Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T12:39:55.975Z Has data issue: false hasContentIssue false

Chapter 3 - Crystal Nucleation

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Crystallization from solutions is a complex process completed in several stages. The first stage is the formation of supersaturated solution because the spontaneous appearance of a new phase can occur only when a system is in a nonequilibrium condition. In the next stage, molecules dissolved in solution begin to aggregate to relieve the supersaturation and move the system toward equilibrium. The molecular aggregation process eventually leads to the formation of nuclei that can act as centers of crystallization. A nucleus can be defined as the minimum amount of a new phase capable of independent existence (Khamskii 1969). The nature of nuclei (i.e., whether they are amorphous particles or tiny crystals) is still unknown. The birth of these small nuclei in an initially metastable phase is called nucleation, which is a major mechanism of first-order phase transition. Kashchiev and van Rosmalen (2003) describe nucleation as the process of fluctuational appearance of nanoscopically small clusters of the new crystalline phase, which can grow spontaneously to macroscopic sizes. The growth stage, which immediately follows nucleation, is governed by the diffusion of particles, called growth units, to the surface of the existing nuclei and their incorporation into the structure of the crystal lattice (Khamskii 1969). This stage continues until all the solute in excess of saturation is consumed for the development of mature crystals. The initial stages of crystallization, which can be defined as the period between the achievement of supersaturation and the formation of nuclei, plays a decisive role in determining properties of the resulting solid phase, such as purity, crystal structure, and particle size. Thus higher levels of control over crystallization cannot be achieved without understanding the fundamentals of nucleation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aber, J. E., Arnold, S., Garetz, B. A., and Myerson, A. S. Phys. Rev. Lett. 2005; 94:1455031–34.Google Scholar
Abraham, F. F., and Pound, G. M. J. Chem. Phys. 1968; 48:732–40CrossRefGoogle Scholar
Adachi, H., Takano, K., Hosokawa, Y., et al. Jpn. J. Appl. Phys. Part 2: Letters 2003; 42:L798-L800.Google Scholar
Adams, G. W., Schmitt, J. L., and Zalabsky, R. A. J. Chem. Phys. 1984; 81:5074–78.Google Scholar
Addadi, L., Berkovitch-Yellin, Z., Domb, N., et al. Nature 1984; 96:126.Google Scholar
Alison, H. G., Davey, R. J., Garside, J., et al. Phys. Chem. Chem. Phys. 2003; 5:49985000.Google Scholar
Anisimov, M. P. Russian Chem. Rev. 2003; 72:591628.Google Scholar
Anwar, J., and Boateng., P. K. J. Am. Chem. Soc. 1998; 120:9600–4.Google Scholar
Asherie, N., Lomakin, A., and Benedek, G. B. Phys. Rev. Lett. 1996; 77:4832–35.Google Scholar
Auer, S. A. Quantitative prediction of crystal nucleation rates for spherical colloids: a computational study. Ph.D. dissertation, University of Amsterdam, Amsterdam, 2002.Google Scholar
Auer, S., and Frenkel, D. Nature 2001a; 409:1020–23.CrossRefGoogle Scholar
Auer, S., and Frenkel, D. Nature 2001b; 413:711–13.Google Scholar
Azuma, T., Tsukamoto, K., and Sunagawa, I. J. Crystal Growth 1989; 98:371–76.Google Scholar
Bahadur, R., and McClurg, R. B. J. Phys. Chem. B 2001; 105:11893–900.Google Scholar
Becker, R., and Doring, W. Ann. Physik 1935; 24:719–52.Google Scholar
Beckmann, W.,;Otto, W., and Budde, U. Organ. Proc. Res. Dev. 2001; 5:387–92.CrossRefGoogle Scholar
Behlke, J., and Knespel, A. J. Crystal Growth 1996; 158:388–91.Google Scholar
Bergfors, T. Protein Crystallization. International University Line, La Jolla, CA, 1999.Google Scholar
Berland, C. R., Thurston, G. M., Kondo, M., et al. Proc. Natl. Acad. Sci. USA 1992; 89:1214–18.Google Scholar
Bernstein, J., Davey, R. J., and Henck, J. O. Angewandte Chemie 1999; 38:3440–61.Google Scholar
