Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T23:11:49.769Z Has data issue: false hasContentIssue false

Part II - Foundations: basics of color science

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

CIE (International Commission on Illumination) (2011). ILV: International Lighting Vocabulary, CIE Standard S 017.Google Scholar
Derefeldt, G. (1991). Colour appearance systems. In Gouras, P. (ed.), The Perception of Colour (pp. 218–61). Boca Raton, FL: CRC Press.Google Scholar
Derrington, A. M., Krauskopf, J. and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–65.CrossRefGoogle ScholarPubMed
Fairchild, M. D. (2013). Color Appearance Models, 3rd edn. Chichester: Wiley IS&T Series in Imaging Science and Technology.CrossRefGoogle Scholar
Hard, A., and Sivik, L. (1981). NCS–Natural Color System: a Swedish standard for color notation. Color Research & Application, 6, 129–38.CrossRefGoogle Scholar
Hunt, R. W. G., and Pointer, M. R. (2011). Measuring Colour, 4th edn. Chichester: Wiley.CrossRefGoogle Scholar
Kuehni, R. G., and Schwarz, A. (2008). Color Ordered: A Survey of Color Order Systems from Antiquity to the Present. Oxford University Press.CrossRefGoogle Scholar
MacAdam, D. L. (1974). Uniform color scales. Journal of the Optical Society of America, 64, 16911702.CrossRefGoogle ScholarPubMed
MacAdam, D. L.(1978). Colorimetric data for samples of the OSA uniform color scales. Journal of the Optical Society of America, 68, 121–30.CrossRefGoogle Scholar
MacLeod, D. I. A., and Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69, 1183–6.CrossRefGoogle ScholarPubMed
Munsell, A. H. (1907). Color and an Eye to Discern It. Self-published.Google Scholar
Newhall, S. M. (1940). Preliminary report of the O.S.A. subcommittee on the spacing of the Munsell colors. Journal of the Optical Society of America, 30, 617–45.CrossRefGoogle Scholar
Nickerson, D. (1940). History of the Munsell Color System and its scientific application. Journal of the Optical Society of America, 30, 575–86.CrossRefGoogle Scholar
Nickerson, D. (1976a). History of the Munsell Color System, company, and foundation. I. Color Research & Application, 1, 710.Google Scholar
Nickerson, D. (1976b). History of the Munsell Color System and its scientific application. Color Research & Application, 1, 6977.CrossRefGoogle Scholar
Nickerson, D. (1976c) History of the Munsell Color System. Color Research & Application, 1, 121–30.Google Scholar
Robertson, A. R. (1977). The CIE 1976 color-difference formulae. Color Research & Application, 2, 711.CrossRefGoogle Scholar
Robertson, A. R. (1990). Historical development of CIE recommended color difference equations. Color Research & Application, 15, 167–70.CrossRefGoogle Scholar
Stevens, S. S. (1961). To honor Fechner and repeal his law. Science, 133, 80–6.CrossRefGoogle ScholarPubMed
Wyszecki, G. (1973). Current developments in colorimetry. AIC Color, 73, 2151.Google Scholar
Wyszecki, G. (1986). Color appearance. In Boff, K. R., Kaufman, L., and Thomas, J. P. (eds.), Handbook of Perception and Human Performance (pp. 9-1–9-57). New York: Wiley.Google Scholar
Wyszecki, G., and Stiles, W. S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae. New York: Wiley.Google Scholar

References

Adelson, E. H., and Bergen, J. R. (1991). The plenoptic function and the elements of early vision. In Landy, M. S. and Movshon, J. A. (eds.), Computational Models of Visual Processing (pp. 320). Cambridge, MA: MIT Press.Google Scholar
Ahnelt, P. K., Keri, C., and Kolb, H. (1990). Identification of pedicles of putative blue sensitive cones in human and primate retina. Journal of Comparative Neurology, 293, 3953.CrossRefGoogle Scholar
Ahnelt, P. K., and Kolb, H. (1994). Horizontal cells and cone photoreceptors in primate retina: a Golgi-light microscope study of spectral connectivity. Journal of Comparative Neurology, 343, 387405.CrossRefGoogle ScholarPubMed
Alpern, M., Rushton, W. A. H., and Torii, S. (1970). Signals from cones. Journal of Physiology, 207(2), 463–75.CrossRefGoogle ScholarPubMed
Anderson, S. J., Mullen, K. T., and Hess, R. F. (1991). Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. Journal of Physiology, 442, 4764.CrossRefGoogle ScholarPubMed
Angueyra, J. M., and Rieke, F. (2013). Origin and effect of phototransduction noise in primate cone photoreceptors. Nature Neuroscience, 16(11), 16921700.CrossRefGoogle ScholarPubMed
Arshavsky, V. Y., Lamb, T. D., and Pugh, E. N. Jr. (2002). G proteins and phototransduction. Annual Review of Physiology, 64, 153–87.CrossRefGoogle ScholarPubMed
Atick, J. J. (1992). Could information theory provide an ecological theory of sensory processing? Network-Computation in Neural Systems, 3(2), 213–51.CrossRefGoogle Scholar
Atick, J. J., Li, Z. P., and Redlich, A. N. (1992). Understanding retinal color coding from first principles. Neural Computation, 4(4), 559–72.CrossRefGoogle Scholar
Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61, 183–93.CrossRefGoogle ScholarPubMed
Autrusseau, F., Thibos, L., and Shevell, S. K. (2011). Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality. Vision Research, 51(21–2), 2282–94.CrossRefGoogle Scholar
Barlow, H. B. (1961). Possible principles underlying the transformations of sensory messages. In Rosenblith, W. A. (ed.), Sensory Communication (pp. 217–34). Cambridge, MA: MIT Press.Google Scholar
Baylor, D. A., Nunn, B. J., and Schnapf, J. L. (1987). Spectral sensitivity of cones of the monkey Macaca fascicularis. Journal of Physiology, 390, 145–60.CrossRefGoogle ScholarPubMed
Berson, D. M. (2003). Strange vision: ganglion cells as circadian photoreceptors. Trends in Neuroscience, 26(6), 314–20.CrossRefGoogle ScholarPubMed
Berson, D. M. (2014). Intrinsically photosensitive ganglion cells. In Chalupa, L. M. and Werner, J. S. (eds.), The New Visual Neurosciences (pp. 183–96). Cambridge, MA: MIT Press.Google Scholar
Billock, V. A. (1991). The relationship between simple and double opponent cells Vision Research, 31(1), 3342.CrossRefGoogle ScholarPubMed
Bongard, M. M., and Smirnov, M. S. (1954). Determination of the eye spectral sensitivity curves from spectral mixture curves. Doklady Akademiia nauk S.S.S.R., 102, 1111–14.Google Scholar
Boycott, B. B., and Dowling, J. E. (1969). Organisation of the primate retina: light microscopy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 255, 109–84.Google Scholar
Boycott, B. B., Hopkins, J. M., and Sperling, H. G. (1987). Cone connections of the horizontal cells of the rhesus monkey’s retina. Proceedings of the Royal Society of London. Series B, Biological Sciences, 229(1257), 345–79.Google ScholarPubMed
Boycott, B. B., and Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience, 3(11), 1069–88.CrossRefGoogle ScholarPubMed
Boynton, R. M. (1979). Human Color Vision. New York: Holt, Rinehart and Winston.Google Scholar
Boynton, R. M., and Kaiser, P. (1968). Vision: the additivity law made to work for heterochromatic photometry with bipartite fields. Science, 161, 366–8.CrossRefGoogle ScholarPubMed
Brainard, D. H. (1998). Hyperspectral image data (http://color.psych.upenn.edu/hyperspectral/).Google Scholar
Brainard, D. H., Hofer, H., and Wandell, B. A. (2013). Wavefront optics: MATLAB Toolbox for analyzing wavefront optics data; especially human adaptive optics measurements (https://github.com/isetbio/WavefrontOptics).Google Scholar
Brainard, D. H., Roorda, A., Yamauchi, Y., Calderone, J. B., Metha, A., Neitz, M., Neitz, J., et al. (2000). Functional consequences of the relative numbers of L and M cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(3), 607–14.Google ScholarPubMed
Brainard, D. H., and Stockman, A. (2010). Colorimetry. In Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V., et al. (eds.), The Optical Society of America Handbook of Optics, 3rd edn., vol. III: Vision and Vision Optics (pp. 10.1110.56). New York: McGraw Hill.Google Scholar
Brainard, D. H., and Stockman, A. (n.d.). Color Vision. Sunderland, MA: Sinauer.Google Scholar
Briggs, F., and Usrey, W. M. (2011). Corticogeniculate feedback and visual processing in the primate. Journal of Physiology, 589(1), 3340.CrossRefGoogle ScholarPubMed
Brindley, G. S. (1955). The colour of light of very long wavelength. Journal of Physiology, 130, 3544.CrossRefGoogle ScholarPubMed
Brindley, G. S. (1970). Physiology of the Retina and the Visual Pathway, 2nd. edn. Baltimore, MD: Williams and Wilkins.Google Scholar
Brown, T. M., Tsujimura, S., Allen, A. E., Wynne, J., Bedford, R., Vickery, G., Vugler, A., et al. (2012). Melanopsin-based brightness discrimination in mice and humans. Current Biology, 22(12), 1134–41.CrossRefGoogle ScholarPubMed
Buchsbaum, G., and Gottschalk, A. (1983). Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proceedings of the Royal Society of London. Series B, Biological Sciences, 220(1218), 89113.Google ScholarPubMed
Buck, S. L. (2014). The interaction of rod and cone signals: pathways and psychophysics. In Chalupa, L. M. and Werner, J. S. (eds.), The New Visual Neurosciences (pp. 485–96). Cambridge, MA: MIT Press.Google Scholar
Burns, M. E., and Baylor, D. A. (2001). Activation, deactivation and adaptation in vertebrate photoreceptor cells. Annual Review of Neuroscience, 24, 779805.CrossRefGoogle ScholarPubMed
Buzas, P., Blessing, E. M., Szmajda, B. A., and Martin, P. R. (2006). Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias. Journal of Neuroscience, 26(43), 11148–61.CrossRefGoogle ScholarPubMed
Calkins, D. J., Schein, S. J., Tsukamoto, Y., and Sterling, P. (1994). M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature, 371(6492), 70–2.CrossRefGoogle ScholarPubMed
Calkins, D. J., Tsukamato, Y., and Sterling, P. (1998). Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. Journal of Neuroscience, 18(9), 3373–85.CrossRefGoogle ScholarPubMed
Campbell, F. W., and Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197(3), 551–6.CrossRefGoogle Scholar
Carpenter, R. H. S. (1977). Movements of the eyes. London: Pion.Google Scholar
Carroll, J., Neitz, J., and Neitz, M. (2002). Estimates of L:M cone ratio from ERG flicker photometry and genetics. Journal of Vision, 2(8), 531–42.CrossRefGoogle ScholarPubMed
Casagrande, V. A. (1994). A third parallel visual pathway to primate area V1. Trends in Neuroscience, 17(7), 305–10.CrossRefGoogle ScholarPubMed
Chakrabarti, A., and Zickler, T. (2011). Statistics of real-world hyperspectral images. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.CrossRefGoogle Scholar
Chang, Y., Burns, S. A., and Kreitz, M. R. (1993). Red-green flicker photometry and nonlinearities in the flicker electroretinogram. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(6), 1413–22.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F. III, Chen, G., and Kronauer, R. E. (1995). Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism. Vision Research, 35(22), 3103–18.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F. III, Huang, E. P., Kronauer, R. E., and Eskew, R. T. Jr. (1993). Colour is what the eye sees best. Nature, 361(6410), 348–50.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F. III, Kronauer, R. E., and Eskew, R. T. Jr. (1994). Separable red-green and luminance detectors for small flashes. Vision Research, 34(6), 751–62.CrossRefGoogle ScholarPubMed
Charman, N. (2010). Optics of the eye. In Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V., et al. (eds.), The Optical Society of America Handbook of Optics, 3rd edn., vol. III: Vision and Vision Optics (pp. 1.11.65). New York: McGraw Hill.Google Scholar
Chen, S., and Li, W. (2012). A color-coding amacrine cell may provide a blue-Off signal in a mammalian retina. Nature Neuroscience, 15(7), 954–6.CrossRefGoogle Scholar
Cicerone, C. M., and Nerger, J. L. (1989). The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis. Vision Research, 29(1), 115–28.CrossRefGoogle ScholarPubMed
CIE (International Commission on Illumination) (2006). Fundamental Chromaticity Diagram with Physiological Axes – Part I. Technical Report 170–1. Vienna: Central Bureau of the Commission Internationale de l’Éclairage.Google Scholar
Conway, B. R., Chatterjee, S., Field, G. D., Horwitz, G. D., Johnson, E. N., Koida, K., and Mancuso, K. (2010). Advances in color science: from retina to behavior. Journal of Neuroscience, 30(45), 14955–63.CrossRefGoogle ScholarPubMed
