Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T15:45:49.727Z Has data issue: false hasContentIssue false

Chapter 4 - The Influence of Impurities and Additives on Crystallization

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

In previous chapters, the simple case of two-component systems, i.e., one single solute crystallizing in a solvent (or solvent mixture), was mainly considered. However, because crystallization is most often employed as a purification process, numerous impurities resulting from the upstream part of the process are necessarily present in solution, such as buffer components, residual reactants, intermediates, or by-products. These impurities may affect the crystallization process and the resulting crystal properties, even at low concentration. Besides, additives are sometimes placed intentionally in solution with a view to tuning certain crystal properties. The mechanisms by which impurities and additives dissolved in solution affect the crystallization process can be rationalized in a common framework, so they will both be placed under the umbrella of foreign species in this chapter. The species to be purified will instead be referred to as the host species.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adawy, A, van der Heijden, EG, Hekelaar, J, et al. Crystal Growth Des. 2015; 15(3):1150–59.Google Scholar
Addadi, L, Van Mil, J, Lahav, M. J. Am. Chem. Soc. 1981; 103(5):1249–51.Google Scholar
Addadi, L, Weinstein, S, Gati, E, Weissbuch, I, Lahav, M. J. Am. Chem. Soc. 1982; 104(17):4610–17.Google Scholar
Agarwal, P, Berglund, KA. Crystal Growth Des. 2003; 3(6):941–46.Google Scholar
Agnew, LR, Cruickshank, DL, McGlone, T, Wilson, CC. Chem. Commun. 2016; 52(46):7368–71.CrossRefGoogle Scholar
Alvarez, AJ, Singh, A, Myerson, AS. Crystal Growth Des. 2011; 11(10):4392–400.CrossRefGoogle Scholar
Authier, A, Lagomarsino, S, Tanner, B, eds. X-Ray and Neutron Dynamical Diffraction: Theory and Applications (NATO ASI Series B: Physics, vol. 357). Springer, New York, NY, 1996.Google Scholar
Bai, J, Wang, S, Wang, L M, Dudley, M. In Dhanaraj, G, Byrappa, K, Prasad, V, Dudley, M, eds., Springer Handbook of Crystal Growth. Springer, New York, NY, 2010. pp. 1477–519.Google Scholar
Banga, S, Chawla, G, Varandani, D, Mehta, BR, Bansal, AK. J. Pharm. Pharmacol. 2007; 59(1):2939.Google Scholar
Bauer, J, Spanton, S, Henry, R, et al. Pharmacol. Res. 2001; 18(6):859–66.CrossRefGoogle Scholar
BerkovitchYellin, Z, Addadi, L, Idelson, M, Lahav, M, Leiserowitz, L. Angew Chem. Int. Ed. 1982; 21(S8):1336–45.Google Scholar
Berkovitch-Yellin, Z, Van Mil, J, Addadi, L, et al. J. Am. Chem. Soc. 1985; 107(11):3111–22.Google Scholar
Black, JFB, Cardew, PT, Cruz-Cabeza, AJ, et al. Crystal Eng. Commun. 2018; 20(6):768–76.Google Scholar