Bishop, J. B.,;Fredericks, W. J., Howard, S. B., and Sawada, T. J. Crystal Growth 1992; 122:4149.Google Scholar
Blagden, N., and Davey, R. J. Crystal Growth Des. 2003; 3:873–85.Google Scholar
Boistelle, R. In Grunfeld, J. P., Bach, J. F., Crosnier, J., and Funck-Brentano, J. L. (eds.), Advances in Nephrology. Medical Publishers, Chicago, IL, 1986, pp. 173217.Google Scholar
Bonafede, S. J., and Ward, M. D. J. Am. Chem. Soc. 1995; 117:7853–61.Google Scholar
Bonnett, P. E., Carpenter, K. J., Dawson, S., and Davey, R. J. Chem. Commun. 2003; 6:698–99.Google Scholar
Bowles, R. K., Reguera, D., Djikaev, D. Y., and Reiss, H. J. Chem. Phys. 2001; 115:1853–66.CrossRefGoogle Scholar
Boue, F., Lefaucheux, F., Robert, M. C., and Rosenman, I. J. Crystal Growth 1993; 133:246–54.Google Scholar
Boukari, H., Lin, J. S., and Harris, M. T. X-rayJ. Colloid Interface Sci. 1997; 194:311–18.Google Scholar
Broul, M. Ph.D. dissertation, Technical University of Chemical Technology, Prague, 1978.Google Scholar
Budayova-Spano, M., Bonnete, F., Astier, J. P., and Veesler, S. J. Crystal Growth 2002; 235:547–54.Google Scholar
Burton, R. C., Ferrari, E. S., Davey, R. J., et al. Crystal Growth Des. 2008; 8:1559–65.Google Scholar
Byrn, S. R., Pfeiffer, R. R., Stephenson, G., Grant, D. J. W., and Gleason, W. B. Chem. Mater. 1994; 6:1148–58.Google Scholar
Cacciuto, A., Auer, S., and Frenkel, D. Phys. Rev. Lett. 2004; 93:166105/1–4.CrossRefGoogle Scholar
Cacciuto, A., and Frenkel, D. J. Phys. Chem. B 2005; 109:6587–94.Google Scholar
Cahn, J. W., and Hilliard, J. E. J. Chem. Phys. 1959; 31:688–99.Google Scholar
Caira, M. R. In Weber, E. (ed.), Design of Organic Solids. Springer, New York, NY,1998, pp. 163208.Google Scholar
Carter, P. W., and Ward, M. D. J. Am. Chem. Soc. 1993; 115:11521–35.Google Scholar
Cerreta, M. K., and Berglund, K. A. In Jancic, S. J., and de Jong, E. J. (eds.), Proceedings of the 9th Symposium on Industrial Crystallization. Elsevier, Amsterdam, 1984, pp. 233–36.Google Scholar
Chang, Y. C., and Myerson, A. S. AIChE J. 1986; 32:1567156–9.Google Scholar
Chattopadhyay, S., Erdemir, D., Evans, J. M. B., et al. Crystal Growth Des. 2005; 5:523–27.Google Scholar
Chen, H. L., Hwang, J. C., Yang, J. M., and Wang, R. C. Polymer 1998; 39:6983–89.Google Scholar
Chen, J., and Trout, B. L. J. Phys. Chem. B 2008; 112:7794–802.Google Scholar
Chen, B., Kim, H., Keasler, S. J., and Nellas, R. B. J. Phys. Chem. B 2008; 112:4067–78.Google Scholar
Childs, S. L., Chyall, L. J., Dunlap, J. T., et al. Crystal Growth Des. 2004; 4:441–49.Google Scholar
Chyall, L. J., Tower, J. M., Coates, D. A., Houston, T. L., and Child, S. L. Crystal Growth Des. 2002; 2:505–10.Google Scholar
Clontz, N.A., and McCabe, W.L. AIChE Symp. Series 1971; 110:6.Google Scholar
Clontz, N. A., Johnson, A. T., McCabe, W. L., and Rousseau, R. W. Indust. Eng. Chem. Fund. 1972; 11:368.Google Scholar
Cohen, M. D., Flagan, R. C., and Seinfeld, J. H. J. Phys. Chem. 1987; 91:4583–90.Google Scholar
Davey, R. J., Maginn, S. J., Andrews, S. J., et al. J. Chem. Soc. Farad. Trans. 1994; 90:1003–9.Google Scholar
Davey, R. J., Blagden, N., Potts, G. D., and Docherty, R. J. Am. Chem. Soc. 1997; 119:1767–72.Google Scholar
Davey, R. J., Blagden, N., Righini, S., et al. Crystal Growth Des. 2001; 1:5965.Google Scholar
Davey, R. J., Allen, K., Blagden, N., et al. Crystal Eng. Commun. 2002; 4:257–64.Google Scholar
Denk, E. G., and Botsaris, G. D. J. Crystal Growth 1972; 1314:493–99.Google Scholar
Derdour, L., and Skliar, D. Chem. Eng. Sci. 2014; 106:275–92.Google Scholar
Dillmann, A., and Meier, G. E. A. J. Chem. Phys. 1991; 94:3872–84.Google Scholar
Dixit, N. M., and Zukoski, C. F. J. Colloid Interface Sci. 2000; 228:359–71.Google Scholar
Djikaev, Y. S., Bowles, R., Reiss, H., et al. J. Phys. Chem. B 2001; 105:7708–22.Google Scholar
Doki, N., Yokota, M., Kido, K., Sasaki, S., and Kubota, N. Crystal Growth Des. 2004; 4:103–7.Google Scholar
Dokter, W. H., Van Garderen, H. F., Beelen, T. P. M., Van Santen, R. A., and Bras, W. Angewandte Chem. Int. Ed. English 1995; 34:7375.Google Scholar