Cornsweet, T. (1970). Visual Perception. New York: Academic Press.Google Scholar
Curcio, C. A., Allen, K. A., Sloan, K. R., Lerea, C. L., Hurley, J. B., Klock, I. B., and Milam, A. H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of Comparative Neurology, 312(4), 610–24.Google ScholarPubMed
Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E. (1990). Human photoreceptor topography. Journal of Comparative Neurology, 292(4), 497523.CrossRefGoogle ScholarPubMed
Dacey, D. M. (2000). Parallel pathways for spectral coding in primate retina. Annual Review of Neuroscience, 23, 743–75.CrossRefGoogle ScholarPubMed
Dacey, D. M., Crook, J. D., and Packer, O. S. (2014). Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Visual Neuroscience, 31(Special Issue 02), 139–51.CrossRefGoogle ScholarPubMed
Dacey, D. M., and Lee, B. B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature, 367(6465), 731–5.CrossRefGoogle ScholarPubMed
Dacey, D. M., Lee, B. B., Stafford, D. K., Pokorny, J., and Smith, V. C. (1996). Horizontal cells of the primate retina: cone specificity without spectral opponency. Science, 271(5249), 656–9.CrossRefGoogle ScholarPubMed
Dacey, D. M., Liao, H.-W., Peterson, B. B., Robinson, F. R., Smith, V. C., Pokorny, J., Yau, K.-W., et al. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature, 433(7027), 749–54.CrossRefGoogle Scholar
Dacey, D. M., and Packer, O. S. (2003). Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Current Opinion in Neurobiology, 13(4), 421–7.CrossRefGoogle ScholarPubMed
de Lange, H. (1958). Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. Journal of the Optical Society of America, 48, 777–84.Google Scholar
De Valois, R. L., and De Valois, K. K. (1993). A multi-stage color model. Vision Research, 33(8), 1053–65.CrossRefGoogle ScholarPubMed
Deeb, S. S. (2005). The molecular basis of variation in human color vision. Clinical Genetics, 67(5), 369–77.CrossRefGoogle ScholarPubMed
Derrington, A. M., Krauskopf, J., and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–65.CrossRefGoogle ScholarPubMed
Derrington, A. M., and Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in the lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–40.CrossRefGoogle ScholarPubMed
DeVries, S. H., Qi, X., Smith, R. A., Makous, W., and Sterling, P. (2002). Electrical coupling between mammalian cones. Current Biology, 12(22), 1900–7.CrossRefGoogle ScholarPubMed
Diller, L., Packer, O. S., Verweij, J., McMahon, M. J., Williams, D. R., and Dacey, D. M. (2004). L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. Journal of Neuroscience, 24(5), 1079–88.CrossRefGoogle Scholar
Do, M. T., and Yau, K. W. (2010). Intrinsically photosensitive retinal ganglion cells. Physiological Reviews, 90(4), 1547–81.CrossRefGoogle ScholarPubMed
Dowling, J. E. (1987). The Retina, an Approachable Part of the Brain. Cambridge, MA: Harvard University Press.Google Scholar
Dresler, A. (1953). The non-additivity of heterochromatic brightness. Transactions of the Illuminating Engineering Society, 18, 141–65.Google Scholar
D’Zmura, M. (1991). Color in visual search. Vision Research, 31(6), 951–66.Google ScholarPubMed
Eskew, R. T. Jr. (2008). Chromatic detection and discrimination. In Albright, T. D. and Masland, R. H. (eds.), The Senses: A Comprehensive Reference, vol. II: Vision (pp. 101–17). San Diego, CA: Academic Press.Google Scholar
Eskew, R. T. Jr. (2009). Higher order color mechanisms: a critical review. Vision Research, 49(22), 26862704.CrossRefGoogle ScholarPubMed
Eskew, R. T. Jr., McLellan, J. S., and Giulianini, F. (1999). Chromatic detection and discrimination. In Gegenfurtner, K. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 345–68). Cambridge University Press.Google Scholar
Eskew, R. T. Jr., Stromeyer, C. F. III, and Kronauer, R. E. (1994). Temporal properties of the red-green chromatic mechanism. Vision Research, 34(23), 3127–37.CrossRefGoogle ScholarPubMed
Estévez, O. (1979). On the Fundamental Database of Normal and Dichromatic Color Vision. Ph.D. thesis, Amsterdam University.Google Scholar
Estévez, O., and Spekreijse, H. (1974). A spectral compensation method for determining the flicker characteristics of the human color mechanisms. Vision Research, 14, 823–30.CrossRefGoogle Scholar
Field, G. D., and Chichilnisky, E. J. (2007). Information processing in the primate retina: circuitry and coding. Annual Review of Neuroscience, 30, 130.CrossRefGoogle ScholarPubMed
Field, G. D., Gauthier, J. L., Sher, A., Greschner, M., Machado, T. A., Jepson, L. H., Shlens, J., et al. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature, 467(7316), 673–7.CrossRefGoogle ScholarPubMed
Gamlin, P. D. R., McDougal, D. H., Pokorny, J., Smith, V. C., Yau, K. W., and Dacey, D. M. (2007). Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Research, 47(7), 946–54.CrossRefGoogle ScholarPubMed
Garrigan, P., Ratliff, C. P., Klein, J. M., Sterling, P., Brainard, D. H., and Balasubramanian, V. (2010). Design of a trichromatic cone array. PLoS Computational Biology, 6(2), e1000677.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Kiper, D. C. (2003). Color vision. Annual Review of Neuroscience, 26, 181206.CrossRefGoogle ScholarPubMed
Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discriminations. Psychological Review, 96(2), 267314.CrossRefGoogle ScholarPubMed
Geisler, W. S. (2011). Contributions of ideal observer theory to vision research. Vision Research, 51(7), 771–81.CrossRefGoogle ScholarPubMed
Giulianini, F., and Eskew, R. T. Jr. (1998). Chromatic masking in the (ΔL/L, ΔM/M) plane of cone-contrast space reveals only two detection mechanisms. Vision Research, 38, 3913–26.CrossRefGoogle Scholar
Goodchild, A. K., Chan, T. L., and Grünert, U. (1996). Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Visual Neuroscience, 13(5), 833–45.CrossRefGoogle ScholarPubMed
Grassmann, H. (1853). Zur Theorie der Farbenmischung. Annalen der Physik und Chemie, 165, 6984.CrossRefGoogle Scholar
Grünert, U., Martin, P. R., and Wässle, H. (1994). Immunocytochemical analysis of bipolar cells in the macaque monkey retina. Journal of Comparative Neurology, 348(4), 607–27.Google ScholarPubMed
Guth, S. L. (1991). A model for color and light adaptation. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 8(6), 976–93.CrossRefGoogle Scholar
Guth, S. L., Donley, N. V., and Marrocco, R. T. (1969). On luminance additivity and related topics. Vision Research, 9(5), 537–75.CrossRefGoogle ScholarPubMed
Hamer, R. D., Nicholas, S. C., Tranchina, D., Lamb, T. D., and Jarvinen, J. L. P. (2005). Toward a unified model of vertebrate rod phototransduction. Visual Neuroscience, 22(4), 417–36.CrossRefGoogle Scholar
Hansen, T., and Gegenfurtner, K. R. (2013). Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. Journal of Vision, 13(1), 26.21–21.CrossRefGoogle ScholarPubMed
Hansen, T., Pracejus, L., and Gegenfurtner, K. R. (2009). Color perception in the intermediate periphery of the visual field. Journal of Vision, 9(4), 26.21–26.12.CrossRefGoogle ScholarPubMed
Haverkamp, S., Grunert, U., and Wassle, H. (2000). The cone pedicle, a complex synapse in the retina. Neuron, 27(1), 8595.CrossRefGoogle ScholarPubMed
Hecht, E. (1990). Optics, 2nd edn. Reading, MA: Addison-Wesley.Google Scholar
Heckaman, R. L., and Fairchild, M. D. (2009). Jones and Condit redux in high dynamic range and color. Color and Imaging Conference, 2009(1), 814.CrossRefGoogle Scholar
Hendry, S. H. C., and Reid, R. C. (2000). The koniocellular pathway in primate vision. Annual Review of Neuroscience, 23, 127–53.CrossRefGoogle ScholarPubMed
Hering, E. (1878). Zur Lehre vom Lichtsinne. Sechs Mittheilungen an die Kaiserliche Akademie der Wissenschaften in Wien. Wien: Carl Gerold’s Sohn.Google Scholar
Hering, E. (1920). Grundzüge der Lehre vom Lichtsinn. Berlin: Springer.CrossRefGoogle Scholar
Herr, S., Klug, K., Sterling, P., and Schein, S. (2003). Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. Journal of Comparative Neurology, 457, 185201.CrossRefGoogle ScholarPubMed
Hofer, H. J., Carroll, J., Neitz, J., Neitz, M., and Williams, D. R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience, 25(42), 9669–79.CrossRefGoogle ScholarPubMed
Hofer, H. J., and Williams, D. R. (2014). Color vision and the retinal mosaic. In Chalupa, L. M. and Werner, J. S. (eds.), The New Visual Neurosciences (pp. 469–83). Cambridge, MA: MIT Press.Google Scholar
Hood, D. C., and Finkelstein, M. A. (1986). Sensitivity to light. In Boff, K., Kaufman, L., and Thomas, J. (eds.), Handbook of Perception and Human Performance (vol. I, pp. 5–1–5–66). New York: Wiley.Google Scholar
Hopkins, J. M., and Boycott, B. B. (1995). Synapses between cones and diffuse bipolar cells of a primate retina. Journal of Neurocytology, 24(9), 680–94.CrossRefGoogle ScholarPubMed
Horiguchi, H., Winawer, J., Dougherty, R. F., and Wandell, B. A. (2013). Human trichromacy revisited. Proceedings of the National Academy of Science of the United States of America, 110(3), E260–9.Google ScholarPubMed
Hornstein, E. P., Verweij, J., and Schnapf, J. L. (2004). Electrical coupling between red and green cones in primate retina. Nature Neuroscience, 7(7), 745–50.CrossRefGoogle ScholarPubMed
Hubel, D. H., and Wiesel, T. N. (1977). Functional architecture of macaque monkey visual-cortex. Proceedings of the Royal Society of London. Series B, Biological Sciences, 198(1130), 158.Google ScholarPubMed
Humanski, R. A., and Wilson, H. R. (1992). Spatial frequency mechanisms with short-wavelength-sensitive cone inputs. Vision Research, 32(3), 549–60.CrossRefGoogle ScholarPubMed
Humanski, R. A., and Wilson, H. R. (1993). Spatial-frequency adaptation: evidence for a multiple-channel model of short-wavelength-sensitive-cone spatial vision. Vision Research, 33(5–6), 665–75.CrossRefGoogle ScholarPubMed
Hurvich, L. M. (1981). Color Vision. Sunderland, MA: Sinauer.Google Scholar
Ingling, C. R. Jr., and Drum, B. A. (1973). Retinal receptive fields: correlations between psychophysics and electrophysiology. Vision Research, 13(6), 1151–63.CrossRefGoogle ScholarPubMed
Ingling, C. R. Jr., and Martinez-Uriegas, E. (1983a). The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel. Vision Research, 23(12), 14951500.CrossRefGoogle ScholarPubMed
Ingling, C. R. Jr., and Martinez-Uriegas, E. (1983b). The spatio-chromatic signal of the r-g channels. In Mollon, J. D. and Sharpe, L. T. (eds.), Colour Vision: Physiology and Psychophysics (pp. 433–44). London: Academic Press.Google Scholar
Ingling, C. R. Jr., and Martinez-Uriegas, E. (1985). The spatiotemporal properties of the r-g X-cell channel. Vision Research, 25(1), 33–8.CrossRefGoogle ScholarPubMed
Ingling, C. R. Jr., and Tsou, H. B.-P. (1988). Spectral sensitivity for flicker and acuity criteria. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 5(8), 1374–8.CrossRefGoogle ScholarPubMed
International Electrotechnical Commission (1999). sRGB Standard, International Electrotechnical Commission Standard 61966-2-1.Google Scholar
Jennings, J. A., and Charman, W. N. (1981). Off-axis image quality in the human eye. Vision Research, 21(4), 445–55.CrossRefGoogle ScholarPubMed
Jusuf, P. R., Martin, P. R., and Grünert, U. (2006). Random wiring in the midget pathway of primate retina. Journal of Neuroscience, 26(15), 3908–17.CrossRefGoogle ScholarPubMed
Kelly, D. H. (1961). Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements. Journal of the Optical Society of America, 51, 422–9.CrossRefGoogle ScholarPubMed
Kelly, D. H. (1966). Frequency doubling in visual responses. Journal of the Optical Society of America, 56(11), 1628–33.CrossRefGoogle Scholar
Kelly, D. H. (1983). Spatiotemporal variation of chromatic and achromatic contrast thresholds. Journal of the Optical Society of America, 73(6), 742–50.CrossRefGoogle ScholarPubMed
Kelly, D. H., and van Norren, D. (1977). Two-band model of heterochromatic flicker. Journal of the Optical Society of America, 67(8), 1081–91.CrossRefGoogle ScholarPubMed
Kingdom, F. A. A., and Mullen, K. T. (1995). Separating colour and luminance information in the visual system. Spatial Vision, 9(2), 191219.CrossRefGoogle ScholarPubMed
Klug, K., Herr, S., Ngo, T. N., Sterling, P., and Schein, S. (2003). Macaque retina contains an S-cone OFF midget pathway. Journal of Neuroscience, 23(30), 9881–7.CrossRefGoogle ScholarPubMed
Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 258(823), 261–8.Google ScholarPubMed
Kolb, H., and Dekorver, L. (1991). Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial reconstructions. Journal of Comparative Neurology, 303(4), 617–36.Google Scholar
Kolb, H., and Marshak, D. (2003). The midget pathways of the primate retina. Documenta Ophthalmologica, 106(1), 6781.CrossRefGoogle ScholarPubMed
König, A., and Dieterici, C. (1886). Die Grundempfindungen und ihre Intensitäts-Vertheilung im Spectrum. Sitzungsberichte Akademie der Wissenschaften, Berlin, 805–29.Google Scholar
Kouyama, N., and Mashak, D. W. (1992). Bipolar cells specific for blue cones in the macaque retina. Journal of Neuroscience, 12(4), 1233–52.CrossRefGoogle ScholarPubMed
Krantz, D. H. (1975). Color measurement and color theory. I. Representation theorem for Grassmann structures. Journal of Mathematical Psychology, 12, 283303.CrossRefGoogle Scholar
Krauskopf, J., Williams, D. R., and Heeley, D. W. (1982). Cardinal directions of color space. Vision Research, 22(9), 1123–31.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D. R., Mandler, M. B., and Brown, A. M. (1986). Higher order color mechanisms. Vision Research, 26(1), 2332.CrossRefGoogle ScholarPubMed
Kremers, J., Scholl, H. P. N., Knau, H., Berendschot, T. T. J. M., and Sharpe, L. T. (2000). L/M-cone ratios in human trichromats assessed by psychophysics, electroretinography and retinal densitometry. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(3), 517–26.CrossRefGoogle ScholarPubMed
Lankheet, M. J. M., Lennie, P., and Krauskopf, J. (1998). Distinctive characteristics of subclasses of red-green P-cells in LGN of macaque. Visual Neuroscience, 15(1), 3746.CrossRefGoogle ScholarPubMed
Lee, B. B., Kremers, J., and Yeh, T. (1998). Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience, 15(1), 161–75.CrossRefGoogle ScholarPubMed
Lee, S. C. S., Telkes, I., and Grünert, U. (2005). S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus. European Journal of Neuroscience, 22, 437–47.CrossRefGoogle ScholarPubMed
Le Grand, Y. (1972). Spectral luminosity. In Jameson, D. and Hurvich, L. M. (eds.), Visual Psychophysics: Handbook of Sensory Physiology (vol. VII, pp. 413–33). Berlin: Springer-Verlag.Google Scholar
Lennie, P. (1984). Recent developments in the physiology of color vision. Trends in Neuroscience, 7(7), 243–8.CrossRefGoogle Scholar
Lennie, P., and D’Zmura, M. (1988). Mechanisms of color vision. CRC Critical Reviews in Neurobiology, 3(4), 333400.Google ScholarPubMed
Lennie, P., Haake, P. W., and Williams, D. R. (1991). The design of chromatically opponent receptive fields. In Landy, M. S. and Movshon, J. A. (eds.), Computational Models of Visual Processing (pp. 7182). Cambridge, MA: MIT Press.Google Scholar
Lennie, P., and Movshon, J. A. (2005). Coding of color and form in the geniculostriate visual pathway. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(10), 2013–33.Google Scholar
Lennie, P., Pokorny, J., and Smith, V. C. (1993). Luminance. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(6), 1283–93.CrossRefGoogle ScholarPubMed
Leventhal, A. G., Rodieck, R. W., and Dreher, B. (1981). Retinal ganglion-cell classes in the Old-World monkey – morphology and central projections. Science, 213(4512), 1139–42.CrossRefGoogle ScholarPubMed
Li, W., and DeVries, S. H. (2004). Separate blue and green cone networks in the mammalian retina. Nature Neuroscience, 7(7), 751–6.CrossRefGoogle ScholarPubMed
MacLeod, D. I. A. (1978). Visual sensitivity. Annual Review of Psychology, 29, 613–45.CrossRefGoogle ScholarPubMed
Mariani, A. P. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature, 308(5955), 184–6.CrossRefGoogle ScholarPubMed
Marimont, D. H., and Wandell, B. A. (1994). Matching color images – the effects of axial chromatic aberration. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 11(12), 3113–22.CrossRefGoogle Scholar
Marrocco, R. T. (1976). Sustained and transient cells in monkey lateral geniculate nucleus: conduction velocites and response properties. Journal of Neurophysiology, 39(2), 340–53.CrossRefGoogle ScholarPubMed
Marshak, D. W., and Martin, P. R. (2014). Short wavelength-sensitive cones and the processing of their signals. Visual Neuroscience, 31(Special Issue 02), 111–13.CrossRefGoogle ScholarPubMed
Martin, P. R., and Lee, B. B. (2014). Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways. Visual Neuroscience, 31(Special Issue 02), 177–87.CrossRefGoogle ScholarPubMed
Martin, P. R., White, A. J., Goodchild, A. K., Wilder, H. D., and Sefton, A. E. (1997). Evidence that blue-on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience, 9(7), 1536–41.CrossRefGoogle ScholarPubMed
Martinez-Uriegas, E. (1985). A solution to the color-luminance ambiguity in the spatiotemporal signal of primate X cells. Investigative Ophthalmology and Visual Science, 26(suppl.), 183.Google Scholar
Maxwell, J. C. (1856). On the theory of colours in relation to colour-blindness. A letter to Dr. G. Wilson. Transactions of the Royal Scottish Society of Arts, 4, 394400.Google Scholar
Merbs, S. L., and Nathans, J. (1992a). Absorption spectra of human cone pigments. Nature, 356, 431–2.CrossRefGoogle ScholarPubMed
Merbs, S. L., and Nathans, J. (1992b). Absorption spectra of the hybrid pigments responsible for anomalous color vision. Science, 258(5081), 464–6.CrossRefGoogle ScholarPubMed
Merigan, W. H., and Eskin, T. A. (1986). Spatio-temporal vision of macaques with severe loss of Pb retinal ganglion cells. Vision Research, 26, 1751–61.CrossRefGoogle Scholar
Mitchell, D. E., and Rushton, W. A. H. (1971). Visual pigments in dichromats. Vision Research, 11(10), 1033–43.CrossRefGoogle ScholarPubMed
Miyagishima, K. J., Grünert, U., and Li, W. (2014). Processing of S-cone signals in the inner plexiform layer of the mammalian retina. Visual Neuroscience, 31(Special Issue 02), 153–63.CrossRefGoogle ScholarPubMed
Mullen, K. T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow gratings. Journal of Physiology, 359, 381400.CrossRefGoogle Scholar
Mullen, K. T., and Kingdom, F. A. A. (2002). Differential distributions of red-green and blue-yellow cone opponency across the visual field. Visual Neuroscience, 19(1), 109–18.CrossRefGoogle ScholarPubMed
Mullen, K. T., Sakurai, M., and Chu, W. (2005). Does L/M cone opponency disappear in human periphery? Perception, 34, 951–9.CrossRefGoogle Scholar
Nassi, J. J., and Callaway, E. M. (2009). Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 10(5), 360–72.CrossRefGoogle ScholarPubMed
Nathans, J., Piantanida, T. P., Eddy, R. L., Shows, T. B., and Hogness, S. G. (1986). Molecular genetics of inherited variation in human color vision. Science, 232(4747), 203–10.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D., and Hogness, S. G. (1986). Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science, 232(4747), 193202.CrossRefGoogle ScholarPubMed
Navarro, R., Moreno, E., and Dorronsoro, C. (1998). Monochromatic aberrations and point-spread functions of the human eye across the visual field. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 15(9), 2522–9.CrossRefGoogle ScholarPubMed
Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M., and Williams, D. R. (2002). Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron, 35(4), 783–92.CrossRefGoogle ScholarPubMed
Neitz, M., Neitz, J., and Jacobs, G. H. (1991). Spectral tuning of pigments underlying red-green color vision. Science, 252(5008), 971–4.CrossRefGoogle ScholarPubMed
Newton, I. (1704 ). Opticks: or a treatise of the reflexions, refractions, inflexons and colours of light. London: Samuel Smith and Benjamin Walford.Google Scholar
Newton, J. R., and Eskew, R. T. Jr. (2003). Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity. Visual Neuroscience, 20(5), 511–21.CrossRefGoogle ScholarPubMed
Østerberg, G. A. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica 6(suppl.), 1102.Google Scholar
Packer, O. S., Verweij, J., Li, P. H., Schnapf, J. L., and Dacey, D. M. (2010). Blue-yellow opponency in primate S cone photoreceptors. Journal of Neuroscience, 30(2), 568–72.CrossRefGoogle ScholarPubMed
Paulus, W., and Kröger-Paulus, A. (1983). A new concept of retinal colour coding. Vision Research, 23(5), 529–40.CrossRefGoogle ScholarPubMed
Perlman, I., and Normann, R. A. (1998). Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors. Progress in Retinal and Eye Research, 17(4), 523–63.CrossRefGoogle ScholarPubMed
Perry, V. H., Oehler, R., and Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience, 12(4), 1101–23.Google Scholar
Pharr, M., and Humphreys, G. (2010). Physically Based Rendering: From Theory to Implementation, 2nd edn. San Francisco, CA: Morgan Kaufmann.Google Scholar
Poirson, A. B., and Wandell, B. A. (1993). Appearance of colored patterns: pattern-color separability. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(12), 2458–70.CrossRefGoogle ScholarPubMed
Poirson, A. B., and Wandell, B. A. (1996). Pattern-color separable pathways predict sensitivity to simple colored patterns. Vision Research, 36(4), 515–26.CrossRefGoogle ScholarPubMed
Poirson, A. B., Wandell, B. A., Varner, D. C., and Brainard, D. H. (1990). Surface characterizations of color thresholds. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 7(4), 783–9.CrossRefGoogle ScholarPubMed
Pokorny, J., Smith, V. C., and Lutze, M. (1989). Heterochromatic modulation photometry. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 6(10), 1618–23.CrossRefGoogle ScholarPubMed
Pokorny, J., Smith, V. C., and Wesner, M. F. (1991). Variability in cone populations and implications. In Valberg, A. and Lee, B. B. (eds.), From Pigments to Perception (pp. 2334). New York: Plenum.CrossRefGoogle Scholar
Polyak, S. L. (1941). The Retina. University of Chicago Press.Google Scholar
Pugh, E. N. Jr., and Lamb, T. D. (2000). Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In Stavenga, D. G., de Grip, W. J., and Pugh, E. N. (eds.), Handbook of Biological Physics, vol. III: Molecular Mechanisms of Visual Transduction (pp. 183255). Amsterdam: Elsevier.CrossRefGoogle Scholar
Pugh, E. N. Jr., Nikonov, S., and Lamb, T. D. (1999). Molecular mechanisms of vertebrate photoreceptor light adaptation. Current Opinion in Neurobiology, 9(4), 410–18.CrossRefGoogle ScholarPubMed
Purcell, E. M. (1965). Electricity and Magnetism. New York: McGraw-Hill.Google Scholar
Raviola, E., and Gilula, N. B. (1973). Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences of the United States of America, 70, 1677–81.Google ScholarPubMed
Reid, R. C., and Shapley, R. M. (1992). Spatial structure of cone inputs to the receptive fields in primate lateral geniculate nucleus. Nature, 356(6371), 716–18.CrossRefGoogle Scholar
Robson, J. G. (1966). Spatial and temporal contrast sensitivity functions of the visual system. Journal of the Optical Society of America, 56, 1141–2.CrossRefGoogle Scholar
Rodieck, R. W. (1998). The First Steps in Seeing. Sunderland, MA: Sinauer.Google Scholar
Rodieck, R. W., Binmoeller, K. F., and Dineen, J. (1985). Parasol and midget ganglion-cells of the human retina. Journal of Comparative Neurology, 233(1), 115–32.Google ScholarPubMed
Roorda, A. (2011). Adaptive optics for studying visual function: a comprehensive review. Journal of Vision, 11(5).CrossRefGoogle ScholarPubMed
Roorda, A., and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397(6719), 520–2.CrossRefGoogle ScholarPubMed
Ruderman, D. L., Cronin, T. W., and Chiao, C. C. (1998). Statistics of cone responses to natural images: implications for visual coding. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 15(8), 2036–45.CrossRefGoogle Scholar
Sakurai, M., and Mullen, K. T. (2006). Cone weights for the two cone-opponent systems in peripheral vision and asymmetries of cone contrast sensitivity. Vision Research, 46(26), 4346–54.CrossRefGoogle ScholarPubMed
Schmidt, B. P., Neitz, M., and Neitz, J. (2014). Neurobiological hypothesis of color appearance and hue perception. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A195A207.CrossRefGoogle ScholarPubMed
Sekiguchi, N., Williams, D. R., and Brainard, D. H. (1993a). Aberration-free measurements of the visibility of isoluminant gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(10), 2105–17.CrossRefGoogle ScholarPubMed