Black, SN, Davey, RJ, Halcrow, M. J. Crystal Growth 1986; 79(1 part 2):765–74.CrossRefGoogle Scholar
Bliznakov, G. In Adsorption et croissance crystalline: Colloques internationaux du centre national de la recherche scientifique; 1965. p. 291.Google Scholar
Bobo, E, Lefez, B, Caumon, MC, Petit, S, Coquerel, G. Crystal Eng. Commun. 2016; 18(28):5287–95.Google Scholar
Boistelle, R, Mathieu, M, Simon, B. Surf. Sci. 1974; 42(2):373–88.Google Scholar
Borsos, A, Majumder, A, Nagy, ZK. Crystal Growth Des. 2016; 16(2):555–68.Google Scholar
Brice, JC, Bruton, TM. J. Crystal Growth 1974; 26(1):5960.CrossRefGoogle Scholar
Buckley, HE. Crystal Growth. Wiley, New York, NY, 1951.Google Scholar
Burt, DP, Wilson, NR, Janus, U, Macpherson, JV, Unwin, PR. Langmuir 2008; 24(22):12867–76.Google Scholar
Burton, JA, Kolb, ED, Slichter, WP, Struthers, JD. Exp. J. Chem. Phys. 1953a; 21(11):1991–96.Google Scholar
Burton, JA, Prim, RC, Slichter, WP. J. Chem. Phys. 1953b; 21(11):1987–91.Google Scholar
Burton, WK, Cabrera, N, Frank, FC. Philos. Trans. R. Soc. Lond. A 1951; 243(866):299358.Google Scholar
Cabrera, N, Vermilyea, D. In Doremus, R, Roberts, B, Turnbull, D, eds., Growth and Perfection of Crystals. Springer, New York, NY, 1958. p. 393.Google Scholar
Cai, Z, Liu, Y, Song, Y, Guan, G, Jiang, Y. J. Crystal Growth 2017; 461:19.CrossRefGoogle Scholar
Chemburkar, SR, Bauer, J, Deming, K, et al. Org. Proc. Res. Dev. 2000; 4(5):413–17.Google Scholar
Chow, AHL, Chow, PKK, Zhongshan, W, Grant, DJW. Int. J. Pharm. 1985; 24(2):239–58.CrossRefGoogle Scholar
Council, NR. Visualizing Chemistry: The Progress and Promise of Advanced Chemical Imaging. National Academies Press, Washington, DC, 2006.Google Scholar
Dandekar, P, Kuvadia, ZB, Doherty, MF. Ann. Rev. Mater. Res. 2013; 43:359–86.Google Scholar
Davey, RJ, Black, SN, Logan, D, et al. J. Chem. Soc. Faraday Trans. 1992; 88(23):3461–66.Google Scholar
Davey, RJ, Blagden, N, Potts, GD, Docherty, R. J. Am. Chem. Soc. 1997; 119(7):1767–72.CrossRefGoogle Scholar
Davey, RJ, Mullin, JW. J. Crystal Growth 1974; 26(1):4551.Google Scholar
Davey, RJ. J. Crystal Growth 1976; 34(1):109–19.Google Scholar
De Yoreo, JJ, Vekilov, PG. Rev. Mineral Geochem. 2003; 54(1):5793.Google Scholar
Denbigh, K G, White, ET. Chem. Eng. Sci. 1966; 21(9):739–53.Google Scholar
DeOliveira, DB, Laursen, RA. J. Am. Chem. Soc. 1997; 119(44):10627–31.Google Scholar
Elhadj, S, De Yoreo, J, Hoyer, J, Dove, P. Proc. Natl. Acad. Sci. USA 2006a; 103(51):19237–42.Google Scholar
Elhadj, S, Salter, E, Wierzbicki, A, et al. Crystal Growth Des. 2006b; 6(1):197201.Google Scholar
Farmanesh, S, Chung, J, Chandra, D, et al. J. Crystal Growth 2013; 373:1319.Google Scholar