Donnet, M., Bowen, P., Jongen, N., Lemaitre, J., and Hofmann, H. Langmuir 2005; 21:100–8.Google Scholar
Drenth, J., and Haas, C. Acta Crystallogr. D 1998; 54:867–72.CrossRefGoogle Scholar
Dunitz, J. D., and Bernstein, J. Accounts Chem. Res. 1995; 28:193200.Google Scholar
Evans, R. M. L., Poon, W. C. K., and Cates, M. E. Europhys. Lett. 1997; 38:595600.Google Scholar
Ezquerra, T. A., Lopez-Cabarcos, E., Hsiao, B. S., and Balta-Calleja, F. J. Phys. Rev. E 1996; 54:989–92.Google Scholar
Filobelo, L. F., Galkin, O., and Vekilov, P. G. J. Chem. Phys. 2005; 123:014904/1–7.Google Scholar
Flageollet-Daniel, C., Garnier, J. P., and Mirabel, P. J. Chem. Phys. 1983; 78:2600–6.Google Scholar
Fokin, V. M., and Zanotto, E. D. J. Non-Crystalline Solids 2000; 265:105–12.Google Scholar
Frenkel, J. The Kinetic Theory of Liquids. Dover, New York, NY, 1955.Google Scholar
Frostman, L. M., and Ward, M. D. Langmuir 1997; 13:330–37.CrossRefGoogle Scholar
Galkin, O., and Vekilov, P. G. J. Am. Chem. Soc. 2000a; 122:156–63.Google Scholar
Galkin, O., and Vekilov, P. G. Proc. Natl. Acad. Sci. USA 2000b; 97:6277–81.Google Scholar
Galkin, O., Chen, K., Nagel, R. L., Hirsch, R. E., and Vekilov, P. G. Proc. Natl. Acad. Sci. USA 2002; 99:8479–83.Google Scholar
Garetz, B. A., Matic, J., and Myerson, A. S. Phys. Rev. Lett. 2002; 89:175501/1–4.Google Scholar
Garside, J., Rush, I. T., and Larson, M. A. AIChE J. 1979; 25:5764.Google Scholar
Garten, V. A., and Head, R. B. Philos. Mag. 1966; 14:1243–53.Google Scholar
Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N., and Weitz, D. A. Science 2001; 292:258–62.Google Scholar
Gavezzotti, A., and Filippini, G. Chem. Commun. 1998; 3:287–94.Google Scholar
Gavezzotti, A. Chemistry 1999; 5:567–76.Google Scholar
Gavezzotti, A., Filippini, G., Kroon, J., van Eijck, B. P., and Klewinghaus, P. Chemistry 1997; 3:893–99.Google Scholar
Gebauer, D., Völkel, A., and Cölfen, H. Science 2008; 322:1819–22.CrossRefGoogle Scholar
Genck, W. J., and Larson, M. A. AIChE Symp. Series 1972; 68(121):57.Google Scholar
Georgalis, Y., Zouni, A., and Saenger, W. J. Crystal Growth 1992; 118:360–64.Google Scholar
Georgalis, Y., Zouni, A., Eberstein, W., and Saenger, W. J. Crystal Growth 1993; 126:245–60.Google Scholar
Georgalis, Y., Schueler, J., Frank, J., Soumpasis, M. D., and Saenger, W. Adv. Colloid Interface Sci. 1995; 58:5786.Google Scholar
Georgalis, Y., Umbach, P., Raptis, J., and Saenger, W. Acta Crystallogr. D 1997a; 53:691702.Google Scholar
Georgalis, Y., Umbach, P., Raptis, J., and Saenger, W. Acta Crystallogr. D 1997b; 53:703–12.Google Scholar
Georgalis, Y., Kierzek, A. M., and Saenger, W. J. Phys. Chem. B 2000; 104:3405–6.Google Scholar
Gidalevitz, D., Feidenhans’l, R., Matlis, S., et al. Angewandte Chem. Int. Ed. English 1997; 36:955–59.Google Scholar
Ginde, R. M., and Myerson, A. S. J. Crystal Growth 1992; 116:4147.Google Scholar
Girshick, S. L. J. Chem. Phys. 1991; 94:826–27.Google Scholar
Girshick, S. L., and Chiu, C. P. J. Chem. Phys. 1990; 93:1273–77.Google Scholar
Gliko, O., Neumaier, N., Fischer, M., et al. J. Crystal Growth 2005a; 275:e1409–16.Google Scholar
Gliko, O., Neumaier, N., Pan, W., et al. J. Am. Chem. Soc. 2005b; 127:3433–38.Google Scholar
Granasy, L. J. Chem. Phys. 1996; 104:5188–98.Google Scholar
Granasy, L., and Igloi, F. J. Chem. Phys 1997; 107:3634–44.Google Scholar
Haas, C., and Drenth, J. J. Crystal Growth 1999; 196:3888–94.Google Scholar
Haas, C., and Drenth, J. J. Phys. Chem. B 2000; 104:368–77.Google Scholar
Hall, C. L., Clemens, J. R., Brown, A. M., and Wilson, L. J. Acta Crystallogr. D 2005; 61: 8188.Google Scholar
Hamad, S., Moon, C., Catlow, C. R. A., Hulme, T. A., and Price, S. L. J. Phys. Chem. B 2006; 110:3323–29.Google Scholar
Hamilton, B. D., Ha, J.-M., Hillmyer, M. A., and Ward, M. D. Acc. Chem. Res. 2012; 45(3):414–23.Google Scholar
Harrowell, P., and Oxtoby, D. W. J. Chem. Phys. 1984; 80:1639–46.Google Scholar
Heck, B., Hugel, T., Iijima, M., and Strobl, G. Polymer 2000; 41:8839–48.Google Scholar