Sekiguchi, N., Williams, D. R., and Brainard, D. H. (1993b). Efficiency in detection of isoluminant and isochromatic interference fringes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(10), 2118–33.CrossRefGoogle ScholarPubMed
Sharpe, L. T., Stockman, A., Jägla, W., and Jägle, H. (2011). A luminous efficiency function, V*(λ), for daylight adaptation: a correction. Color Research & Application, 36, 42–6.CrossRefGoogle Scholar
Sharpe, L. T., Stockman, A., Jägle, H., and Nathans, J. (1999). Opsin genes, cone photopigments, color vision and colorblindness. In Gegenfurtner, K. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 351). Cambridge University Press.Google Scholar
Sher, A., and DeVries, S. H. (2012). A non-canonical pathway for mammalian blue-green color vision. Nature Neuroscience, 15(7), 952–3.CrossRefGoogle ScholarPubMed
Smith, V. C., Lee, B. B., Pokorny, J., Martin, P. R., and Valberg, A. (1992). Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. Journal of Physiology, 458, 191221.CrossRefGoogle Scholar
Smith, V. C., and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15, 161–71.CrossRefGoogle Scholar
Solomon, S. G., Lee, B. B., White, A. J., Rüttiger, L., and Martin, P. R. (2005). Chromatic organization of ganglion cell receptive fields in the peripheral retina. Journal of Neuroscience, 25(18), 4527–39.CrossRefGoogle ScholarPubMed
Solomon, S. G., and Lennie, P. (2007). The machinery of colour vision. Nature Reviews Neuroscience, 8(4), 276–86.CrossRefGoogle ScholarPubMed
Stiles, W. S. (1949). Incremental thresholds and the mechanisms of colour vision. Documenta Ophthalmologica, 3, 138–63.CrossRefGoogle Scholar
Stiles, W. S., and Burch, J. M. (1959). NPL colour-matching investigation: final report (1958). Optica Acta, 6, 126.CrossRefGoogle Scholar
Stockman, A. (2004). Colorimetry. In Brown, T. G., Creath, K., Kogelnik, H., Kriss, M. A., Schmit, J., and Weber, M. J. (eds.), The Optics Encyclopedia: Basic Foundations and Practical Applications (vol. I, pp. 207–26). Berlin: Wiley-VCH.Google Scholar
Stockman, A., and Brainard, D. H. (2010). Color vision mechanisms. In Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., Mahajan, V. and van Stryland, E. (eds.), The Optical Society of America Handbook of Optics, 3rd edn., vol. III: Vision and Vision Optics (pp. 11.1111.104). New York: McGraw Hill.Google Scholar
Stockman, A., Langendörfer, M., Smithson, H. E., and Sharpe, L. T. (2006). Human cone light adaptation: from behavioral measurements to molecular mechanisms. Journal of Vision, 6(11), 11941213.CrossRefGoogle ScholarPubMed
Stockman, A., MacLeod, D. I. A., and Johnson, N. E. (1993). Spectral sensitivities of the human cones. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(12), 24912521.CrossRefGoogle ScholarPubMed
Stockman, A., and Sharpe, L. T. (1999). Cone spectral sensitivities and color matching. In Gegenfurtner, K. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 5387). Cambridge University Press.Google Scholar
Stockman, A., and Sharpe, L. T. (2000). Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Research, 40(13), 1711–37.Google ScholarPubMed
Stromeyer, C. F. III, Cole, G. R., and Kronauer, R. E. (1985). Second-site adaptation in the red-green chromatic pathways. Vision Research, 25(2), 219–37.CrossRefGoogle ScholarPubMed
Stromeyer, C. F. III, Lee, J., and Eskew, R. T. Jr. (1992). Peripheral chromatic sensitivity for flashes: a post-receptoral red-green asymmetry. Vision Research, 32(10), 1865–73.CrossRefGoogle ScholarPubMed
Szmajda, B. A., Buzás, P., FitzGibbon, T., and Martin, P. R. (2006). Geniculocortical relay of blue-off signals in the primate visual system. Proceedings of the National Academy of Sciences of the United States of America, 103(51), 19512–17.Google ScholarPubMed
Szmajda, B. A., Grunert, U., and Martin, P. R. (2008). Retinal ganglion cell inputs to the koniocellular pathway. Journal of Comparative Neurology, 510(3), 251–68.Google Scholar
Tailby, C., Solomon, S. G., Dhruv, N. T., and Lennie, P. (2008). Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience, 28(5), 1131–9.CrossRefGoogle ScholarPubMed
Tailby, C., Solomon, S. G., and Lennie, P. (2008). Functional asymmetries in visual pathways carrying S-cone signals in macaque. Journal of Neuroscience, 28(15), 4078–87.CrossRefGoogle ScholarPubMed
Tsukamoto, T., Masarachia, P., Schein, S. J., and Sterling, P. (1992). Gap junctions between the pedicles of macaque foveal cones. Vision Research, 32(10), 1809–15.CrossRefGoogle ScholarPubMed
Vakrou, C., Whitaker, D., McGraw, P. V., and McKeefry, D. (2005). Functional evidence for cone-specific connectivity in the human retina. Journal of Physiology, 566(Pt 1), 93102.CrossRefGoogle ScholarPubMed
Valberg, A., Lee, B. B., and Tigwell, D. A. (1986). Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus. Vision Research, 26(7), 1061–4.CrossRefGoogle ScholarPubMed
Vienot, F., and Brettel, H. (2014). The Verriest Lecture. Visual properties of metameric blacks beyond cone vision. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A3846.CrossRefGoogle ScholarPubMed
Vimal, R. L. P., Smith, V. C., Pokorny, J., and Shevell, S. K. (1989). Foveal cone thresholds. Vision Research, 29(1), 6178.CrossRefGoogle ScholarPubMed
Vos, J. J. (1978). Colorimetric and photometric properties of a 2-deg fundamental observer. Color Research & Application, 3, 125–8.CrossRefGoogle Scholar
Vos, J. J., and Walraven, P. L. (1971). On the derivation of the foveal receptor primaries. Vision Research, 11(8), 799818.CrossRefGoogle ScholarPubMed
Wagner, G., and Boynton, R. M. (1972). Comparison of four methods of heterochromatic photometry. Journal of the Optical Society of America, 62(12), 1508–15.CrossRefGoogle ScholarPubMed
Wandell, B. A. (1995). Foundations of Vision. Sunderland, MA: Sinauer.Google Scholar
Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews Neuroscience, 5(10), 747–57.CrossRefGoogle ScholarPubMed
Wässle, H., and Boycott, B. B. (1991). Functional architecture of the mammalian retina. Physiological Reviews, 71(2), 447–80.CrossRefGoogle ScholarPubMed
Weitz, C. J., Miyake, Y., Shinzato, K., Montag, E. D., Zrenner, E., Went, L. N., and Nathans, J. (1992). Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin. American Journal of Genetics, 50(3), 498507.Google ScholarPubMed
Weitz, C. J., Went, L. N., and Nathans, J. (1992). Human tritanopia associated with a 3rd amino-acid substitution in the blue-sensitive visual pigment. American Journal of Human Genetics, 51(2), 444–6.Google Scholar
Went, L. N., and Pronk, N. (1985). The genetics of tritan disturbances. Human Genetics, 69(3), 255–62.CrossRefGoogle ScholarPubMed
Westheimer, G. (1964). Pupil size and visual resolution. Vision Research, 4(1–2), 3945.CrossRefGoogle ScholarPubMed
Westheimer, G. (1986). The eye as an optical instrument. In Boff, K. R., Kaufman, L. and Thomas, J. P. (eds.), Handbook of Perception and Human Performance (vol. I, pp. 120). New York: Wiley.Google Scholar
Wiesel, T. N., and Hubel, D. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29(6), 1115–56.CrossRefGoogle ScholarPubMed
Williams, D. R. (1985). Aliasing in human foveal vision. Vision Research, 25(2), 195205.CrossRefGoogle ScholarPubMed
Williams, D. R., Artal, P., Navarro, R., McMahon, M. J., and Brainard, D. H. (1996). Off-axis optical quality and retinal sampling in the human eye. Vision Research, 36(8), 1103–14.CrossRefGoogle ScholarPubMed
Williams, D. R., and Collier, R. J. (1983). Consequences of spatial sampling by a human photoreceptor mosaic. Science, 221, 385–7.CrossRefGoogle ScholarPubMed
Williams, D. R., MacLeod, D. I. A., and Hayhoe, M. M. (1981). Foveal tritanopia. Vision Research, 19(9), 1341–56.Google Scholar
Willmer, E. N. (1944). Colour of small objects. Nature, 153, 774–5.CrossRefGoogle Scholar
Winderickx, J., Lindsey, D. T., Sanocki, E., Teller, D. Y., Motulsky, A. G., and Deeb, S. S. (1992). A Ser/Ala polymorphism in the red photopigment underlies variation in colour matching among colour-normal individuals. Nature, 356, 431–3.CrossRefGoogle Scholar
Wyszecki, G., and Stiles, W. S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. New York: Wiley.Google Scholar
Xiao, F., DiCarlo, J. M., Catrysse, P. B., and Wandell, B. A. (2002). High dynamic range imaging of natural scenes. Color and Imaging Conference, 2002(1), 337–42.Google Scholar
Xiao, Y. (2014). Processing of the S-cone signals in the early visual cortex of primates. Visual Neuroscience, 31(Special Issue 02), 189–95.CrossRefGoogle ScholarPubMed
Yamauchi, Y., Williams, D. R., Brainard, D. H., Roorda, A., Carroll, J., Neitz, M., Neitz, J., et al. (2002). What determines unique yellow, L/M cone ratio or visual experience? Paper presented at the 9th Congress of the International Colour Association, Proceedings of SPIE, 4421.CrossRefGoogle Scholar
Yellott, J. I. Jr., Wandell, B. A., and Cornsweet, T. N. (1984). The beginnings of visual perception: the retinal image and its initial encoding. In Darien-Smith, I. (ed.), Handbook of Physiology: The Nervous System (vol. III, pp. 257316). New York: Easton.Google Scholar
Yin, L., Smith, R. G., Sterling, P., and Brainard, D. H. (2009). Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins. Journal of Neuroscience, 29(9), 2706–24.CrossRefGoogle Scholar
Zaidi, F. H., Hull, J. T., Peirson, S. N., Wulff, K., Aeschbach, D., Gooley, J. J., Brainard, G. C., et al. (2007). Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Current Biology, 17(24), 2122–8.CrossRefGoogle ScholarPubMed

References

Anstis, S. M., and Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In Mollon, J. D. and Sharpe, L. T. (eds.), Colour Vision: Psychophysics and Physiology (pp. 6677). London: Academic Press.Google Scholar
Arend, L., and Reeves, A. (1986). Simultaneous color constancy. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 3(10), 1743–51.CrossRefGoogle ScholarPubMed
Bachy, R., Dias, J., Alleysson, D., and Bonnardel, V. (2012). Hue discrimination, unique hues and naming. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 29(2), A60–8.CrossRefGoogle ScholarPubMed
Barlow, H., and Földiák, P. (1989). Adaptation and decorrelation in the cortex. In Miall, C., Durbin, G. J., and Mitchison, G. J. (eds.), The Computing Neuron (pp. 5472). Wokingham: Addison-Wesley.Google Scholar
Benucci, A., Frazor, R. A., and Carandini, M. (2007). Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron, 55(1), 103–17.CrossRefGoogle ScholarPubMed
Bosking, W. H., Crowley, J. C., and Fitzpatrick, D. (2002). Spatial coding of position and orientation in primary visual cortex. Nature Neuroscience, 5(9), 874–82.CrossRefGoogle ScholarPubMed
Boynton, R. M., and Kaiser, P. K. (1968). Vision: the additivity law made to work for heterochromatic photometry with bipartite fields. Science, 161(3839), 366–8.CrossRefGoogle ScholarPubMed
Brown, A. M., Lindsey, D. T., and Guckes, K. M. (2011). Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical. Journal of Vision, 11(12), 121.CrossRefGoogle Scholar
Bushnell, B. N., Harding, P. J., Kosai, Y., Bair, W., and Pasupathy, A. (2011). Equiluminance cells in visual cortical area. Journal of Neuroscience, 31(35), 12398–412.CrossRefGoogle ScholarPubMed
Bushnell, B. N., and Pasupathy, A. (2012). Shape encoding consistency across colors in primate V4. Journal of Neurophysiology, 108(5), 12991308.CrossRefGoogle ScholarPubMed
Cao, D. (2014). S-cone discrimination in the presence of two adapting fields: data and model. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A6574.CrossRefGoogle ScholarPubMed
Cao, D., Lee, B. B., and Sun, H. (2010). Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway. Journal of Vision, 10(11), 115.CrossRefGoogle ScholarPubMed
Cavanagh, P., Tyler, C. W., and Favreau, O. E. (1984). Perceived velocity of moving chromatic gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1(8), 893–9.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F., Huang, E. P., Kronauer, R. E., and Eskew, R. T. (1993). Colour is what the eye sees best. Nature, 361(6410), 348–50.CrossRefGoogle ScholarPubMed
Chatterjee, S., and Callaway, E. M. (2002). S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron, 35(6), 1135–46.CrossRefGoogle Scholar
