Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2014
  • Online publication date: June 2014

Chapter twenty-six - Meta-Analysis of Research in Social and Personality Psychology

from Part three - Data Analytic Strategies

Summary

This chapter introduces the use of confirmatory factor analysis (CFA) and item response theory (IRT) modeling, particularly as each is used to evaluate measurement invariance of assessment devices. It covers CFA, which is a special case of the common factor model. The chapter discusses basic ideas with regard to model specification and evaluation. It explains how measurement invariance is pursued in CFA models. The chapter also discusses the parallel issues with regard to IRT models, including both basic forms of IRT model and the study of measurement invariance within such models. It provides illustrations of analyses with empirical data to demonstrate how to fit such models and evaluate results. While good introductory presentations are available for both CFA and IRT, the authors look forward to the increased use of the two techniques for investigating measurement invariance and improving the nature of measurements used in psychological sciences.

Related content

Powered by UNSILO

References

Abelson, R. P. (1985). A variance explanation paradox: When a little is a lot. Psychological Bulletin, 97, 129–133.
Albarracín, D., Johnson, B. T., Fishbein, M., & Muellerleile, P. A. (2001). Theories of reasoned action and planned behavior as models of condom use: A meta-analysis. Psychological Bulletin, 127(1), 142–161.
American National Election Studies. (2012). Databases related to political trends. Retrieved from http://www.electionstudies.org/
American Psychological Association. (2008). Reporting standards for research in psychology: Why do we need them? What might they be? American Psychologist, 63(9), 839–851.
American Psychological Association. (2010). Publication manual of the American Psychological Association (6th ed.). Washington, DC: American Psychological Association.
Baas, M., De Dreu, C. K. W., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134(6), 779–806.
Balliet, D., Li, N. P., Macfarlan, S. J., & Van Vugt, M. (2011). Sex differences in cooperation: A meta-analytic review of social dilemmas. Psychological Bulletin, 137(6), 881–909.
Becker, B. J. (1988). Synthesizing standardized mean-change measures. British Journal of Mathematical and Statistical Psychology, 41, 257–278.
Becker, B. J. (2005). Failsafe N or file-drawer number. In H. Rothstein, A. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment and adjustments (pp. 111–126). Chichester, UK: Wiley.
Begg, C. B. (1985). A measure to aid in the interpretation of published clinical trials. Statistics in Medicine, 4, 1–9.
Bettencourt, B. A., & Miller, N. (1996). Gender differences in aggression as a function of provocation: A meta-analysis. Psychological Bulletin, 119, 422–447.
Bond, C. F., & Titus, L. J. (1983). Social facilitation: A meta-analysis of 241 studies. Psychological Bulletin, 94, 265–292.
Bond, C. F., Wiitala, W. L., & Richard, F. D. (2003). Meta-analysis of raw mean differences. Psychological Methods, 8, 406–418.
Bond, R., & Smith, P. B. (1996). Culture and conformity: A meta-analysis of studies using Asch's (1952b, 1956) line judgment task. Psychological Bulletin, 119, 111–137.
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, UK: Wiley.
Borman, G. D., & Grigg, J. A. (2009). Visual and narrative interpretation. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and metaanalysis (2nd ed., pp. 497–519). New York: Russell Sage Foundation.
Brubaker, T. H., & Powers, E. A. (1976). The stereotype of “old”: A review and alternative approach. Journal of Gerontology, 31, 441–447.
Bushman, B. J., & Wang, M. C. (1996). A procedure for combining sample standardized mean differences and vote counts to estimate the population standardized mean difference in fixed effects models. Psychological Methods, 1, 66–80.
Cafri, G., Kromrey, J. D., & Brannick, M. T. (2009). A SAS macro for statistical power calculations in meta-analysis. Behavior Research Methods, 41(1), 35–46.
Campbell, D. T., & Stanley, J. T. (1963). Experimental and quasi-experimental designs for research. Chicago: Rand-McNally.
Card, N. A. (2012). Applied meta-analysis for social science research. New York: Guilford Press.