Heermann, D. W., and Klein, W. Phys. Rev. Lett. 1983; 50:1062–65.Google Scholar
Hikosaka, M., Yamazaki, S., Wataoka, I., et al. J. Macromol. Sci. Phys. B 2003; 42:847–65.Google Scholar
Hilden, J. L., Reyes, C. E., Kelm, M. J., et al. Crystal Growth Des. 2003; 3:921–26.Google Scholar
Hiremath, R., Varney, S. W., and Swift, J. A. Chem. Commun. 2004; 2676–77.Google Scholar
Hosokawa, Y., Adachi, H., Yoshimura, M., et al. Crystal Growth Des. 2005; 5:861–63.CrossRefGoogle Scholar
Hu, H., Hale, T., Yang, X., and Wilson, L. J. J. Crystal Growth 2001; 232:8692.Google Scholar
Hung, C. H., Krasnopoler, M. J., and Katz, J. L. J. Chem. Phys. 1989; 90:1856–65.Google Scholar
Hussmann, G. A., Larson, M. A., and Berglund, K. A. In Jancic, S. J., and de Jong, E. J. (eds.), Proceedings of the 9th Symposium on Industrial Crystallization. Elsevier, Amsterdam,1984, pp. 2126.Google Scholar
Iitaka, Y. Acta Crystallogr. 1961; 14:110.Google Scholar
Igarashi, K., Azuma, M., Kato, J., and Ooshima, H. J. Crystal Growth 1999; 204:191200.Google Scholar
Imai, M., Kaji, K., and Kanaya, T. Phys. Rev. Lett. 1993; 71:4162–65.Google Scholar
Imai, M., Kaji, K., Kanaya, T., and Sakai, Y. Phys. Rev. B 1995; 52:12696–704.Google Scholar
Imai, M., Mori, K., Mizukami, T., Kaji, K., and Kanaya, T. Polymer 1992; 33:4457–62.Google Scholar
Ishikawa, M., Misawa, H., Kitamura, N., and Masuhara, H. Chem. Lett. 1993; 3:481–84.Google Scholar
Izmailov, A. F., and Myerson, A. S. J. Chem. Phys. 2000; 112:4357–64.Google Scholar
Jancic, S. M., and Grootscholten, P. A. M. Industrial Crystallization. Delft University Press, Delft, Netherlands, 1983.Google Scholar
Jiang, Y., Gu, Q. Li, L., et al. Polymer 2003; 44:3509–13.Google Scholar
Jullien, M., and Crosio, M. P. J. Crystal Growth 1991; 110:182–87.Google Scholar
Kadima, W., Mcpherson, A., Dunn, M. F., and Jurnak, F. A. Biophys. J. 1990; 57:125–32.Google Scholar
Kalikmanov, V. I., and van Dongen, M. E. H. J. Chem. Phys. 1995; 103:4250–55.Google Scholar
Kashchiev, D. Surface Sci. 1969; 14:209–20.Google Scholar
Kashchiev, D. J. Chem. Phys. 1982; 76:5098–102.Google Scholar
Kashchiev, D., and van Rosmalen, G. M. Crystal Res. Technol. 2003; 38:555–74.Google Scholar
Kashchiev, D., Vekilov, P. G., and Kolomeisky, A. B. J. Chem. Phys. 2005; 122:244706/1–6.Google Scholar
Katz, J. L., and Wiedersich, H. J. Non-Crystalline Solids 1993; 162:301–3.Google Scholar
Khambaty, S., and Larson, M. A. Indust. Eng. Chem. Fund. 1978; 17:160–65.Google Scholar
Khamskii, E. V. Crystallization from Solutions. Consultant Bureau, New York, NY, 1969.Google Scholar
Khoshkhoo, S., and Anwar, J. J. Phys. D Appl. Phys. 1993; 26:B90–93.Google Scholar
Kim, I. W., Robertson, R. E., and Zand, R. Adv. Mater. 2003; 15:709–12.Google Scholar
Kim, K. J., and Mersmann, A. Chem. Eng. Sci. 2001; 56:2315–24.Google Scholar
Kitamura, M. J. Crystal Growth 2002; 237239:2205–14.Google Scholar
Knezic, D., Zaccaro, J., and Myerson, A. S. J. Phys. Chem. B 2004; 30:10672–77.Google Scholar
Kobe, S., Drazic, G., McGuiness, P. J., and Strazisar, J. J. Magnet. Magnet. Mater. 2001; 236:7176.Google Scholar
Kobe, S., Drazic, G., Cefalas, A. C., Sarantopoulou, E., and Strazisar, J. Crystal Eng. 2002; 5:243–53.Google Scholar
Kordylla, A., Krawczyk, T., Tumakaka, F. M., and Schembecker, G. Chem. Eng. Sci. 2009; 64:1635–42.Google Scholar
Konnert, J. H., D’Antonio, P., and Ward, K. B. Acta Crystallogr. D 1994; 50:603–13.Google Scholar
Kozisek, Z., Hikosaka, M., Demo, P., and Sveshnikov, A. M. J. Crystal Growth 2005; 275:e7983.Google Scholar
Kubota, N., Kawakami, T., and Tadaki, T. J. Crystal Growth 1986; 74:259–74.Google Scholar
Kulkarni, S. A., McGarrity, E. S., Meekes, H., and ter Horst, J. H. Chem. Commun. 2012; 48:4983–85.Google Scholar
Kuznetsov, Y. G., Malkin, A. J., and McPherson, A. Phys. Rev. B 1998; 58:6091–103.Google Scholar
Laaksonen, A. J. Chem. Phys. 1992; 97:1983–89.Google Scholar
Laaksonen, A. J. Chem. Phys. 1997; 106:7268–74.Google Scholar
Laaksonen, A., and Kulmala, M. J. Chem. Phys. 1991; 95:6745–48.Google Scholar