Farmanesh, S, Ramamoorthy, S, Chung, J, et al. J. Am. Chem. Soc. 2014; 136(1):367–76.Google Scholar
Févotte, F, Févotte, G. IFAC Proc. 2009; 42(11):5261.Google Scholar
Févotte, G, Gherras, N, Moutte, J. Crystal Growth Des. 2013; 13(7):2737–48.Google Scholar
Flood, AE. Crystal Eng. Commun. 2010; 12(2):313–23.CrossRefGoogle Scholar
Garnham, CP, Campbell, RL, Davies, PL. Proc. Natl. Acad. Sci. USA 2011; 108(18):7363–67.Google Scholar
Givand, JC, Teja, AS, Rousseau, RW. AIChE J. 2001; 47(12):2705–12.CrossRefGoogle Scholar
Givand, J, Chang, BK, Teja, AS, Rousseau, RW. Indus. Eng. Chem. Res. 2002; 41(7):1873–76.Google Scholar
Gu, CH, Chatterjee, K, Young, V, Grant, DJW. J. Crystal Growth 2002; 235(1):471–81.Google Scholar
Gucciardi, PG, Trusso, S, Vasi, C, Patane, S, Allegrini, M. J. Microsc. 2003; 2009(3):228–35.Google Scholar
Hall, RN. J. Phys. Chem. 1953; 57(8):836–39.Google Scholar
Hartman, P, Perdok, W. Acta Crystallogr. 1955; 8(1):4952.Google Scholar
Heimann, RB. In Grabmaier, J, ed., Silicon Chemical Etching. Springer, Berlin, 1982, pp. 173224.Google Scholar
Hendriksen, BA, Grant, DJW, Meenan, P, Green, DA. J. Crystal Growth 1998; 183(4):629–40.CrossRefGoogle Scholar
Hillier, AC, Ward, MD. Science 1994; 263(5151):1261–64.Google Scholar
Hossain, A, Bolotnikov, AE, Camarda, GS, et al. J. Crystal Growth 2010; 312(11):1795–99.Google Scholar
Hsi, KH, Kenny, M, Simi, A, Myerson, AS. Crystal Growth Des. 2013b; 13(4):1577–82.CrossRefGoogle Scholar
Hsi, KHY, Concepcion, AJ, Kenny, M, Magzoub, AA, Myerson, AS. Crystal Eng. Commun. 2013a; 15(34):6776–81.Google Scholar
Ilevbare, GA, Liu, H, Edgar, KJ, Taylor, LS. Crystal Growth Des. 2012; 13(2):740–51.Google Scholar
Jia, Z, DeLuca, CI, Chao, H, Davies, PL. Nature 1996; 384:285.CrossRefGoogle Scholar
Jones, F, Ogden, MI. Crystal Eng. Commun. 2010; 12(4):1016–23.Google Scholar
Jung, T, Sheng, X, Choi, CK, et al. Langmuir 2004; 20(20):8587–96.Google Scholar
Kahr, B, Gurney, RW. Chem. Rev. 2001; 101(4):893952.CrossRefGoogle Scholar
Kitamura, M, Funahara, H. J. Chem. Eng. Jpn. 1994 ;27(1):124–26.Google Scholar
Kitamura, M, Ishizu, T. J. Crystal Growth 1998; 192(1–2):225–35.Google Scholar
Kitamura, M. Crystal Eng. Commun. 2009; 11(6):949–64.Google Scholar
Klapper, H. In Karl, N, ed., Organic Crystals I: Characterization. Springer, Berlin, 1991, pp. 109–62.Google Scholar
Korsakov, AV, Toporski, J, Dieing, T, Yang, J, Zelenovskiy, PS. J. Raman Spectrosc. 2015; 46(10):880–88.Google Scholar
Kossel, W. Ann. Physik 1934; 413(5):457–80.Google Scholar
Kubota, N, Mullin, J. J. Crystal Growth. 1995; 152(3):203–8.CrossRefGoogle Scholar
Kubota, N, Yokota, M, Mullin, JW. J. Crystal Growth 1997; 182(1):8694.Google Scholar
Kubota, N. Crystal Res. Technol. 2001; 36(810):749–69.Google Scholar