Carroll, J. B. (1961). The nature of the data, or how to choose a correlation coefficient. Psychometrica, 26, 347–372.
Chiaburu, D. S., Oh, I. S., Berry, C. M., Li, N., & Gardner, R. G. (2011). The five-factor model of personality traits and organizational citizenship behaviors: A meta-analysis. Journal of Applied Psychology, 96(6), 1140–1166.
Cingranelli-Richards Human Rights Project. (2012). Human rights data across nations. Retrieved April 6, 2012, from http://www.humanrightsdata.org/
Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10(1), 101–129.
Cohen, J. (1969). Statistical power analysis for the behavioral sciences. New York: Academic Press.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.
Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cohen, P., Cohen, J., Aiken, L. S., & West, S. G. (1999). The problem of units and the circumstances for POMP. Multivariate Behavioral Research, 34, 315–346.
Cooper, H. (1979). Statistically combining independent studies: Meta-analysis of sex differences in conformity research. Journal of Personality and Social Psychology, 37, 131–146.
Cooper, H. (2010). Research synthesis and meta-analysis: A step-by-step approach (4th ed.). Los Angeles: Sage.
Cooper, H., DeNeve, K., & Charlton, K. (1997). Finding the missing science: The fate of studies submitted for review by a human subjects committee. Psychological Methods, 2(4), 447–452.
Cooper, H., & Hedges, L. (Eds.). (1994). The handbook of research synthesis. New York: Russell Sage Foundation.
Cooper, H., Hedges, L., & Valentine, J. (Eds.). (2009). The handbook of research synthesis and meta-analysis (2nd ed.). New York: Russell Sage Foundation.
Cooper, H., & Patall, E. A. (2009). The relative benefits of meta-analysis conducted with individual participant data versus aggregated data. Psychological Methods, 14, 165–176.
Cooper, H., & Rosenthal, R. (1980). Statistical versus traditional procedures for summarizing research findings. Psychological Bulletin, 87, 442–149.
Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: HarperCollins.
Darlington, R. B., & Hayes, A. F. (2000). Combining independent p values: Extensions of the Stouffer and binomial methods. Psychological Methods, 5(4), 496–515.
Deeks, J. J., Dinnes, J., D’Amico, R., Sowden, A. J., Sakarovitch, C., Song, F., Petticrew, M. & Altman, D. J. (2003). Evaluating non-randomised intervention studies. Health Technology Assessment, 7(27), 1–179.
Dickersin, K. (1997). How important is publication bias? A synthesis of available data. AIDS Education and Prevention, 9 (Suppl. A), 15–21.
Dunlap, W. P., Cortina, J. M., Vaslow, J. B., & Burke, M. J. (1996). Meta-analysis of experiments with matched groups or repeated measures designs. Psychological Methods, 1, 170–177.
Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 455–463.
Eagly, A. H. (1987). Sex differences in social behavior: A social-role interpretation. Hillsdale, NJ: Erlbaum.
Eagly, A. H. (1995). The science and politics of comparing women and men. American Psychologist, 50, 145–158.
Eagly, A. H., & Crowley, M. (1986). Gender and helping behavior: A meta-analytic review of the social psychological literature. Psychological Bulletin, 100, 283–308.
Eagly, A. H., Johannesen-Schmidt, M. C., & van Engen, M. L. (2003). Transformational, transactional, and laissez-faire leadership styles: A meta-analysis comparing women and men. Psychological Bulletin, 129(4), 569–591.
Eagly, A. H., Karau, S. J., & Makhijani, M. G. (1995). Gender and the effectiveness of leaders: A meta-analysis. Psychological Bulletin, 117(1), 125–145.
Eagly, A. H., Makhijani, M. G., & Klonsky, B. G. (1992). Gender and the evaluation of leaders: A meta-analysis. Psychological Bulletin, 111, 3–22.
Eagly, A. H., & Steffen, V. J. (1986). Gender and aggressive behavior: A meta-analytic review of the social psychological literature. Psychological Bulletin, 100, 309–330.