Laaksonen, A., and Napari, I. J. Phys. Chem. B 2001; 105:11678–82.Google Scholar
Laaksonen, A., Ford, I. J., and Kulmala, M. Phys. Rev. E 1994; 49:5517–24.Google Scholar
Laaksonen, A., McGraw, R., and Vehkamaki, H. J. Chem. Phy. 111:2019–27.Google Scholar
Land, T. A., Malkin, A. J., Kuznetsov, Y. G., McPherson, A., and DeYoreo, J. J. Phys. Rev. Lett. 1995; 75:2774–77.Google Scholar
Landau, E. M., Wolf, S. G., Levanon, M., et al. J. Am. Chem. Soc. 1989; 111:14361445.Google Scholar
Larson, M. A., and Bendig, L. L. AIChE Symp. Series 1976; 72(153):11.Google Scholar
Larson, M. A., and Garside, J. Chem. Eng. Sci. 1986; 41:1285–89.Google Scholar
Lee, A. Y., Ulman, A., and Myerson, A. S. Langmuir 2002; 18:5886–98.Google Scholar
Lee, A. Y., Lee, I. S., Dette, S. S., Boerner, J., and Myerson, A. S. J. Am. Chem. Soc. 2005; 127:14982–83.Google Scholar
Li, H., Nadarajah, A., and Pusey, M. L. J. Crystal Growth 1995; 156:121–32.Google Scholar
Li, H., Nadarajah, A., and Pusey, M. L. Acta Crystallogr. D 1999; 55:1036–45.Google Scholar
Li, H., Li, H. R., Guo, Z. C., and Liu, Y. Ultrason. Sonochem. 2006; 13:359–63.Google Scholar
Li, L., and Ogawa, T. J. Crystal Growth 2000; 211:286–89.Google Scholar
Liao, P., Itkis, M. E., Oakley, R. T., Tham, F. S., and Haddon., R. C. J. Am. Chem. Soc. 2004; 126:14297–302.Google Scholar
Lutsko, J. F., and Nicolis, G. Los Alamos National Laboratory, Preprint Archive, Condensed Matter, 2005, pp. 15.Google Scholar
Lundager Madsen, H. E., J. Crystal Growth 1995; 152:94100.Google Scholar
Malkin, A. J., and McPherson, A. J. Crystal Growth 1993a; 126:544–54.Google Scholar
Malkin, A. J., and Mcpherson, A. J. Crystal Growth 1993b; 126:555–64.Google Scholar
Malkin, A. J., Land, T. A., Kuznetsov, Y. G., McPherson, A., and DeYoreo, J. J. Phys. Rev. Lett. 1998; 75:2778–81.Google Scholar
Manuel Garcia-Ruiz, J. J. Struct. Biol. 2003; 142:2231.Google Scholar
Maurandi, V. Zuckerindustrie 1981; 106:993–98.Google Scholar
McMahon, P. M., Berglund, K. A., and Larson, M. A. In Jancic, S. J., and de Jong, E. J. (eds.), Proceedings of the 9th Symposium on Industrial Crystallization.Elsevier, Amsterdam, 1984, pp. 229–32.Google Scholar
Melia, T. P., and Moffitt, W. P. Ind. Eng. Chem. Fund. 1964; 3:313–17.Google Scholar
Michinomae, M., Mochizuki, M., and Ataka, M. J. Crystal Growth 1999; 197:257–62.Google Scholar
Mikol, V., Hirsch, E., and Giege, R. Fed. Eur. Biochem. Soc. Lett. 1989; 258:6366.Google Scholar
Minezaki, Y., Niimura, N., Ataka, M., and Katsura, T. Biophys. Chem. 1996; 58:355–63.CrossRefGoogle Scholar
Mirkin, N., Frontana-Uribe, B. A., Rodriguez-Romero, A., Hernandez-Santoyo, A., and Moreno, A. Acta Crystallogr. D 2003; 59:1533–38.Google Scholar
Mitchell, C. A., Yu, L., and Ward, M. D. J. Am. Chem. Soc. 2001; 123:10830–39.Google Scholar
Mokross, B. J. Mater. Phys. Mech. 2003; 6:1320.Google Scholar
Moody, M. P., and Attard, P. Phys. Rev. Lett. 2003; 9:056104/1–4.Google Scholar
Moreno, A., and Sazaki, G. J. Crystal Growth 2004; 264:438–44.Google Scholar
Moroni, D., ten Wolde, P. R., and Bolhuis, P. G. Phys. Rev. Lett. 2005; 94:235703/1–4.Google Scholar
Mullin, J. W. Industrial Chemist 1960; 36:272–78.Google Scholar
Mullin, J. W. Cystallization. Butterworth-Heinemann, Oxford, 1997.Google Scholar
Mullin, J. W., and Leci, C. L. J. Crystal Growth 1969a; 5:7576.Google Scholar
Mullin, J. W., and Leci, C. L. Philos. Mag. 1969b; 19:1075–77.Google Scholar
Mullin, J. W., and Osman, M. M. Kristall Technik 1973; 8:471–81.Google Scholar
Muschol, M., and Rosenberger, F. J. Crystal Growth 1996; 167:738–47.Google Scholar
Muschol, M., and Rosenberger, F. J. Chem. Phys. 1997; 107:1953–62.Google Scholar
Myerson, A. S., and Senol, D. AIChE J. 1984; 30:1004–6.Google Scholar
Myerson, A. S., and Lo, P. Y. J. Crystal Growth 1990; 99:1048–52.Google Scholar
Myerson, A. S., and Izmailov, A. F. In Hurle, D. T. J. (ed.), Handbook of Crystal Growth. Elseiver Science, Boston, MA, 1999, pp. 249306.Google Scholar
Nadarajah, A., and Pusey, M. L. Acta Crystallogr. D 1999; 55:1012–22.Google Scholar