Kuvadia, ZB, Doherty, MF. Crystal Growth Des. 2013; 13(4):1412–28.Google Scholar
Lee, AY, Erdemir, D, Myerson, AS. Annu. Rev. Chem. Biomol. Eng. 2011; 2:259–80.CrossRefGoogle Scholar
Lee, EH, Byrn, SR, Carvajal, MT. Pharmacol. Res. 2006; 23(10):2375–80.Google Scholar
Lee, EH. Asian J. Pharm. Sci. 2014; 9(4):163–75.Google Scholar
Lennartson, A. Nat. Chem. 2014; 6:942.Google Scholar
Lin, GQ, You, QD, Cheng, JF, eds. Chiral Drugs: Chemistry and Biological Action. Wiley, Hoboken, NJ, 2011.Google Scholar
Llina`s, A, Goodman, JM. Drug Discov. Today 2008; 13(5–6):198210.Google Scholar
Lorenz, H, SeidelMorgenstern, A. Angew Chem. Int. Ed. 2014; 53(5):1218–50.Google Scholar
Lovette, MA, Browning, AR, Griffin, DW, et al. Indus. Eng. Chem. Res. 2008; 47(24):9812–33.Google Scholar
Lutsko, JF, González-Segredo, N, Durán-Olivencia, MA, et al. Crystal Growth Des. 2014; 14(11):6129–34.Google Scholar
Machiya, K, Ieda, S, Hirano, M, Ooshima, H. J. Chem. Eng. Jpn. 2009; 42(3):147–52.Google Scholar
Majumder, A, Nagy, ZK. Chem. Eng. Sci. 2013; 101:593602.Google Scholar
Malkin, AJ, Thorne, RE. Methods 2004; 34(3):273–99.Google Scholar
Mangin, D, Puel, F, Veesler, S. Org. Proc. Res. Dev. 2009; 13(6):1241–53.Google Scholar
Mao, G, Lobo, L, Scaringe, R, Ward, MD. Chem. Mater. 1997; 9(3):773–83.Google Scholar
Markman, O, Elias, D, Addadi, L, Cohen, IR, Berkovitch-Yellin, Z. J. Crystal Growth 1992; 122(1–4):344–50.Google Scholar
Martins, PM, Rocha, F, Damas, AM, Rein, P. Crystal Eng. Commun. 2011; 13(4):1103–10.Google Scholar
Martins, PM, Rocha, FA, Rein, P. Crystal Growth Des. 2006; 6(12):2814–21.Google Scholar
Matsuzuki, Y, Kubota, T, Liu, XY, Ataka, M, Takano, KJ. J. Crystal Growth 2002; 242(1):199208.Google Scholar
Modi, SR, Dantuluri, AKR, Puri, V, et al. Crystal Growth Des. 2013; 13(7):2824–32.Google Scholar
Mullin, JW. Crystallization. Butterworth-Heinemann, London, 2001.Google Scholar
Murata, Y, Honda, T. J. Crystal Growth 1977; 39(2):315–27.CrossRefGoogle Scholar
Nie, Q, Wang, J, Yin, Q. Chem. Eng. Sci. 2006; 61(18):5962–68.Google Scholar
Orme, C, Noy, A, Wierzbicki, A, et al. Nature 2001; 411(6839):775.Google Scholar
Ottens, M, Lebreton, B, Zomerdijk, M, et al. Indus. Eng. Chem. Res. 2004; 43(24):7932–38.Google Scholar
Pantaraks, P, Flood, AE. Crystal Growth Des. 2005; 5(1):365–71.Google Scholar
Pasteur, L. Ann. Chim. Phys. 1848; 24:442–59.Google Scholar
Peng, J, Dong, Y, Wang, L, et al. Indus. Eng. Chem. Res. 2014; 53(30):12170–78.Google Scholar
Peng, Y. Crystallization of calcium sulfate during phosphoric acid production: improving filtration through improvement in particle shape and size distribution. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 2017.Google Scholar
Piana, S, Jones, F, Gale, JD. J. Am. Chem. Soc. 2006; 128(41):13568–74.Google Scholar