Clifford, C. W. G., Spehar, B., Solomon, S. G., Martin, P. R., and Zaidi, Q. (2003). Interactions between color and luminance in the perception of orientation. Journal of Vision, 3(2), 106–15.CrossRefGoogle ScholarPubMed
Conway, B. R. (2001). Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). Journal of Neuroscience, 21(8), 2768–83.CrossRefGoogle ScholarPubMed
Conway, B. R. (2014). Color signals through dorsal and ventral visual pathways. Visual Neuroscience, 31(2), 197209.CrossRefGoogle ScholarPubMed
Conway, B. R., and Livingstone, M. S. (2006). Spatial and temporal properties of cone signals in alert macaque primary visual cortex. Journal of Neuroscience, 26(42), 10826–46.CrossRefGoogle ScholarPubMed
Conway, B. R., Moeller, S., and Tsao, D. Y. (2007). Specialized color modules in macaque extrastriate cortex. Neuron, 56(3), 560–73.CrossRefGoogle ScholarPubMed
Conway, B. R., and Tsao, D. Y. (2005). Color architecture in alert macaque cortex revealed by fMRI. Cerebral Cortex, 16(11), 1604–13.Google ScholarPubMed
Cooper, B., Sun, H., and Lee, B. B. (2012). Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 29(2), A314–23.CrossRefGoogle ScholarPubMed
Cottaris, N. P., and De Valois, R. L. (1998). Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature, 395(6705), 896900.CrossRefGoogle ScholarPubMed
Cropper, S. J., and Derrington, A. M. (1996). Rapid colour-specific detection of motion in human vision. Nature, 379(6560), 72–4.CrossRefGoogle ScholarPubMed
Cropper, S. J., and Wuerger, S. M. (2005). The perception of motion in chromatic stimuli. Behavioral and Cognitive Neuroscience Reviews, 4(3), 192217.CrossRefGoogle ScholarPubMed
Dacey, D. M., and Petersen, M. R. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9666–70.Google ScholarPubMed
de Monasterio, F. M., McCrane, E. P., Newlander, J. K., and Schein, S. J. (1985). Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Investigative Ophthalmology and Visual Science, 26(3), 289302.Google ScholarPubMed
Derrington, A. M., and Henning, G. B. (1993). Detecting and discriminating the direction of motion of luminance and colour gratings. Vision Research, 33(5–6), 799811.CrossRefGoogle ScholarPubMed
Derrington, A. M., Krauskopf, J., and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–65.CrossRefGoogle ScholarPubMed
Deutscher, G. (2011). Through the Language Glass: Why the World Looks Different in Other Languages. New York: Random House.Google Scholar
De Valois, R. L., and De Valois, K. K. (1993). A multi-stage color model. Vision Research, 33(8), 1053–65.CrossRefGoogle ScholarPubMed
DeWeerd, P., Peralta, M. R., Desimone, R., and Ungerleider, L. G. (1999). Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nature Neuroscience, 2(8), 753–8.CrossRefGoogle Scholar
Dowling, J. E. (1987). The Retina: An Approachable Part of the Brain. Cambridge, MA: Harvard University Press.Google Scholar
Drivonikou, G. V., Kay, P., Regier, T., Ivry, R. B., Gilbert, A. L., Franklin, A., and Davies, I. R. L. (2007). Further evidence that Whorfian effects are stronger in the right visual field than the left. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 10971102.CrossRefGoogle ScholarPubMed
Edelman, S. (1998). Representation is representation of similarities. Behavioral and Brain Sciences, 21(4), 449–67.CrossRefGoogle ScholarPubMed
Engel, S., Zhang, X., and Wandell, B. (1997). Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature, 388(6637), 6871.CrossRefGoogle ScholarPubMed
Eskew, R. T. (2009). Higher order color mechanisms: a critical review. Vision Research, 49(22), 26862704.CrossRefGoogle ScholarPubMed
Eskew, R. T., Newton, J. R., and Giulianini, F. (2001). Chromatic detection and discrimination analyzed by a Bayesian classifier. Vision Research, 41(7), 893909.CrossRefGoogle ScholarPubMed
Estévez, O., and Spekreijse, H. (1982). The “silent substitution” method in visual research. Vision Research, 22(6), 681–91.CrossRefGoogle Scholar
Felleman, D. J., and Van Essen, D. C. (1987). Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. Journal of Neurophysiology, 57(4), 889920.CrossRefGoogle ScholarPubMed
Fonteneau, E., and Davidoff, J. (2007). Neural correlates of colour categories. NeuroReport, 18(13), 1323–7.CrossRefGoogle ScholarPubMed
Forbes, A., Burleigh, S., and Neyland, M. (1955). Electric responses to color shift in frog and turtle retina. Journal of Neurophysiology, 18(6), 517–35.CrossRefGoogle ScholarPubMed
Foster, D. H., Amano, K., and Nascimento, S. M. (2006). Color constancy in natural scenes explained by global image statistics. Visual Neuroscience, 23(3–4), 341–9.CrossRefGoogle ScholarPubMed
Foster, D. H., Amano, K., Nascimento, S. M. C., and Foster, M. J. (2006). Frequency of metamerism in natural scenes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 23(10), 2359–72.CrossRefGoogle ScholarPubMed
Foster, D. H., and Nascimento, S. M. C. (1994). Relational colour constancy from invariant cone-excitation ratios. Proceedings of the Royal Society of London. B, Biological Sciences, 257(1349), 115–21.Google ScholarPubMed
Gegenfurtner, K. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4(7), 563–72.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Hawken, M. J. (1995). Temporal and chromatic properties of motion mechanisms. Vision Research, 35(11), 1547–63.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Hawken, M. J. (1996). Interaction of motion and color in the visual pathways. Trends in Neurosciences, 19(9), 394401.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Kiper, D. C. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 9(11), 1880–8.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Kiper, D. C. (2003). Color vision. Annual Review of Neuroscience, 26, 181206.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., Kiper, D. C., Beusmans, J. M., Carandini, M., Zaidi, Q., and Movshon, J. A. (1994). Chromatic properties of neurons in macaque MT. Visual Neuroscience, 11(3), 455–66.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., Kiper, D. C., and Levitt, J. B. (1997). Functional properties of neurons in macaque area V3. Journal of Neurophysiology, 77(4), 1906–23.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1937). Adaptation, after-effect, and contrast in the perception of tilted lines. II. Simultaneous contrast and the areal restriction of the after-effect. Journal of Experimental Psychology, 20(6), 553–69.Google Scholar
Giesel, M., and Gegenfurtner, K. R. (2010). Color appearance of real objects varying in material, hue, and shape. Journal of Vision, 10(9), 121.CrossRefGoogle ScholarPubMed
Gilbert, A. L., Regier, T., Kay, P., and Ivry, R. B. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 489–94.Google Scholar
Giulianini, F., and Eskew, R. T. (1998). Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms. Vision Research, 38(24), 3913–26.CrossRefGoogle ScholarPubMed
Gordon, J., and Abramov, I. (1977). Color vision in the peripheral retina. II. Hue and saturation. Journal of the Optical Society of America, 67(2), 202–7.CrossRefGoogle ScholarPubMed
Granzier, J. M., and Gegenfurtner, K. R. (2012). Effects of memory colour on colour constancy for unknown coloured objects. i-Perception, 3(3), 190215.CrossRefGoogle ScholarPubMed
Granzier, J. J. M., Vergne, R., and Gegenfurtner, K. R. (2014). The effects of surface gloss and roughness on color constancy for real 3-D objects. Journal of Vision, 14(2), 120.CrossRefGoogle ScholarPubMed
Hamburger, K., and Shapiro, A. G. (2009). Spillmann’s weaves are more resilient than Hermann’s grid. Vision Research, 49(16), 2121–30.CrossRefGoogle Scholar
Handford, M. (1987). Where’s Waldo? New York: Little, Brown and Co.Google Scholar
Hanley, R., and Roberson, D. (2008). Do infants see colors differently? Scientific American, 14 May (www.scientificamerican.com/article/do-infants-see-colors-dif/).Google Scholar
Hansen, T., and Gegenfurtner, K. R. (2006). Higher level chromatic mechanisms for image segmentation. Journal of Vision, 6(3), 239–59.CrossRefGoogle ScholarPubMed
Hansen, T., and Gegenfurtner, K. R. (2009). Independence of color and luminance edges in natural scenes. Visual Neuroscience, 26(1), 3549.CrossRefGoogle ScholarPubMed
Hansen, T., and Gegenfurtner, K. R. (2013). Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. Journal of Vision, 13(1), 121.CrossRefGoogle ScholarPubMed
Hansen, T., Olkkonen, M., Walter, S., and Gegenfurtner, K. R. (2006). Memory modulates color appearance. Nature Neuroscience, 9(11), 1367–8.CrossRefGoogle ScholarPubMed
Hansen, T., Walter, S., and Gegenfurtner, K. R. (2007). Effects of spatial and temporal context on color categories and color constancy. Journal of Vision, 7(4), 115.CrossRefGoogle ScholarPubMed
Harnad, S. (1987). Psychophysical and cognitive aspects of categorical perception: a critical overview. In Harnad, S. (ed.), Categorical Perception: The Groundwork of Cognition (pp. 127). New York: Cambridge University Press.Google Scholar
Haslam, C., Wills, A. J., Haslam, S. A., Kay, J., Baron, R., and McNab, F. (2007). Does maintenance of colour categories rely on language? Evidence to the contrary from a case of semantic dementia. Brain and Language, 103(3), 251–63.CrossRefGoogle Scholar
Hass, C. A., and Horwitz, G. D. (2013). V1 mechanisms underlying chromatic contrast detection. Journal of Neurophysiology, 109, 2483–94.CrossRefGoogle ScholarPubMed
Hawken, M. J., Gegenfurtner, K. R., and Tang, C. (1994). Contrast dependence of colour and luminance motion mechanisms in human vision. Nature, 367, 268–70.CrossRefGoogle ScholarPubMed
Helmholtz, H. (1852). Ueber die Theorie der zusammengesetzten Farben. Annalen der Physik und Chemie, 163, 4566.CrossRefGoogle Scholar
Helmholtz, H. (1855). Ueber die Zusammensetzung von Spectralfarben. Annalen der Physik und Chemie, 170, 128.CrossRefGoogle Scholar
Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leipzig: Leopold Voss.Google Scholar
Hering, E. (1878). Zur Lehre vom Lichtsinne. Vienna: Carl Gerold’s Sohn.Google Scholar
Hess, R. H., Baker, C. L., and Zihl, J. (1989). The “motion-blind” patient: low-level spatial and temporal filters. Journal of Neuroscience, 9(5), 1628–40.CrossRefGoogle Scholar
Heywood, C. A., and Cowey, A. (1987). On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. Journal of Neuroscience, 7(9), 2601–17.CrossRefGoogle ScholarPubMed
Hurvich, L. M., and Jameson, D. (1957). An opponent-process theory of color vision. Psychological Review, 64(6), 384404.CrossRefGoogle Scholar
Johnson, E. N., Hawken, M. J., and Shapley, R. (2001). The spatial transformation of color in the primary visual cortex of the macaque monkey. Nature Neuroscience, 4(4), 409–16.CrossRefGoogle ScholarPubMed
Johnson, E. N., Hawken, M. J., and Shapley, R. (2004). Cone inputs in macaque primary visual cortex. Journal of Neurophysiology, 91, 2501–14.CrossRefGoogle ScholarPubMed
Judd, D. B. (1949). Response functions for types of vision according to the Müller theory. Journal of Research of the National Bureau of Standards, 42(1), 116.CrossRefGoogle Scholar
Kaas, J. H., and Lyon, D. C. (2001). Visual cortex organization in primates: theories of V3 and adjoining visual areas. Progress in Brain Research, 134, 285–95.CrossRefGoogle ScholarPubMed
Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S., and Hudspeth, A. J. (2012). Principles of Neural Science, 5th edn. New York: McGraw-Hill.Google Scholar
Kaplan, E., and Shapley, R. M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 83(8), 2755–7.Google ScholarPubMed
Kara, P., and Boyd, J. D. (2009). A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature, 458(7238), 627–31.CrossRefGoogle ScholarPubMed
Kay, P., Regier, T., Gilbert, A. L., and Ivry, R. B. (2009). Lateralized Whorf: language influences perceptual decision in the right visual field. In Minett, J. W. and William, S.-Y. W. (eds.), Language, Evolution, and the Brain (pp. 261–84). City University of Hong Kong Press.Google Scholar
Kiper, D. C., Fenstemaker, S. B., and Gegenfurtner, K. R. (1997). Chromatic properties of neurons in macaque area V2. Visual Neuroscience, 14(6), 1061–72.CrossRefGoogle ScholarPubMed
Kitaoka, A., Gyoba, J., Kawabata, H., and Sakurai, K. (2001). Two competing mechanisms underlying neon color spreading, visual phantoms and grating induction. Vision Research, 41(18), 2347–54.CrossRefGoogle ScholarPubMed