Nadarajah, A., Forsythe, E. L., and Pusey, M. L. J. Crystal Growth 1995; 151:163–72.Google Scholar
Ness, J. N., and White, E. T. AIChE Symp. Series 1976; 153(72):6473.Google Scholar
Nicolis, G., and Nicolis, C. Physica A 2003; 323:139–54.Google Scholar
Nielsen, A. E. Kristall Technik 1969; 4:1738.Google Scholar
Nielsen, A. E., and Sohnel, O. J. Crystal Growth 1971; 11:233–42.Google Scholar
Niimura, N., Minezaik, Y., Ataka, M., and Katsura, T. J. Crystal Growth 1995; 154:136–44.Google Scholar
Niimura, N., Minezaki, Y., Tanaka, I., Fujiwara, S., and Ataka, M. J. Crystal Growth 1999; 200:265270.Google Scholar
Nyvlt, J. Collect. Czech. Chem. Commun. 1981; 46:7985.Google Scholar
Nyvlt, J. J. Crystal Growth 1968; 34:377–83.Google Scholar
Nyvlt, J. Collect. Czech. Chem. Commun. 1983; 48:1977–83.Google Scholar
Nyvlt, J., Sohnel, O., Matuchova, M., and Broul, M. The Kinetics of Industrial Crystallization. Elsevier, Amsterdam, 1985.Google Scholar
Nyvlt, J. Crystal Res. Technol. 1996; 31:310.Google Scholar
Ohgaki, K., Hirokawa, N., and Ueda, M. Chem. Eng. Sci. 1992; 47:1819–23.Google Scholar
Ohgaki, K., Makihara, Y., Morishita, M., Ueda, M., and Hirokawa, N. Chem. Eng. Sci. 1991; 46:3283–87.Google Scholar
Okutsu, T., Furuta, K., Terao, M., et al. Crystal Growth Des. 2005; 5:1393–98.Google Scholar
Omar, W., and Ulrich, J. Crystal Res. Technol. 1999; 34:3379–89.Google Scholar
Ostwald, W. Zeitschrift für Physikalische Chemie 1897; 22:289330.Google Scholar
Oxtoby, D. W. J. Chem. Phys.,1994; 100:7665–71.Google Scholar
Oxtoby, D. W. Acc. Chem. Res. 1998; 31:9197.Google Scholar
Oxtoby, D. W. Nature 2000; 406:464–65.Google Scholar
Oxtoby, D. W., and Evans, R. J. Chem. Phys. 1988; 89:7521–30.Google Scholar
Pan, W., Kolomeisky, A. B., and Vekilov, P. G. J. Chem. Phys. 2005; 122:174905/1–7.Google Scholar
Parsons, A. R., Black, S. N., and Colling, R. Chem. Eng. Res. Des. 2003; 81:700–4.Google Scholar
Parveen, S., Davey, R. J., Dent, G., and Pritchard, R. G. Chem. Commun. 2005; 1531–33.Google Scholar
Penkova, A., Dimitrov, I. L., and Hodjaoglu, F. V. J. Crystal Growth 2005; 275:e1527–32.Google Scholar
Pienack, N., and Bensch, W. Angewandte Chem. Int. Ed. 2011; 50:2014–34.Google Scholar
Polak, W., and Sangwal, K. J. Crystal Growth 1995; 152:182–90.Google Scholar
Pontoni, D., Narayanan, T., and Rennie, A. R. Langmuir 2002; 18:5659.Google Scholar
Pontoni, D., Narayanan, T., and Rennie, A. R. Prog. Colloid Polymer Sci. 2004; 123:227–30.Google Scholar
Powers, H. E. C. Industrial Chemist 1963; 39:351–53.Google Scholar
Preckshot, G. W., and Brown, G. G. Ind. Eng. Chem. 1952; 44:1314–21.Google Scholar
Pullara, F., Emanuele, A., Palma-Vittorelli, M. B., and Palma, M. U. J. Crystal Growth 2005; 274:536–44.Google Scholar
Pusey, M. L. J. Crystal Growth 1991; 110:6065.Google Scholar
Pusey, M. L., and Nadarajah, A. Crystal Growth Des. 2002; 2:475–83.Google Scholar
Rasimas, J. P., Berglund, K. A., and Blanchard, G. J. J. Phys. Chem. 1996; 100:17034–40.Google Scholar
Rasmussen, D. H. J. Chem. Phys. 1986; 85:2272–76.Google Scholar
Reiss, H., and Katz, J. L. J. Chem. Phys. 1967; 46:2496–99.Google Scholar
Reiss, H., Katz, J. L., and Cohen, E. R. J. Chem. Phys. 1968; 48:5553–60.Google Scholar
Rieger, J., Frechen, T., Cox, G., et al. Faraday Discuss. 2007; 136:265–77.Google Scholar
Rodriguez-Hornedo, N., and Murphy, D. J. Pharmaceut. Sci. 1999; 88:651–60.Google Scholar
Rodriguez-Hornedo, N., Lechuga-Ballesteros, D., and Wu, H. J. Int. J. Pharmaceut. 1992; 85:149–62.Google Scholar
Rodriguez-Spong, B., Price, C. P., Jayasankar, A., Matzger, A. J., and Rodriguez-Hornedo, N. Adv. Drug Deliv. Rev. 2004; 56:241–74.Google Scholar
Roelands, C. P. M., Roestenberg, R. R. W., ter Horst, J. H., Kramer, H. J. M., and Jansens, P. J. Crystal Growth Des. 2004; 4:921–28.Google Scholar
Rosenberger, F., Vekilov, P. G., Muschol, M., and Thomas, B. R. J. Crystal Growth 1996; 168:127.Google Scholar
Rustli, I. T., Schrader, G. L., and Larson, M. A. J. Crystal Growth 1989; 97:345–51.Google Scholar
Saito, A., Igarashi, K., Azuma, M., and Ooshima, H. J. Chem. Eng. Jpn 2002; 35:1133–39.Google Scholar