Poloni, LN, Ford, AP, Ward, MD. Crystal Growth Des. 2016; 16(9):5525–41.Google Scholar
Poloni, LN, Zhu, Z, Garcia-Va´zquez, N, et al. Crystal Growth Des. 2017; 17(5):2767–81.CrossRefGoogle Scholar
Pons Siepermann, CA, Huang, S, Myerson, AS. Crystal Growth Des. 2017; 17(5):2646–53.Google Scholar
Pons-Siepermann, CA, Huang, S, Myerson, AS. Crystal Eng. Commun. 2016; 18(39):7487–93.Google Scholar
Poornachary, SK, Chow, PS, Tan, RBH. Crystal Growth Des. 2008; 8(1):179–85.Google Scholar
Promraksa, A, Flood, AE, Schneider, PA. J. Crystal Growth 2009; 311(14):3667–73.Google Scholar
Pudasaini, N, Upadhyay, PP, Parker, CR, et al. Org. Proc. Res. Dev. 2017; 21(4):571–77.Google Scholar
Puel, F, Marchal, P, Klein, J. Chem. Eng. Res. Des. 1997; 75(2):193205.Google Scholar
Qiu, SR, Wierzbicki, A, Salter, EA, et al. J. Am. Chem. Soc. 2005; 127(25):9036–44.Google Scholar
Quon, JL, Zhang, H, Alvarez, A, et al. Crystal Growth Des. 2012; 12(6):3036–44.Google Scholar
Raghothamachar, B, Dudley, M, Dhanaraj, G. In Dhanaraj, G, Byrappa, K, Prasad, V, Dudley, M, eds., Springer Handbook of Crystal Growth. Springer, New York, NY, 2010. pp. 1425–51.Google Scholar
Raymond, JA, DeVries, AL. Proc. Natl. Acad. Sci. USA 1977; 74(6):2589–93.CrossRefGoogle Scholar
Rohl, AL. Curr. Opin. Solid State Mater. Sci. 2003; 7(1):2126.CrossRefGoogle Scholar
Rosenberger, F, Riveros, HG. J. Chem. Phys. 1974; 60(2):668–73.CrossRefGoogle Scholar
Rosenberger, F. J. Crystal Growth 1986; 76(3):618–36.Google Scholar
Saleemi, A, Onyemelukwe, I, Nagy, Z. Frontiers Chem. Sci. Eng. 2013; 7(1):7987.Google Scholar
Sangwal, K. Additives and Crystallization Processes: From Fundamentals to Applications.Wiley, Hoboken, NJ, 2007.Google Scholar
Sangwal, K. Prog. Crystal Growth Charact. Mater. 1996; 32(1):343.Google Scholar
Sangwal, K. J. Crystal Growth. 1999; 203(1):197212.Google Scholar
Sato, K. Jpn. J. Appl. Phys. 1980; 19(7):1257.Google Scholar
Sauter, C, Ng, JD, Lorber, B, et al. J. Crystal Growth 1999; 196(2–4):365–76.Google Scholar
Schmidt, C, Ulrich, J. J. Crystal Growth 2012; 353(1):168–73.Google Scholar
Schutt, KJ, Gosavi, RA, White, DB, Schall, CA. J. Crystal Growth 2009; 311(16):4062–68.Google Scholar
Sgualdino, G, Aquilano, D, Tamburini, E, Vaccari, G, Mantovani, G. Mater. Chem. Phys. 2000; 66(2):316–22.Google Scholar
Shekunov, BY, Grant, DJW, Latham, RJ, Sherwood, JN. J. Phys. Chem. B 1997; 101(44):9107–12.Google Scholar
Shklovskii, BI, Efros, AL. Electronic Properties of Doped Semiconductors (Springer Series in Solid-State Sciences). Springer, New York, NY, 2013.Google Scholar
Shtukenberg, AG, Lee, SS, Kahr, B, Ward, MD. Ann. Rev. Chem. Biomol. Eng. 2014; 5:7796.Google Scholar
Shtukenberg, AG, Poloni, LN, Zhu, Z, et al. Crystal Growth Des. 2015; 15(2):921–34.Google Scholar