Kleinholdermann, U., Franz, V. H., Gegenfurtner, K. R., and Stockmeier, K. (2009). Grasping isoluminant stimuli. Experimental Brain Research, 197(1), 1522.CrossRefGoogle ScholarPubMed
Kleinschmidt, A., Lee, B. B., Requardt, M., and Frahm, J. (1996). Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation. Experimental Brain Research, 110(2), 279–88.CrossRefGoogle ScholarPubMed
Kraft, J. M., and Brainard, D. H. (1999). Mechanisms of color constancy under nearly natural viewing. Proceedings of the National Academy of Sciences of the United States of America, 96(1), 307–12.Google ScholarPubMed
Krauskopf, J., and Gegenfurtner, K. (1992). Color discrimination and adaptation. Vision Research, 32(11), 2165–75.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D. R., and Heeley, D. W. (1982). Cardinal directions of color space. Vision Research, 22(9), 1123–31.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D. R., Mandler, M. B., and Brown, A. M. (1986). Higher order color mechanisms. Vision Research, 26(1), 2332.CrossRefGoogle ScholarPubMed
Krauskopf, J., and Zaidi, Q. (1986) Induced desensitization. Vision Research, 26(5), 759–62.CrossRefGoogle ScholarPubMed
Kuehni, R. G. (2004). Variability in unique hue selection: a surprising phenomenon. Color Research and Application, 29(2), 158–62.Google Scholar
Lamme, V. A., and Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–9.CrossRefGoogle ScholarPubMed
Lamme, V. A., Supèr, H., and Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–35.CrossRefGoogle ScholarPubMed
Landisman, C. E., and Ts’o, D. Y. (2002a). Color processing in macaque striate cortex: electrophysiological properties. Journal of Neurophysiology, 87(6), 3138–51.CrossRefGoogle ScholarPubMed
Landisman, C. E., and Ts’o, D. Y. (2002b). Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. Journal of Neurophysiology, 87(6), 3126–37.CrossRefGoogle ScholarPubMed
Lashgari, R., Li, X., Chen, Y., Kremkow, J., Bereshpolova, Y., Swadlow, H. A., and Alonso, J.-M. (2012). Response properties of local field potentials and neighboring single neurons in awake primary visual cortex. Journal of Neuroscience, 32(33), 11396–413.CrossRefGoogle ScholarPubMed
Lee, B. B., Martin, P. R., and Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology, 404, 323–47.CrossRefGoogle ScholarPubMed
Lee, B. B., Shapley, R. M., Hawken, M. J., and Sun, H. (2012). Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 29(2), A223–32.CrossRefGoogle ScholarPubMed
Lee, J., and Stromeyer, C. F. (1989). Contribution of human short-wave cones to luminance and motion detection. Journal of Physiology, 413, 563–93.CrossRefGoogle ScholarPubMed
Le Grand, Y. (1949). Les seuils différentiels de couleurs dans la théorie de Young. Revue d’Optique, 28, 261–78.Google ScholarPubMed
Lennie, P., Krauskopf, J., and Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience, 10(2), 649–69.CrossRefGoogle ScholarPubMed
Lennie, P., Pokorny, J., and Smith, V. C. (1993). Luminance. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(6), 1283–93.CrossRefGoogle ScholarPubMed
Leventhal, A. G., Rodieck, R. W., and Dreher, B. (1981). Retinal ganglion cell classes in the Old-World monkey: morphology and central projections. Science, 213(4512), 1139–42.CrossRefGoogle ScholarPubMed
Liu, Q., Chen, A. T., Wang, Q., Zhou, L., and Sun, H. J. (2008). An evidence for the effect of categorical perception on color perception. Acta Psychologica Sinica, 40, 813.CrossRefGoogle Scholar
Livingstone, M. S., and Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4(1), 309–56.CrossRefGoogle ScholarPubMed
Livingstone, M. S., and Hubel, D. H. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–9.CrossRefGoogle ScholarPubMed
Lu, Z. L., Lesmes, L. A., and Sperling, G. (1999). The mechanism of isoluminant chromatic motion perception. Proceedings of the National Academy of Sciences of the United Statesof America, 96(14), 8289–94.Google ScholarPubMed
Lu, Z. L., and Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35(19), 26972722.CrossRefGoogle ScholarPubMed
MacLeod, D. I., and Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69(8), 1183–6.CrossRefGoogle ScholarPubMed
Maloney, L. (1999). Physics-based approaches to modeling surface color perception. In Gegenfurtner, K. R. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 387422). Cambridge University Press.Google Scholar
Maxwell, J. C. (1857). XVIII.—Experiments on colour, as perceived by the eye, with remarks on colour-blindness. Transactions of the Royal Society of Edinburgh, 21(2), 275–98.CrossRefGoogle Scholar
Maxwell, J. C. (1860). On the theory of compound colours, and the relations of the colours of the spectrum. Philosophical Transactions of the Royal Society of London, 150, 5784.Google Scholar
McKeefry, D. J., Murray, I. J., and Parry, N. R. (2007). Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 24(10), 3168–79.CrossRefGoogle ScholarPubMed
Merigan, W. H. (1996). Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques. Visual Neuroscience, 13(1), 5160.CrossRefGoogle ScholarPubMed
Merigan, W. H. (2000). Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention. Visual Neuroscience, 17(06), 949–58.CrossRefGoogle Scholar
Merigan, W. H., and Pham, H. A. (1998). V4 lesions in macaques affect both single- and multiple-viewpoint shape discriminations. Visual Neuroscience, 15(2), 359–67.CrossRefGoogle ScholarPubMed
Michael, C. R. (1978a). Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. Journal of Neurophysiology, 41(3), 572–88.Google ScholarPubMed
Michael, C. R. (1978b). Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. Journal of Neurophysiology, 41(5), 1233–49.Google ScholarPubMed
Michael, C. R. (1978c). Color-sensitive complex cells in monkey striate cortex. Journal of Neurophysiology, 41(5), 1250–66.CrossRefGoogle ScholarPubMed
Michael, C. R. (1979). Color-sensitive hypercomplex cells in monkey striate cortex. Journal of Neurophysiology, 42(3), 726–44.CrossRefGoogle ScholarPubMed
Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. Journal of Experimental Biology, 146, 2138.CrossRefGoogle ScholarPubMed
Mollon, J. D. (2009). A neural basis for unique hues? Current Biology, 19(11), R441–2.CrossRefGoogle ScholarPubMed
Müller, G. E. (1930a). Über die Farbenempfindungen. Psychophysiche Untersuchungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 17, 1430.Google Scholar
Müller, G. E. (1930b). Über die Farbenempfindungen. Psychophysiche Untersuchungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 18, 435647.Google Scholar
Murphey, D. K., Yoshor, D., and Beauchamp, M. S. (2008). Perception matches selectivity in the human anterior color center. Current Biology, 18(3), 216–20.CrossRefGoogle ScholarPubMed
Nerger, J. L., Volbrecht, V. J., and Ayde, C. J. (1995). Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 12(6), 1225–32.CrossRefGoogle ScholarPubMed
Newton, J. R., and Eskew, R. T. (2003). Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity. Visual Neuroscience, 20(5), 511–21.CrossRefGoogle ScholarPubMed
Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., and Reid, R. C. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442(7105), 925–8.CrossRefGoogle ScholarPubMed
Olkkonen, M., Hansen, T., and Gegenfurtner, K. R. (2009). Categorical color constancy for simulated surfaces. Journal of Vision, 9(12), 118.CrossRefGoogle ScholarPubMed
Olkkonen, M., Witzel, C., Hansen, T., and Gegenfurtner, K. R. (2010). Categorical color constancy for real surfaces. Journal of Vision, 10(9), 122.CrossRefGoogle ScholarPubMed
Pasupathy, A., and Connor, C. E. (2002). Population coding of shape in area V4. Nature Neuroscience, 5(12), 1332–8.CrossRefGoogle ScholarPubMed
Pelli, D. (1981). The Effects of Visual Noise. Ph.D. dissertation, University of Cambridge.Google Scholar
Perry, V. H., Oehler, R., and Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience, 12(4), 1101–23.Google Scholar
Pinna, B., Brelstaff, G., and Spillmann, L. (2001). Surface color from boundaries: a new “watercolor” illusion. Vision Research, 41(20), 2669–76.CrossRefGoogle ScholarPubMed
Powell, G., Bompas, A., and Sumner, P. (2012). Making the incredible credible: afterimages are modulated by contextual edges more than real stimuli. Journal of Vision, 12(10), 113.CrossRefGoogle ScholarPubMed
Rabin, J., Switkes, E., Crognale, M., Schneck, M. E., and Adams, A. J. (1994). Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing. Vision Research, 34(20), 2657–71.CrossRefGoogle ScholarPubMed
Regan, D. (1973). Evoked potentials specific to spatial patterns of luminance and colour. Vision Research, 13(12), 23812402.CrossRefGoogle ScholarPubMed
Reid, R. C., and Shapley, R. M. (1992). Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature, 356(6371), 716–18.CrossRefGoogle ScholarPubMed
Reid, R. C., and Shapley, R. M. (2002). Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. Journal of Neuroscience, 22(14), 6158–75.CrossRefGoogle ScholarPubMed
Roe, A. W., and Ts’o, D. Y. (1999). Specificity of color connectivity between primate V1 and V2. Journal of Neurophysiology, 82(5), 2719–30.CrossRefGoogle ScholarPubMed
Roorda, A., and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397, 520–2.CrossRefGoogle ScholarPubMed
Sachtler, W. L., and Zaidi, Q. (1992). Chromatic and luminance signals in visual memory. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 9(6), 877–94.CrossRefGoogle ScholarPubMed
Sankeralli, M. J., and Mullen, K. T. (1997). Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 14(10), 2633–46.CrossRefGoogle ScholarPubMed
Schein, S. J., and Desimone, R. (1990). Spectral properties of V4 neurons in the macaque. Journal of Neuroscience, 10(10), 3369–89.CrossRefGoogle ScholarPubMed
Schein, S. J., Marrocco, R. T., and de Monasterio, F. M. (1982). Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? Journal of Neurophysiology, 47(2), 193213.CrossRefGoogle Scholar
Schiller, P. H. (1993). The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Visual Neuroscience, 10(4), 717–46.CrossRefGoogle ScholarPubMed
Schiller, P. H. (1995). Effect of lesions in visual cortical area V4 on the recognition of transformed objects. Nature, 376(6538), 342–4.CrossRefGoogle ScholarPubMed
Schrödinger, E. (1920). Theorie der Pigmente von größter Leuchtkraft. Annalen Der Physik, 367(15), 603–22.CrossRefGoogle Scholar
Schrödinger, E. (1925). Über das Verhältnis der Vierfarben zur Dreifarbentheorie. Sitzungberichte. Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik. Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, 134, 471–90.Google Scholar
Seidemann, E., Poirson, A. B., Wandell, B. A., and Newsome, W. T. (1999). Color signals in area MT of the macaque monkey. Neuron, 24(4), 911–17.CrossRefGoogle ScholarPubMed
Shapiro, A. G. (2008). Separating color from color contrast. Journal of Vision, 8(1), 118.CrossRefGoogle ScholarPubMed
Shapley, R., and Hawken, M. (2002). Neural mechanisms for color perception in the primary visual cortex. Current Opinion in Neurobiology, 12(4), 426–32.CrossRefGoogle ScholarPubMed
Shipp, S., de Jong, B. M., Zihl, J., Frackowiak, R. S., and Zeki, S. (1994). The brain activity related to residual motion vision in a patient with bilateral lesions of V5. Brain, 117(5), 1023–38.CrossRefGoogle Scholar
Shipp, S., and Zeki, S. (2002). The functional organization of area V2. I. Specialization across stripes and layers. Visual Neuroscience, 19(2), 187210.CrossRefGoogle ScholarPubMed
Sillito, A. M., Cudeiro, J., and Jones, H. E. (2006). Always returning: feedback and sensory processing in visual cortex and thalamus. Trends in Neurosciences, 29(6), 307–16.CrossRefGoogle ScholarPubMed
Sincich, L. C., and Horton, J. C. (2002). Pale cytochrome oxidase stripes in V2 receive the richest projection from macaque striate cortex. Journal of Comparative Neurology, 447(1), 1833.CrossRefGoogle ScholarPubMed
Sincich, L. C., and Horton, J. C. (2005). The circuitry of V1 and V2: integration of color, form, and motion. Annual Review of Neuroscience, 28, 303–26.CrossRefGoogle ScholarPubMed
Singh, K. D., Smith, A. T., and Greenlee, M. W. (2000). Spatiotemporal frequency and direction sensitivities of human visual areas measured using fMRI. NeuroImage, 12(5), 550–64.CrossRefGoogle ScholarPubMed
Smith, V. C., and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15(2), 161–71.CrossRefGoogle Scholar