Samon, J. M., Schultz, J. M., and Hsiao, B. S. Polymer 2002; 43:1873–75.Google Scholar
Sazaki, G., Ooshima, H., Kato, J., Harano, Y., and Hirokawa, N. J. Crystal Growth 1993; 130:357–67.Google Scholar
Savage, J. R., Pei, L., and Dinsmore, A. D. In Nicolis, G., and Maes, D. (eds.), Advances in Chemical Physics, vol. 151. Wiley, Hoboken, NJ,2012, pp. 111136.Google Scholar
Schmelzer, J. W. P. Mater. Phys. Mech. 2003; 6:2133.Google Scholar
Schmelzer, J., and Mahnke, R. J. Chem. Soc. Faraday Trans. 1986; 82:1413–20.Google Scholar
Schmelzer, J. W. P., Gokhman, A. R., and Fokin, V. M. J. Colloid Interface Sci. 2004; 272:109–33.Google Scholar
Schmelzer, J. W. P., Gutzow, I., and Schmelzer, J. J. J. Colloid Interface Sci. 1996; 178:657–65.Google Scholar
Schmitt, J. L., Whitten, J., Adams, G. W., and Zalabsky, R. A.). J. Chem. Phys. 1990; 92:3693–99.Google Scholar
Schuth, F. Curr. Opin. Solid State Mater Sci. 2001; 5:389–95.Google Scholar
Schuth, F., Bussian, P., Agren, P., Schunk, S., and Linden, M. Solid State Sci. 2001; 3:801–8.Google Scholar
Sharaf, M. A., and Dobbins, R. A. J. Chem. Phys. 1982; 77:1517–26.Google Scholar
Shen, Y. C., and Oxtoby, D. W. Phys. Rev. Lett. 1996; 77:3585–88.Google Scholar
Shiryayev, A., and Gunton, J. D. J. Chem. Phys. 2004; 120:8318–26.Google Scholar
Shore, J. D., Perchak, D., and Shnidman, Y. J. Chem. Phys. 2000; 113:6276–84.Google Scholar
Sikdar, S. K., and Randolph, A. D. AIChE J. 1976; 11:110–17.Google Scholar
Skouri, M., Delsanti, M., Munch, J. P., Lorber, B., and Giege, R. Fed. Eur. Biochem. Soc. Lett. 1991; 295:8488.Google Scholar
Soga, K., Geoffrey, M., John, R., and Ball, R. C. J. Chem. Phys. 1999; 110:2280–88.Google Scholar
Somani, R. H., Yang, L., and Hsiao, B. S. Physica A: Stat. Mech. App. 2002; 304:145–57.Google Scholar
Sophianopoulos, A. J., and Van Holde, K. E. J. Biol. Chem. 1964; 239:2516–24.Google Scholar
Sohnel, O., and Mullin, J. W. J. Colloid Interface Sci. 1988; 123:4350.Google Scholar
Sorell, L. S., and Myerson, A. S. AIChE J. 1982; 28:772–78.Google Scholar
Spitaleri, A., Hunter, C. A., McCabe, J. F., Packer, M. J., and Cockroft, S. L. Crystal Eng. Commun. 2004; 6:489–93.Google Scholar
Strey, R., Wagner, P. E., and Schmeling, T. J. Chem. Phys. 1986; 84:2325–35.Google Scholar
Strey, R., and Viisanen, Y. J. Chem. Phys. 1993; 99:4693–704.Google Scholar
Strickland-Constable, R. F. AIChE Symp. Series 1972; 68(107):1.Google Scholar
Strickland-Constable, R. F., and Mason, R. E. A. Nature (Lond.) 1963; 197:897–98.Google Scholar
Svishchev, I. M., and Kusalik, P. G. Phys. Rev. Lett. 1994; 73:975–78.Google Scholar
Svishchev, I. M., and Kusalik, P. G. Phys. Rev. B 1996; 53:R8815–17.Google Scholar
Talanquer, V., and Oxtoby, D. W. J. Chem. Phys. 1998; 109:223–27.Google Scholar
Taleb, M., Didierjean, C., Jelsch, C., et al. J. Crystal Growth 2001; 232:250255.Google Scholar
Tamman, G. States of Aggregation. Van Nostrand, New York, NY, 1925.Google Scholar
Tanaka, S., Yamamoto, M., Kawashima, K., et al. J. Crystal Growth 1996; 168:4449.Google Scholar
Tanaka, S., Ito, K., Hayakawa, R., and Ataka, M. J. Chem. Phys. 1999; 111:10330–37.Google Scholar
Taratuta, V. G., Holschbach, A., Andreas, A., et al. J. Phys. Chem. 1990; 94:2140–44.Google Scholar
Taulelle, F., Haouas, M., Gerardin, C., et al. Colloids Surfaces A Physiochem. Eng. Aspects 1999; 158:299311.Google Scholar
ten Wolde, P. R., Ruiz-Montero, R., and Frenkel, D. Phys. Rev. Lett. 1995; 75:2714–17.Google Scholar
ten Wolde, P. R., Ruiz-Montero, M. J., and Frenkel, D. J. Chem. Phys. 1996; 104:9932–47.Google Scholar
ten Wolde, P. R., and Frenkel, D. Science 1997; 277:1975–78.Google Scholar
ten Wolde, P. R., Oxtoby, D. W., and Frenkel, D. Phys. Rev. Lett. 1998; 81:3695–98.Google Scholar
Tavare, N. S. Industrial Crystallization Process Simulation Analysis and Design. Plenum Press, New York, NY, 1995.Google Scholar
Thallapally, P. K., Jett, R. K. R., Katz, A. K., et al. Angewandte Chem. Int. Ed. 2004; 43:1149–55.Google Scholar