Edwards, A. W. F. (1963). The measure of association in a 2 × 2 table. Journal of the Royal Statistical Society: Series A, 126, 109–114.
Edwards, J. H. (1957). A note on the practical interpretation of 2 × 2 tables. British Journal of Preventive & Social Medicine, 11, 73–78.
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple graphical test. British Medical Journal, 315, 629–634.
Ernst, C., & Angst, J. (1983). Birth order: Its influence on personality. New York: Springer-Verlag.
Feingold, A. (1995). The additive effects of differences in central tendency and variability are important in comparisons between groups. American Psychologist, 50, 5–13.
Fischer, R., & Boer, D. (2011). What is more important for national well-being: Money or autonomy? A meta-analysis of well-being, burnout, and anxiety across 63 societies. Journal of Personality and Social Psychology, 101(1), 164–184.
Fischer, R., Hanke, K., & Sibley, C. G. (2012). Cultural and institutional determinants of Social Dominance Orientation: A cross-cultural meta-analysis of 27 societies. Political Psychology, 33, 437–467.
Fisher, R. A. (1921). On the “probable error” of a coefficient of correlation deduced from a small sample. Metron, 1, 1–32.
Francis, G. (2012). Too good to be true: Publication bias in two prominent studies from experimental psychology. Psychonomic Bulletin & Review, 19, 151–156.
Freund, P. A., & Kasten, N. (2012). How smart do you think you are? A meta-analysis on the validity of self-estimates of cognitive ability. Psychological Bulletin, 138(2), 296–321.
Gapminder (2012). Social, political, and health databases. Retrieved April 6, 2012, from http://www.gapminder.org/
General Social Survey (2012). Survey data regarding the U.S. population. Retrieved April 6, 2012, from http://www3.norc.org/gss/
Gerrard, M., Gibbons, F. X., & Bushman, B. J. (1996). Relation between perceived vulnerability to HIV and precautionary sexual behavior. Psychological Bulletin, 119(3), 390–409.
Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills, CA: Sage.
Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 357–376). New York: Russell Sage Foundation.
Goldberg, W. A., Prause, J., Lucas-Thompson, R., & Himsel, A. (2008). Maternal employment and children's achievement in context: A meta-analysis of four decades of research. Psychological Bulletin, 134, 77–108.
Green, S. K. (1981). Attitudes and perceptions about the elderly: Current and future perspectives. International Journal of Aging and Human Development, 13, 99–119.
Greenhouse, J. B., & Iyengar, S. (2009). Sensitivity analysis and diagnostics. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.) , The handbook of research synthesis and meta-analysis (2nd ed., pp. 417–433). New York: Russell Sage Foundation.
Greenwald, S., & Russell, R. L. (1991). Assessing rationales for inclusiveness in meta-analytic samples. Psychotherapy Research, 1(1), 17–24.
Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. D. (2010). Ego depletion and the strength model of self-control: A meta-analysis. Psychological Bulletin, 136, 495–525.
Hall, J. A. (1978). Gender effects in decoding nonverbal cues. Psychological Bulletin, 85, 845–857.
Harbord, R. M., & Higgins, J. P. T. (2008). Meta-regression in Stata. Stata Journal, 8, 493–519.
Hart, W., Albarracín, D., Eagly, A. H., Brechan, I., Lindberg, M. J., & Merrill, L. (2009). Feeling validated versus being correct: A meta-analysis of selective exposure to information. Psychological Bulletin, 135(4), 555–588.
Hays, W. L. (1988). Statistics (4th ed.). Fort Worth, TX: Harcourt Brace Jovanovich.
Hedges, L.V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational Statistics, 6, 107–128.
Hedges, L. V. (1990). Directions for future methodology. In K. W. Wachter & M. L. Straf (Eds.), The future of meta-analysis (pp. 11–26). New York: Russell Sage Foundation.
Hedges, L.V. (2009). Statistical considerations. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 37–46). New York: Russell Sage Foundation.
Hedges, L. V., & Becker, B. J. (1986). Statistical methods in the meta-analysis of research on gender differences. In J. S. Hyde & M. C. Linn (Eds.), The psychology of gender: Advances through meta-analysis (pp. 14–50). Baltimore, MD: Johns Hopkins University Press.