Smithson, H., and Zaidi, Q. (2004). Colour constancy in context: roles for local adaptation and levels of reference. Journal of Vision, 4(9), 693710.CrossRefGoogle ScholarPubMed
Song, J.-H., Rowland, J., McPeek, R. M., and Wade, A. R. (2011). Attentional modulation of fMRI responses in human V1 is consistent with distinct spatial maps for chromatically defined orientation and contrast. Journal of Neuroscience, 31(36), 12900–5.CrossRefGoogle ScholarPubMed
Stevanov, J., Marković, S., and Kitaoka, A. (2012). Aesthetic valence of visual illusions. i-Perception, 3(2), 112–40.CrossRefGoogle ScholarPubMed
Stockman, A., and Sharpe, L. T. (2000). The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Research, 40(13), 1711–37.Google ScholarPubMed
Stockman, A., and Sharpe, L. T. (2006). Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Ophthalmic and Physiological Optics, 26(3), 225–39.CrossRefGoogle ScholarPubMed
Stoughton, C. M., and Conway, B. R. (2008). Neural basis for unique hues. Current Biology, 18(16), R698–9.CrossRefGoogle ScholarPubMed
Stromeyer, C. F., Chaparro, A., and Kronauer, R. E. (1996). The colour and motion of moving patterns are processed independently? Investigative Ophthalmology and Visual Science, 37(Suppl.), s916.Google Scholar
Stromeyer, C. F., Kronauer, R. E., Ryu, A., Chaparro, A., and Eskew, R. T. (1995). Contributions of human long-wave and middle-wave cones to motion detection. Journal of Physiology, 485(1), 221–43.CrossRefGoogle ScholarPubMed
Stromeyer, C. F., Thabet, R., Chaparro, A., and Kronauer, R. E. (1999). Spatial masking does not reveal mechanisms selective to combined luminance and red-green color. Vision Research, 39(12), 20992112.CrossRefGoogle ScholarPubMed
Toscani, M., Valsecchi, M., and Gegenfurtner, K. R. (2013). Optimal sampling of visual information for lightness judgments. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 11163–8.Google ScholarPubMed
Ts’o, D. Y., and Gilbert, C. D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience, 8(5), 1712–27.Google ScholarPubMed
Ungerleider, L. G., and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior (pp. 549–86). Boston, MA: MIT Press.Google Scholar
Valberg, A. (2001). Unique hues: an old problem for a new generation. Vision Research, 41(13), 1645–57.Google ScholarPubMed
Van Essen, D. C., and Zeki, S. M. (1978). The topographic organization of rhesus monkey prestriate cortex. Journal of Physiology, 277, 193226.CrossRefGoogle Scholar
Victor, J. D., Purpura, K., Katz, E., and Mao, B. (1994). Population encoding of spatial frequency, orientation, and color in macaque V1. Journal of Neurophysiology, 72(5), 2151–66.CrossRefGoogle ScholarPubMed
von Kries, J. (1905). Die Gesichtsempfindungen. In Nagel, W. (ed.), Handbuch der Physiologie der Menschen (pp. 109282). Braunschweig: Vieweg.Google Scholar
von Kries, J. (1970/1878). Physiology of visual sensations. In MacAdam, D. L. (ed.), Sources of Color Science. Cambridge, MA: MIT Press.Google Scholar
Wade, A. R., Brewer, A. A., Rieger, J. W., and Wandell, B. A. (2002). Functional measurements of human ventral occipital cortex: retinotopy and colour. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 357(1424), 963–73.Google ScholarPubMed
Wagner, G., and Boynton, R. M. (1972). Comparison of four methods of heterochromatic photometry. Journal of the Optical Society of America, 62(12), 1508–15.CrossRefGoogle ScholarPubMed
Walsh, V., Butler, S. R., Carden, D., and Kulikowski, J. J. (1992). The effects of V4 lesions on the visual abilities of macaques: shape discrimination. Behavioural Brain Research, 50(1–2), 115–26.CrossRefGoogle ScholarPubMed
Walsh, V., Carden, D., Butler, S. R., and Kulikowski, J. J. (1993). The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behavioural Brain Research, 53(1–2), 5162.CrossRefGoogle ScholarPubMed
Walsh, V., Kulikowski, J. J., Butler, S. R., and Carden, D. (1992). The effects of lesions of area V4 on the visual abilities of macaques: colour categorization. Behavioural Brain Research, 52(1), 81–9.CrossRefGoogle ScholarPubMed
Walsh, V., Le Mare, C., Blaimire, A., and Cowey, A. (2000). Normal discrimination performance accompanied by priming deficits in monkeys with V4 or TEO lesions. NeuroReport, 11(7), 1459–62.Google ScholarPubMed
Watt, J. M., and Breyer-Brandwijk, M. G. (1932). The Medicinal and Poisonous Plants of Southern Africa. Edinburgh: Livingstone.Google Scholar
Webster, M. A., Miyahara, E., Malkoc, G., and Raker, V. E. (2000). Variations in normal color vision. II. Unique hues. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(9), 1545–55.Google ScholarPubMed
Webster, M. A., and Mollon, J. D. (1994). The influence of contrast adaptation on color appearance. Vision Research, 34(15), 19932020.CrossRefGoogle ScholarPubMed
Weliky, M., Bosking, W. H., and Fitzpatrick, D. (1996). A systematic map of direction preference in primary visual cortex. Nature, 379(6567), 725–8.CrossRefGoogle ScholarPubMed
White, B. J., Kerzel, D., and Gegenfurtner, K. R. (2006). Visually guided movements to color targets. Experimental Brain Research, 175(1), 110–26.CrossRefGoogle ScholarPubMed
Witzel, C., and Gegenfurtner, K. R. (2011). Is there a lateralized category effect for color?. Journal of Vision, 11(12), 125.CrossRefGoogle Scholar
Witzel, C., and Gegenfurtner, K. R. (2013). Categorical sensitivity to color differences. Journal of Vision, 13(7), 133.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 171(1), 1128.CrossRefGoogle ScholarPubMed
Wyszecki, G., and Stiles, W. S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. New York: Wiley.Google Scholar
Yau, J. M., Pasupathy, A., Brincat, S. L., and Connor, C. E. (2012). Curvature processing dynamics in macaque area V4. Cerebral Cortex, 23(1), 198209.CrossRefGoogle ScholarPubMed
Young, T. (1802). The Bakerian lecture: On the theory of light and colours. Philosophical Transactions of the Royal Society of London, 92, 1248.Google Scholar
Zaidi, Q. (1992). Parallel and serial connections between human color mechanisms. Advances in Psychology, 86, 227–59.CrossRefGoogle Scholar
Zaidi, Q. (2005). The role of adaptation in color constancy. In Clifford, C. W. G. and Rhodes, G. (eds.), Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision. Oxford University Press.Google Scholar
Zaidi, Q., and Bostic, M. (2008). Color strategies for object identification. Vision Research, 48(26), 2673–81.CrossRefGoogle ScholarPubMed
Zaidi, Q., and DeBonet, J. S. (2000). Motion energy versus position tracking: spatial, temporal, and chromatic parameters. Vision Research, 40(26), 3613–35.CrossRefGoogle ScholarPubMed
Zaidi, Q., Ennis, R., Cao, D., and Lee, B. (2012). Neural locus of color afterimages. Current Biology, 22(3), 220–4.CrossRefGoogle ScholarPubMed
Zaidi, Q., and Halevy, D. (1993). Visual mechanisms that signal the direction of color changes. Vision Research, 33(8), 1037–51.CrossRefGoogle ScholarPubMed
Zaidi, Q., and Shapiro, A. G. (1993). Adaptive orthogonalization of opponent-color signals. Biological Cybernetics, 69(5–6), 415–28.CrossRefGoogle ScholarPubMed
Zeki, S. (1983a). Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience, 9(4), 741–65.Google ScholarPubMed
Zeki, S. (1983b). Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience, 9(4), 767–81.Google ScholarPubMed
Zeki, S. (1983c). The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proceedings of the Royal Society of London. B, Biological Sciences, 217(1209), 449–70.Google ScholarPubMed
Zemany, L., Stromeyer, C. F., Chaparro, A., and Kronauer, R. E. (1998). Motion detection on flashed, stationary pedestal gratings: evidence for an opponent-motion mechanism. Vision Research, 38(6), 795812.CrossRefGoogle ScholarPubMed

References

Ahnelt, P. K, and Kolb, H. (2000). The mammalian photoreceptor mosaic-adaptive design. Progress in Retinal and Eye Research, 19, 711–70.CrossRefGoogle ScholarPubMed
Bickelmann, C. (2011). Visual Pigment Evolution and the Paleobiology of Early Mammals. Doctoral thesis, Humboldt-Universität zu Berlin.Google Scholar
Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48, 2022–41.CrossRefGoogle ScholarPubMed
Brainard, D. H., and Maloney, L. T. (2011). Surface color perception and equivalent illumination models. Journal of Vision, 11, 110.CrossRefGoogle ScholarPubMed
Briscoe, A. D., and Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471510.CrossRefGoogle ScholarPubMed
Buck, S. L. (2014). The interaction of rod and cone signals: pathways and psychophysics. In Werner, J. S. and Chalupa, L. M. (eds.), The New Visual Neurosciences (pp. 485–97). Cambridge, MA: MIT Press.Google Scholar
Bunce, J. A., Isbell, L. A., Grote, M. N., and Jacobs, G. H. (2011). Color vision variation and foraging behavior in wild neotropical titi monkeys (Callicebus brunneus): possible mediating roles for spatial memory and reproductive status. International Journal of Primatology, 32, 1058–75.CrossRefGoogle Scholar
Chiao, C.-C., Vorobyev, M., Cronin, T. W., and Osorio, D. (2000). Spectral tuning of dichromats to natural scenes. Vision Research, 40, 3257–71.CrossRefGoogle ScholarPubMed
Collin, S. P. (2010). Evolution and ecology of retinal photoreception in early vertebrates. Brain Behavior and Evolution, 75, 174–85.CrossRefGoogle ScholarPubMed
Collin, S. P., Davies, W. L., Hart, N. S., and Hunt, D. M. (2009). The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 364, 2925–40.Google ScholarPubMed
Collin, S. P., Hart, N. S., Shand, J., and Potter, I. C. (2003). Morphology and spectral absorption characteristics of retinal photoreceptors in the Southern Hemisphere lamprey (Geotria australis). Visual Neuroscience, 20, 119–30.CrossRefGoogle ScholarPubMed
Collin, S. P., Knight, M. A., Davies, W. L., Potter, I. C., Hunt, D. M., and Trezise, A. E. O. (2003). Ancient colour vision: multiple opsin genes in ancestral vertebrates. Current Biology, 13, R864–5.CrossRefGoogle ScholarPubMed
Collin, S. P., and Trezise, A. E. O. (2004). The origins of colour vision in vertebrates. Clinical and Experimental Optometry, 87, 217–33.CrossRefGoogle ScholarPubMed
Crompton, A. W., Taylor, C., and Jagger, J. A. (1978). Evolution of homeothermy in mammals. Nature, 272, 333–6.CrossRefGoogle ScholarPubMed
Cronin, T. W., Porter, M. L., Bok, M. J., Wolf, J. B., and Robinson, P. R. (2010). The molecular genetics and evolution of colour and polarization vision in stomatopod crustaceans. Ophthalmic and Physiological Optics, 30, 460–9.CrossRefGoogle ScholarPubMed
Davies, W. L., Caravalho, L. S., Cowing, J. A., Beazley, L. D., Hunt, D. M., and Arrese, C. A. (2007). Visual pigments of the platypus: a novel route to mammalian colour vision. Current Biology, 17, B161–3.CrossRefGoogle ScholarPubMed
Davies, W. L., Collin, S. P., and Hunt, D. M. (2012). Molecular ecology and adaptation of visual pigments in craniates. Molecular Ecology, 21, 3121–58.CrossRefGoogle ScholarPubMed
Deeb, S. S. (2010). Visual pigments and colour vision in marsupials and monotremes. In Deakin, J. E., Waters, P. D., and Marshall Graves, J. A. (eds.), Marsupial Genetics and Genomics (pp. 403–14). Dordrecht: Springer.Google Scholar
Dominy, N. J., and Lucas, P. W. (2001). Ecological importance of trichromatic colour vision to primates. Nature, 410, 363–5.CrossRefGoogle ScholarPubMed
Duke-Elder, S. (1958). The Eye in Evolution (vol. I of System of Ophthalmology). London: Henry Kimpton.CrossRefGoogle Scholar
Feuda, R., Hamilton, S. C., McInerney, J. O., and Pisani, D. (2012). Metazoan opsin evolution reveals a simple route to animal vision. Proceedings of the National Academy of Sciences of the United States of America, 109, 18868–72.Google ScholarPubMed
Heesy, C. P., and Hall, M. I. (2010). The nocturnal bottleneck and the evolution of mammalian vision. Brain Behavior and Evolution, 75, 195203.CrossRefGoogle ScholarPubMed
Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., and Kawamura, S. (2008). Importance of luminance contrast in short-range fruit foraging of primates. PLoS ONE, 3, e3356.CrossRefGoogle ScholarPubMed
Hiramatsu, C., Tsutsui, T., Matsumoto, Y., Aurrell, F., Fedigan, L. M., and Kawamura, S. (2005). Color vision polymorphism in wild capuchins (Cebus capuchinus) and spider monkeys (Ateles geoffroyi) in Costa Rica. American Journal of Primatology, 67, 471–85.CrossRefGoogle Scholar