Ting, H. H., and McCabe, W. L. Ind. Eng. Chem. 1934; 26:1201–7.Google Scholar
Tolman, R. C. J. Chem. Phys. 1949; 17:333–37.Google Scholar
Toyokura, K., Yamazoe, K., and Mogi, J. AIChE Symp. Series 1976; 72(153):5360.Google Scholar
Treivus, E. B. Kristallografiya 2001; 46:1125–31.Google Scholar
Treivus, E. B. Crystallogr. Rep. 2002; 47:1072–75.Google Scholar
Turnbull, D., and Fisher., J. C. J. Chem. Phys. 1949; 17:7173.Google Scholar
Ueda, M., Hirokawa, N., Harano, Y., Moritoki, M., and Ohgaki, K. J. Crystal Growth 1995; 156:261–66.Google Scholar
Ulbricht, H., Schmelzer, J., Mahnke, R., and Schweitzer, F. Thermodynamics of Finite Systems and the Kinetics of First Order Phase Transitions. Teubner, Leipzig, 1998.Google Scholar
Van Drunen, M. A., Finsy, R., Merkus, H. G., Scarlett, B., and Van Rosmalen, G. M. J. Crystal Growth 1993; 134:196202.Google Scholar
Veesler, S., Marcq, S., Lafont, S., Astier, J. P., and Boistelle, R. Acta Crystallogr. D 1994; 50:355–60.Google Scholar
Veesler, S., Puel, F., and Fevotte, G. Stp Pharma Pratiq. 2005; 15:5384.Google Scholar
Vekilov, P. G. Crystal Growth Des. 2004; 4:671–85.Google Scholar
Vekilov, P. G. J. Crystal Growth 2005; 275:6576.Google Scholar
Vidal, O., Robert, M. C., and Boue, F. J. Crystal Growth 1998; 192:257–70.Google Scholar
Viisanen, Y., Strey, R., Laaksonen, A., and Kulmala, M. J. Chem. Phys. 1994; 100:6062–72.Google Scholar
Volmer, M., and Weber, A. Zeitschrift fuer Physik. Chem. 1926; 119:277301.Google Scholar
Vonnegut, B. J. Colloid Sci. 1948; 3:563–69.Google Scholar
Wagner, P. E., and Strey, R. J. Chem. Phys. 1984; 80:5266–75.Google Scholar
Wang, Z. G., Hsiao, B. S., Sirota, E. B., Agarwal, P., and Srinivas, S.X-ray Macromolecules 2000; 33:978–89.Google Scholar
Wang, Z. G., Hsiao, B. S., Srinivas, S., et al. Phase transformation in quenched mesomorphic isotactic polypropylene. Polymer 2001; 42:7561–66.Google Scholar
Weissbuch, I., Sbaida, D., Addadi, L., Leiserowitz, L., and Lahav, M. J. Am. Chem. Soc. 1987; 109:1869–71.Google Scholar
Weissbuch, I., Addadi, L., and Leiserowitz, L. Science 1991; 253:637–45.Google Scholar
Weissbuch, I., Leiserowitz, L., and Lahav, M. Adv. Mater. 1994; 6:952–56.Google Scholar
Weissbuch, I., Popovitz-Biro, R., Lahav, M., and Leiserowitz, L. Acta Crystallogr. B 1995; 51,:115148.Google Scholar
Weissbuch, I., Lahav, M., and Leiserowitz, L. Crystal Growth Des. 2003; 3:125–50.Google Scholar
Weissbuch, I., Torbeev, V. Y., Leiserowitz, L., and Lahav, M. Angewandte Chem. Int. Ed. 2005; 44:3226–29.Google Scholar
White, M. L., and Frost, A. A. J. Colloid Sci. 1959; 14:247–51.Google Scholar
Wilemski, G. J. Chem. Phys. 1984; 80:1370–72.Google Scholar
Wilemski, G. J. Chem. Phys. 1988; 88:5134–36.Google Scholar
Wilson, L. J., and Pusey, M. L. J. Crystal Growth 1992; 122:813.Google Scholar
Wilson, P. W., and Haymet., A. D. J. J. Phys. Chem. A 2005; 109:11354–57.Google Scholar
Wright, D., Caldwell, R., and El-Shall, M. S. Chem. Phys. Lett. 1991; 176:4654.Google Scholar
Wu, W., and Nancollas, G. H. J. Colloid Interface Sci. 1996; 182:365–73.Google Scholar
Wurm, A., Soliman, R., Goossens, J. G. P., Bras, W., and Schick, C. J. Non-Crystalline Solids 2005; 351:2773–79.Google Scholar
Yau, S. T., and Vekilov, P. G. Nature 2000; 406:494–97.Google Scholar
Yau, S. T., and Vekilov, P. G. J. Am. Chem. Soc. 2001; 123:1080–89.Google Scholar
Yonath, A., Khavitch, G., Tesche, B., et al. Biochem. Int. 1982; 5:629–36.Google Scholar
Yoshizaki, I., Sakai, M., and Matsuura, Y. Acta Crystallogr. D 2005; 61:755–58.Google Scholar
Yu, L., Reutzel-Edens, S. M., and Mitchell, C. A. Organic Proc. Res. Dev. 2000; 4:396402.Google Scholar
Yu, L. J. Am. Chem. Soc. 2003; 125:6380–81.Google Scholar
Zaccaro, J., Matic, J., Myerson, A. S., and Garetz, B. A. Crystal Growth Des. 2001; 1:58.Google Scholar
Zeng, X. C., and Oxtoby, D. W. J. Chem. Phys. 1991; 94:4472–78.Google Scholar
Zhukhovitskii, D. I. J. Chem. Phys. 1994; 101:5076–80.Google Scholar
Zurek, W. H., and Schieve, W. C. J. Phys. Chem. 1980; 84:1479–82.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×