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3, 486–504.
Heinsman, D. T., & Shadish, W. R. (1996). Assignment methods in experimentation: When do nonrandomized experiments approximate answers from randomized experiments? Psychological Methods, 1, 154–169.
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558.
Higgins, J. P. T., & Thompson, S. G. (2004). Controlling the risk of spurious findings from meta-regression. Statistics & Medicine, 23, 1663–1682.
Hofstede, G. (2001). Culture's consequences: Comparing values, behaviors, institutions, and organizations across nations (2nd ed.). Thousand Oaks, CA: Sage.
Huedo-Medina, T. B., & Johnson, B. T. (2010). Modelos estadísticos en meta-análisis [Statistical models in meta-analysis]. Series in Methodology and Data Analysis in Social Sciences. La Coruña, Spain: Netbiblio.
Huedo-Medina, T. B., Sánchez-MecaJ., & Marín-MartínezF. (2004). Estimación del tamaño del efecto medio en un meta-análisis: Una comparación entre los modelos de efectos fijos y aleatorios. [Estimating the average of the effect size in a meta-analysis: A comparison between fixed- and random-effects models.] Metodología de las Ciencias del Comportamiento, Volumen Especial, 307–315.
Huedo-Medina, T. B., Sánchez-MecaJ., Marín-MartínezF., & BotellaJ. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychological Methods, 11, 193–206.
Hunt, M. (1997). How science takes stock: The story of meta-analysis. New York: Russell Sage Foundation.
Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in research findings. Newbury Park, CA: Sage.
Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings (2nd ed.). Newbury Park, CA: Sage Publication.
International Labor Organization. (2012). Databases. Retrieved April 6, 2012, from http://www.ilo.org/global/lang-en/index.htm.
International Social Survey Programme. (2012). Survey data from many nations. Retrieved April 6, 2012, from http://www.issp.org/
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124. doi:10.1371/journal.pmed.0020124.
Johnson, B. T. (1993). DSTAT 1.10: Software for the meta-analytic review of research literatures. Hillsdale, NJ: Erlbaum.
Johnson, B. T., & Boynton, M. H. (2008). Cumulating evidence about the social animal: Meta-analysis in social-personality psychology. Social and Personality Psychology Compass, 2(2), 817–841.
Johnson, B. T., & Eagly, A. H. (1989). Effects of involvement on persuasion: A meta-analysis. Psychological Bulletin, 106(2), 290–314.
Johnson, B. T., & Huedo-Medina, T. B. (2011). Depicting estimates using the intercept in meta-regression models: The moving constant technique. Research Synthesis Methods, 2(3), 204–220.
Johnson, B. T., Scott-Sheldon, L. A., & Carey, M. P. (2010). Meta-synthesis of health behavior change meta-analyses. American Journal of Public Health, 100(11), 2193–2198.
Johnson, B. T., & Turco, R. (1992). The value of goodness-of-fit indices in meta-analysis: A comment on Hall and Rosenthal. Communication Monographs, 59, 388–396.
Kirsch, I., Deacon, B. J., Huedo-Medina, T. B., Scoboria, A., Moore, T. J., & Johnson, B. T. (2008). Initial severity and antidepressant benefits: A meta-analysis of data submitted to the FDA. PLoS Medicine, 5, 260–268.
Kite, M. E., & Johnson, B. T. (1988). Attitudes toward the elderly: A meta-analysis. Psychology and Aging, 3, 233–244.
Kite, M. E., & Whitley, B. R. (1996). Sex differences in attitudes toward homosexual persons, behaviors, and civil rights: A meta-analysis. Personality and Social Psychology Bulletin, 22(4), 336–353.
Koenig, A. M., Eagly, A. H., Mitchell, A. A., & Ristikari, T. (2011). Are leader stereotypes masculine? A meta-analysis of three research paradigms. Psychological Bulletin, 137, 616–642.
