7136): 961–4.CrossRefGoogle ScholarPubMed
Reviewers CIGA. Human albumin administration in critically ill patients: systematic review of randomized trials. Br. J. Med., 1998; 317: 235–40.CrossRef
Chen, C. Y., Chen, C. P., Wang, K. G., et al. Factors implicated in the outcome of pregnancies complicated by acute respiratory failure. J. Reprod. Med., 2003; 48(8): 641–8.Google ScholarPubMed
Mechem, C. C., Knopp, R. K., Feldman, D.Painless abruptio placentae associated with disseminated intravascular coagulation and syncope. Ann. Emerg. Med., 1992; 21(7): 883–5.CrossRefGoogle ScholarPubMed
Clark, S. L., Hankins, G. D., Dudley, D. A., et al. Amniotic fluid embolism: analysis of the national registry. Am. J. Obstet. Gynecol., 1995; 17(4 Pt 1): 1158–67; discussion, 1167–9.CrossRefGoogle Scholar
Uszynski, M., Zekanowska, E., Uszynski, W., et al. Tissue factor (TF) and tissue factor pathway inhibitor (TFPI) in amniotic fluid and blood plasma: implications for the mechanism of amniotic fluid embolism. Eur. J. Obstet. Gynecol. Reprod. Biol., 2001; 95(2): 163–6.CrossRefGoogle ScholarPubMed
Vichinsky, E. P.Current issues with blood transfusions in sickle cell disease. Semin. Hematol., 2001; 38(1, Suppl. 1): 14–22.CrossRefGoogle ScholarPubMed
Anderson, R. R., Sosler, S. D., Kovach, J., et al. Delayed hemolytic transfusion reaction due to anti-Js(a) in an alloimmunized patient with a sickle cell syndrome. Am. J. Clin. Pathol., 1997; 108(6): 658–61.CrossRefGoogle Scholar
Plante, L. A.Transfusion issues in a gravida with sickle cell disease. Obstet. Gynecol., 1998; 92(4 Pt 2): 712.Google Scholar
Eckman, J. R.Techniques for blood administration in sickle cell patients. Semin. Hematol., 2001; 38(1, Suppl. 1): 23–9.CrossRefGoogle ScholarPubMed
Cunningham, F. G., Pritchard, J. A., Mason, R.Pregnancy and sickle cell hemoglobinopathies: results with and without prophylactic transfusions. Obstet. Gynecol., 1983; 62(4): 419–24.Google ScholarPubMed
Tahhan, H. R., Holbrook, C. T., Braddy, L. R., et al. Antigen-matched donor blood in the transfusion management of patients with sickle cell disease. Transfusion, 1994; 34(7): 562–9.CrossRefGoogle ScholarPubMed
Win, N., Doughty, H., Telfer, P., et al. Hyperhemolytic transfusion reaction in sickle cell disease. Transfusion, 2001; 41(3): 323–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×