Shtukenberg, AG, Ward, MD, Kahr, B. Chem. Rev. 2017; 117(24):14042–90.Google Scholar
Simon, B, Grassi, A, Boistelle, R. J. Crystal Growth 1974; 26(1):9096.Google Scholar
Simone, E, Steele, G, Nagy, ZK. Crystal Eng. Commun. 2015; 17(48):9370–79.Google Scholar
Sizemore, JP, Doherty, MF. Crystal Growth Des. 2009; 9(6):2637–45.Google Scholar
Slaminko, P, Myerson, AS. AIChE J. 1981;27(6):1029–31.Google Scholar
Song, RQ, Colfen, H. Crystal Eng. Commun. 2011; 13(5):1249–76.Google Scholar
Taller, A, Grohe, B, Rogers, KA, Goldberg, HA, Hunter, GK. Biophys. J. 2007; 93(5):1768–77.CrossRefGoogle Scholar
Tanner, BK. J. Crystal Growth 1990; 99(1 part 2):1315–23.Google Scholar
Teja, AS, Givand, JC, Rousseau, RW. AIChE J. 2002; 48(11):2629–34.Google Scholar
Thompson, C, Davies, MC, Roberts, CJ, Tendler, SJ, Wilkinson, MJ. Int. J. Pharm. 2004; 280(1–2):137–50.Google Scholar
Thurmond, CD, Struthers, JD. J. Phys. Chem. 1953; 57(8):831–35.Google Scholar
Trumbore, FA, Isenberg, CR, Porbansky, EM. J. Phys. Chem. Solids 1959; 9(1):6069.Google Scholar
van der Leeden, MC, Kashchiev, D, van Rosmalen, GM. J. Crystal Growth 1993; 130(1):221–32.Google Scholar
Vartak, S, Myerson, AS. Crystal Growth Des. 2017a; 17(10):5506–16.Google Scholar
Vartak, S, Myerson, AS. Org. Process Res. Dev. 2017b; 21(2):253–61.Google Scholar
Waldschmidt, A, Couvrat, N, Berton, B, et al. Crystal Growth Des. 2011; 11(6):2463–70.Google Scholar
Waldschmidt, A, Dupray, V, Berton, B, et al. J. Crystal Growth 2012; 342(1):7279.Google Scholar
Wang, JL, Berkovitchyellin, Z, Leiserowitz, L. Acta Crystal. 1985; 41:341–48.Google Scholar
Wang, L, De Yoreo, JJ, Guan, X, Qiu, et al. Crystal Growth Des. 2006; 6(8):1769–75.Google Scholar
Weber, CC, Wood, GPF, Kunov-Kruse, AJ, et al. Crystal Growth Des. 2014; 14(7):3649–57.Google Scholar
Weiser, K. J. Phys. Chem. Solids 1958; 7(2):118–26.Google Scholar
Weissbuch, I, Popovitz-Biro, R, Lahav, M, Leiserowitz, L. Acta Crystal B 1995; 51(2):115–48.Google Scholar
Wilcox, WR. Indus. Eng. Chem. 1968; 60(3):1223.Google Scholar
Wilson, LO. J. Crystal Growth 1978; 44(2):247–50.Google Scholar
Yamamoto, T. Sci. Papers Inst. Phys. Chem. Res. Jpn. 1939; 35:228–89.Google Scholar
Yang, Q, Liu, Y, Gu, A, Ding, J, Shen, Z. J. Colloid Interface Sci. 2001; 240(2):608–21.Google Scholar
Zhang, GGZ, Grant, DJW. Crystal Growth Des. 2005; 5(1):319–24.Google Scholar
Zhou, W, Greer, HF. Eur. J. Inorg. Chem. 2016; 2016(7):941–50.Google Scholar
Zhu, Z, Peng, Y, Hatton, TA, et al. Proc. Eng. 2016; 138:390402.Google Scholar
Zhu, Z. Multidimensional population balance modeling and optimization of continuous reactive crystallization. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 2017.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×