Kolodziej, M. E., & Johnson, B. T. (1996). Effects of interpersonal contact on acceptance of individuals diagnosed with mentally illness: A research synthesis. Journal of Consulting and Clinical Psychology, 64, 1387–1396.
Kotov, R., Gamez, W., Schmidt, F., & Watson, D. (2010). Linking “big” personality traits to anxiety, depressive, and substance use disorders: A meta-analysis. Psychological Bulletin, 136(5), 768–821.
Lau, J., Ioannidis, J. P. A., Terrin, N., Schmid, C. H., Olkin, I. (2006). The case of the misleading funnel plot. British Medical Journal, 333, 597–600.
Lee, I., Pratto, F., & Johnson, B. T. (2011). Intergroup consensus/disagreement in support of group-based hierarchy: An examination of socio-structural and psycho-cultural factors. Psychological Bulletin, 137(6), 1029–1064.
Lennon, C. A., Huedo-Medina, T. B., Gerwien, D. P., & Johnson, B. T. (2012). A role for depression in sexual risk reduction for women? A meta-analysis of HIV prevention trials with depression outcomes. Social Science & Medicine, 75(4), 688--698.
Light, R. J., & Pillemer, D. B. (1984). Summing up: The science of reviewing research. Cambridge, MA: Harvard University Press.
Lipsey, M. W. (2009). Identifying potentially interesting variables and analysis opportunities. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 148–158). New York: Russell Sage Foundation.
Lipsey, M. W., & Wilson, D. B. (1993). The efficacy of psychological, educational, and behavioral treatment: Confirmation from meta-analysis. American Psychologist, 48(12), 1181–1209.
Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oakes, CA: Sage.
Lutsky, N. (1981). Attitudes toward old age and elderly persons. In C. Eisdorfer (Ed.), Annual review of gerontology and geriatrics (Vol. 1, pp. 287–336). New York: Springer.
Malle, B. F. (2006). The actor-observer asymmetry in attribution: A (surprising) meta-analysis. Psychological Bulletin, 132(6), 895–919.
Marcus-Newhall, A., Pedersen, W. C., Carlson, M., & Miller, N. (2000). Displaced aggression is alive and well: A meta-analytic review. Journal of Personality and Social Psychology, 78(4), 670–689.
McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of r and d. Psychological Methods, 11(4), 386–401.
McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psychological Bulletin, 111, 361–365.
Miller, N., Lee, J., & Carlson, M. (1991). The validity of inferential judgments when used in theory-testing metaanalysis. Personality and Social Psychology Bulletin, 17(3), 335–343.
Moher, D., Liberati, A., Tetzlaf, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006–1012.
Morris, S. B., & DeShon, R. P. (1997). Correcting effect sizes computed from factorial analysis of variance for use in meta-analysis. Psychological Methods, 2, 192–199.
Morris, S. B., & DeShon, R. P. (2002) Combining effect size estimates in meta-analysis with repeated measures and independent groups by designs. Psychological Methods, 7, 105–125.
Morrison, D. F. (1976). Multivariate statistical methods. New York: McGraw-Hill.
Moyer, A., & Finney, J. W. (2002). Randomized versus nonrandomized studies of alcohol treatment: Participants, methodological features and posttreatment functioning. Journal of Studies on Alcohol, 63(5), 542–550.
Mullen, B., & Felleman, V. (1989). Tripling in the dorms: A meta-analytic integration. Basic and Applied Social Psychology, 11, 33–43.
Myers, J. L., & Well, A. D. (1991). Research design and statistical analysis. New York: Harper Collins.
Noguchi, K., Albarracín, D., Durantini, M. R., & Glasman, L. R. (2007). Who participates in which health promotion programs? A meta-analysis of motivations underlying enrollment and retention in HIV-prevention interventions. Psychological Bulletin, 133, 955–975.
Nouri, H., & Greenberg, R. H. (1995). Meta-analytic procedures for estimation of effect sizes in experiments using complex analysis of variance. Journal of Management, 21, 801–812.
Orwin, R. G. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics, 8, 157–159.
Orwin, R. G., & Vevea, J. L. (2009). Evaluating coding decisions. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 177–203). New York: Russell Sage Foundation.
Pearson, K. (1895). Contributions to the mathematical theory of evolution II. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London, 186, 343–414.
Pettigrew, T. F., & Tropp, L. R. (2006). A meta-analytic test of intergroup contact theory. Journal of Personality and Social Psychology, 90(5), 751–783.
Prentice, D. A., & Miller, D. T. (1992). When small effects are impressive. Psychological Bulletin, 112(1), 160–164.
Ray, J. W., & Shadish, W. R. (1996). How interchangeable are different estimators of effect size? Journal of Consulting and Clinical Psychology, 64, 1316–1325.
Reed, J. G., & Baxter, P. M. (2009). Using reference databases. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 73–101). New York: Russell Sage Foundation.
Rhodes, N., & Wood, W. (1992). Self-esteem and intelligence affect influenceability: The mediating role of message reception. Psychological Bulletin, 111, 156–171.
Rosenthal, R. (1968). Experimenter expectancy and the reassuring nature of the null hypothesis decision procedure. Psychological Bulletin, 70 (6, Pt. 2), 30–47.
Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results. Psychological Bulletin, 86, 638–641.
Rosenthal, R. (1990). How are we doing in soft psychology? American Psychologist, 45, 775–777.
Rosenthal, R. (1991). Meta-analytic procedures for social research (Rev. ed.). Beverly Hills, CA: Sage.
Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 231–244). New York: Russell Sage Foundation.
Rosenthal, R., & Rosnow, R. L. (1985). Contrast analysis: Focused comparisons in the analysis of variance. New York: Cambridge University Press.
Rosenthal, R., & Rosnow, R. L. (1991). Essentials of behavioral research: Methods and data analysis (2nd ed.). New York: McGraw-Hill.
Rosenthal, R., & Rubin, D. (1978). Interpersonal expectancy effects: The first 345 studies. Behavioral and Brain Sciences, 3, 377–415.
Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effect. Journal of Educational Psychology, 74, 166–169.
Rosenthal, R., & Rubin, D. B. (1994). The counternull value of an effect size: A new statistic. Psychological Science, 5, 329–334.
Ross, L., & Nisbett, R. (1991). The person and the situation: Perspectives of social psychology. New York: McGraw-Hill.
Roth, P. L., Purvis, K. L., & Bobko, P. (2012). A meta-analysis of gender group differences for measures of job performance in field studies. Journal of Management, 38, 719–739.
Rothstein, H. R., & Hopewell, S. (2009). Grey literature. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 103–125). New York: Russell Sage Foundation.
Rotton, J., Foos, P. W., Van Meek, L., & Levitt, M. (1995). Publication practices and the file drawer problem: A survey of published authors. Journal of Social Behavior and Personality, 10, 1–13.
Sanchez-Meca, J., Marin-Martinez, F., & Chacon-Moscoso, S. (2003). Effect-size índices for dichotomized outcomes in meta-analysis. Psychological Methods, 8(4), 448–467.
Schmidt, F. L. (1992). What do data really mean? Research findings, meta-analysis, and cumulative knowledge in psychology. American Psychologist, 47, 1173–1181.
Schmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in psychology: Implications for training of researchers. Psychological Methods, 1, 115–129.
Schmidt, F. L., Le, H., & Oh, I. (2009). Correcting for the distorting effects of study artifacts in meta-analysis. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 317–333). New York: Russell Sage Foundation.
Schooler, J. (2011). Unpublished results hide the decline effect. Nature, 470, 327.
Shadish, W. R. (1996). Meta-analysis and the exploration of causal mediating processes: A primer of examples, methods, and issues. Psychological Methods, 1, 47–65.
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. New York: Houghton Mifflin.
Shea, B. J., Grimshaw, J. M., Wells, G. A. et al. (2007). Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Medical Research Methodology, 7, 10–17.
Sheppard, B. H., Hartwick, J., & Warshaw, P. R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. Journal of Consumer Research, 15, 325–343.
Sidanius, J., Pratto, F., & Bobo, L. (1994). Social dominance orientation and the political psychology of gender: A case of invariance? Journal of Personality and Social Psychology, 67, 998–1011.
Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods (7th ed.). Ames: Iowa State University Press.
Sommer, B. (1987). The file drawer effect and publication rates in menstrual cycle research. Psychology of Women Quarterly, 11, 233–242.
Sternberg, R. J. (1991). Editorial. Psychological Bulletin, 109, 3–4.
Stewart, L., Tierney, J., & Burdett, S. (2005). Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment and adjustments (pp. 261–286). New York: Wiley.
Stigler, S. M. (1986). History of statistics: The measurement of uncertainty before 1900. Cambridge, MA: Harvard University Press.
Sutton, A. J. (2009). Publication bias. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 435–452). New York: Russell Sage Foundation.
Symons, C. S., & Johnson, B. T. (1997). The self-reference effect in memory: A meta-analysis. Psychological Bulletin, 121, 371–394.
Tabachnick, B. G., & Fidell, L. S. (1996). Using multivariate statistics (3rd ed.). New York: Harper Collins.
Taras, V., Kirkman, B. L., & Steel, P. (2010). Examining the impact of culture's consequences: A three-decade, multilevel, meta-analytic review of Hofstede's cultural value dimensions. Journal of Applied Psychology, 95(3), 405–439.
Thompson, K. N., & Schumacker, R. E. (1997). An evaluation of Rosenthal and Rubin's binomial effect size display. Journal of Education and Behavioral Statistics, 22(1), 109–117.
Timm, N. H. (1975). Multivariate analysis, with applications in education and psychology. Belmont, CA: Brooks-Cole.
Twenge, J. M. (2000). The age of anxiety? The birth cohort change in anxiety and neuroticism, 1952–1993. Journal of Personality and Social Psychology, 79(6), 1007–1021.
Twenge, J. M., Gentile, B., DeWall, C. N., Ma, D., Lacefield, K., & Schurtz, D. R. (2010). Birth cohort increases in psychopathology among young Americans, 1938–2007: A cross-temporal meta-analysis of the MMPI. Clinical Psychology Review, 30, 145–154.
Twenge, J. M., Konrath, S., Foster, J. D., Campbell, W. K., & Bushman, B. J. (2008). Egos inflating over time: A cross-temporal meta-analysis of the narcissistic personality inventory. Journal of Personality, 76, 875–901.
Twenge, J. M., & Nolen-Hoeksema, S. (2002). Age, gender, race, socioeconomic status, and birth cohort difference on the children's depression inventory: A meta-analysis. Journal of Abnormal Psychology, 111(4), 578–588.
United Nations Statistics Division (2012). International databases. Retrieved April 6 from http://unstats.un.org/unsd/default.htm.
Valentine, J. C. (2009). Judging the quality of primary research. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 129–146). New York: Russell Sage Foundation.
Valentine, J. C., Pigott, T. D., & Rothstein, H. R. (2010). How many studies do you need? A primer on statistical power for meta-analysis. Journal of Educational and Behavioral Statistics, 35, 215–247.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.
White, H. D. (2009). Scientific communication and literature retrieval. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 51–71). New York: Russell Sage Foundation.
Wicker, A. W. (1969). Attitude versus actions: The relationship of verbal and overt behavioral responses to attitude objects. Journal of Social Issues, 25(4), 41–78.
Wilson, D. B. (2009). Systematic coding. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 159–176). New York: Russell Sage Foundation.
Winer, B. J., Brown, D. R., & Michels, K. (1991). Statistical principles in experimental design (3rd ed.). New York: McGraw-Hill.
Wood, W. (1987). Meta-analytic review of sex differences in group performance. Psychological Bulletin, 102, 53–71.
Wood, W., & Eagly, A. H. (2009). Advantages of certainty and uncertainty. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 455–472). New York: Russell Sage Foundation.
World Bank (2013). Data. Retrieved from http://data.worldbank.org/
World Values Survey (2012). Retrieved April 6, 2012, from http://www.worldvaluessurvey.org/