Hisatomi, O., and Tokunaga, F. (2002). Molecular evolution of proteins involved in vertebrate phototransduction. Comparative and Biochemical Physiology. Part B, Biochemistry & Molecular Biology, 133, 509–22.CrossRefGoogle ScholarPubMed
Hunt, D. M., Carvallo, L. S., Cowing, J. A., and Davies, W. L. (2009). Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 364, 2941–55.Google ScholarPubMed
Hunt, D. M., Dulai, K. S., Cowing, J. A., Juillot, C., Mollon, J. D., Bowmaker, J. K., and Hewett-Emmett, D. (1998). Molecular evolution of trichromacy in primates. Vision Research, 38, 32993306.CrossRefGoogle ScholarPubMed
Hunt, D. M., Jacobs, G. H., and Bowmaker, J. K. (2005). The genetics and evolution of primate visual pigments. In Kremers, J. (ed.), The Primate Visual System: A Comparative Approach (pp. 73126). Chichester: Wiley.CrossRefGoogle Scholar
Hunt, D. M., and Peichl, L. (2014). S cones: evolution, retinal distribution, development, and spectral sensitivity. Visual Neuroscience, 31, 115–38.CrossRefGoogle ScholarPubMed
Hunt, David M., Wilkie, S. E., Bowmaker, J. K., and Poopalasundaram, S. (2001). Vision in the ultraviolet. Cellular and Molecular Life Sciences, 58, 1583–98.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (1984). Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision. Vision Research, 24, 1267–77.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2007). New World monkeys and color. International Journal of Primatology, 28, 729–59.CrossRefGoogle Scholar
Jacobs, G. H. (2008). Primate color vision: a comparative perspective. Visual Neuroscience, 25, 619–33.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 364, 2957–67.Google ScholarPubMed
Jacobs, G. H. (2010). Recent progress in understanding mammalian color vision. Ophthalmic and Physiological Optics, 30, 422–34.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2012). The evolution of vertebrate color vision. Advances in Experimental Medicine and Biology, 739, 156–72.CrossRefGoogle ScholarPubMed
Jacobs, G. H. (2013). Losses of functional opsin genes, short-wavelength cone photopigments, and color vision – a significant trend in the evolution of mammalian vision. Visual Neuroscience, 30, 319–53.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Deegan, J. F. II (1993). Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). American Journal of Primatology, 30, 243–56.CrossRefGoogle Scholar
Jacobs, G. H., and Deegan, J. F. II, (1999). Uniformity of colour vision in Old World monkeys. Proceedings of the Royal Society of London. B, Biological Sciences, 266, 2023–8.Google ScholarPubMed
Jacobs, G. H., and Deegan, J. F. II, (2001). Photopigments and colour vision in New World monkeys from the family Atelidae. Proceedings of the Royal Society of London. B, Biological Sciences, 268, 695702.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Deegan, J. F. II, (2003). Diurnality and cone pigment polymorphism in strepsirrhines: examination of the linkage in Lemur catta. American Journal of Physical Anthropology, 122, 676–2.CrossRefGoogle ScholarPubMed
Jacobs, G. H., Deegan, J. F. II, Tan, Y., and Li, W.-H. (2002). Opsin gene and photopigment polymorphism in a prosimian primate. Vision Research, 42, 1118.CrossRefGoogle Scholar
Jacobs, G. H., Fenwick, J. C., Calderone, J. B., and Deeb, S. S. (1999). Human cone pigment expressed in transgenic mice yields altered vision. Journal of Neuroscience, 19, 3258–65.CrossRefGoogle ScholarPubMed
Jacobs, G. H., Fenwick, J. A., and Williams, G. A. (2001). Cone-based vision of rats for ultraviolet and visible lights. Journal of Experimental Biology, 204, 2439–46.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Nathans, J. (2009). The evolution of primate color vision. Scientific American, 300(4), 40–7.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Neitz, J. (1987). Inheritance of color vision in a New World monkey (Saimiri sciureus). Proceedings of the National Academy of Sciences of the United States of America, 84, 2545–9.Google Scholar
Jacobs, G. H., Neitz, M., Deegan, J. F., II, and Neitz, J. (1996). Trichromatic colour vision in New World monkeys. Nature, 382, 156–8.CrossRefGoogle ScholarPubMed
Jacobs, G. H., Neitz, M., and Neitz, J. (1996). Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society of London. B, Biological Sciences, 263, 705–10.Google ScholarPubMed
Jacobs, G. H., and Rowe, M. P. (2004). Evolution of vertebrate colour vision. Clinical and Experimental Optometry, 87, 206–16.CrossRefGoogle ScholarPubMed
Jacobs, G. H., and Williams, G. A. (2001). The prevalence of defective color vision in Old World monkeys and apes. Color Research & Application, 26, S123–7.3.0.CO;2-6>CrossRefGoogle Scholar
Kashiyama, K., Seki, T., Numata, H., and Goto, S. G. (2009). Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda. Molecular Biology and Evolution, 26(2), 299311.CrossRefGoogle ScholarPubMed
Kawamura, S., Hiramatsu, C., Melin, A. D., Schaffner, C. M., Aureli, F., and Fedigan, L. M. (2012). Polymorphic color vision in primates: evolutionary considerations. In Hirai, H., Imai, H., and Go, Y. (eds.), Post-Genome Biology of Primates (pp. 93120). Tokyo: Springer.CrossRefGoogle Scholar
Kawamura, S., and Kubotera, N. (2004). Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. Journal of Molecular Evolution, 58(3), 314–21.CrossRefGoogle ScholarPubMed
Kelber, A., and Osorio, D. (2010). From spectral information to animal colour vision: experiments and concepts. Proceedings of the Royal Society of London. B, Biological Sciences, 277, 1617–25.Google ScholarPubMed
Kemp, T. S. (2005). The Origin and Evolution of Mammals. Oxford University Press.Google Scholar
Koida, K., Yokoi, I., Okazawa, G., Mikami, A., Widayati, K. A., Miyachi, S., and Komatsu, H. (2013). Color vision test for dichromatic and trichromatic macaque monkeys. Journal of Vision, 13, 115.CrossRefGoogle ScholarPubMed
Krishnan, A., Almen, M. S., Fredriksson, R., and Schioth, H. B. (2012). The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS ONE, 7, 1.CrossRefGoogle ScholarPubMed
Ladd-Franklin, C. (1929). Colour and Colour Theories. New York: Harcourt Brace.Google Scholar
Lagman, D., Daza, D. C., Widmark, J., Abalo, X. M., Sundstrom, G., and Larhammar, D. (2013). The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in two rounds of early vertebrate genome duplications. BMC Evolutionary Biology, 13, 238.CrossRefGoogle ScholarPubMed
Lamb, T. D. (2013). Evolution of phototransduction, vertebrate photoreceptors and retina. Progress in Retinal and Eye Research, 36, 52119.CrossRefGoogle ScholarPubMed
Lamb, T. D., Pugh, E. N. Jr., and Collin, S. P. (2007). Evolution of the vertebrate eye: opsins, photoreceptors, retina, and eye-cup. Nature Reviews Neuroscience, 8, 960–75.CrossRefGoogle ScholarPubMed
Lythgoe, J. N., and Partridge, J. C. (1989). Visual pigments and the acquisition of visual information. Journal of Experimental Biology, 146, 120.CrossRefGoogle ScholarPubMed
Matsushita, Y., Oota, H., Welker, B. J., Pavelka, M. S., and Kawamura, S. (2014). Color vision variation as evidenced by hybrid L/M opsin genes in wild populations of trichromatic Alouatta New World monkeys. International Journal of Primatology, 35, 7187.CrossRefGoogle ScholarPubMed
Maximov, V. V. (2000). Environmental factors which may have led to the appearance of colour vision. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 355, 1239–42.Google Scholar
Melin, A. D., Fedigan, L. M., Hiramatsu, C., Hiwatashi, T., Parr, N., and Kawamura, S. (2009). Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. International Journal of Primatology, 30(6), 753–75.CrossRefGoogle Scholar
Mollon, J. D., Bowmaker, J. K., and Jacobs, G. H. (1984). Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London. B, Biological Sciences, 222, 373–99.Google Scholar
Nathans, J. (1999). The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron, 24, 299312.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D., and Hogness, D. S. (1986). Molecular genetics of human color vision: the genes encoding blue, green and red pigments. Science, 232, 193202.CrossRefGoogle ScholarPubMed
Neitz, J., Geist, T., and Jacobs, G. H. (1989). Color vision in the dog. Visual Neuroscience, 3, 119–25.CrossRefGoogle ScholarPubMed
Neitz, J., and Neitz, M. (2011). The genetics of normal and defective color vision. Vision Research, 51, 633–51.CrossRefGoogle ScholarPubMed
Neitz, M., Neitz, J., and Jacobs, G. H. (1991). Spectral tuning of pigments underlying red-green color vision. Science, 252, 971–4.CrossRefGoogle ScholarPubMed
Nilsson, D. E. (2009). The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society. Series B, Biological Sciences, 2833–47.CrossRefGoogle Scholar
Nilsson, D. E. (2013). Eye evolution and its functional basis. Visual Neuroscience, 30, 520.CrossRefGoogle ScholarPubMed
Niven, J. E., and Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 17921804.CrossRefGoogle ScholarPubMed
Nordstrom, K., Larsson, T. A., and Larhammar, D. (2004). Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. Genomics, 83, 852–72.CrossRefGoogle ScholarPubMed
Okano, T., Yoshizawa, T., and Fukada, Y. (1992). Primary structures of chicken cone visual pigments: vertebrate rods have evolved out of cone visual pigments. Proceedings of the National Academy of Sciences of the United States of America, 89, 5932–6.Google Scholar
Onishi, A., Koike, S., Ida, M., Imai, H., Schichida, Y., Osamu, T., Hanazawa, A., et al. (1999). Dichromatism in macaque monkeys. Nature, 402, 139–40.CrossRefGoogle ScholarPubMed
Osorio, D., Smith, A. C., Vorobyev, M., and Buchanan-Smith, H. M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist, 164, 696708.CrossRefGoogle ScholarPubMed
Osorio, D., and Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London. B, Biological Sciences, 263, 593–9.Google ScholarPubMed
Osorio, D., and Vorobyev, M. (2005). Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society of London. B, Biological Sciences, 272, 1745–52.Google ScholarPubMed
Parker, A. R. (1998). Colour in Burgess Shale animals and the effect of light on evolution in the Cambrian. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205, 967–72.Google Scholar
Parker, A. R. (2011). On the origin of optics. Optics and Laser Technology, 43, 323–9.CrossRefGoogle Scholar
Parraga, C. A., Troscianko, T., and Tolhurst, D. J. (2002). Spatiochromatic properties of natural images and human vision. Current Biology, 12, 483587.CrossRefGoogle ScholarPubMed
Peichl, L. (2005). Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 287A, 1001–12.CrossRefGoogle Scholar
Plotnick, R. E., Dornbos, S. Q., and Chen, J. (2010). Information landscapes and sensory ecology of the Cambrian radiation. Paleobiology, 36, 303–17.CrossRefGoogle Scholar
Podlaha, O., and Zhang, J. (2010). Pseudogenes and their evolution. In Kehrer-Sawatzki, H. (ed.), Encyclopedia of Life Sciences. Chichester: Wiley.Google Scholar
Porter, M. L., Blasic, J. R., Bok, M. J., Cameron, E. G., Pringle, T., Cronin, T. W., and Robinson, P. R. (2012). Shedding light on opsin evolution. Proceedings of the Royal Society of London. Series B, Biological Sciences, 279, 314.Google ScholarPubMed
Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., and Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 229–83.Google ScholarPubMed
Schmitz, L., and Motani, R. (2011). Nocturnality in dinosaurs inferred from schleral ring and orbit morphology. Science, 332, 705–8.CrossRefGoogle Scholar
Schopf, J. W. (2011). The paleobiological record and photosynthesis. Photosynthesis Research, 107, 87101.CrossRefGoogle Scholar
Schultze, M. (1866). Zur Anatomie und Physiologie der Retina. Archiv für mikroskopische Anatomie, 2, 175286.CrossRefGoogle Scholar
Schwab, I. R. (2012). Evolution’s Witness: How Eyes Evolved. New York: Oxford University Press.Google Scholar
Shichida, Y., and Matsuyama, T. (2009). Evolution of opsins and phototransduction. Philosophical Transactions of the Royal Society. Series B, Biological Sciences, 364, 2881–95.Google ScholarPubMed
Skorupski, P., and Chittka, L. (2011). Is colour cognitive? Optics and Laser Technology, 43, 251–60.CrossRefGoogle Scholar
Smith, A. C., Buchanan-Smith, H. M., Surridge, A. K., Osorio, D., and Mundy, N. I. (2003). The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). Journal of Experimental Biology, 206, 3159–65.CrossRefGoogle ScholarPubMed
Stabell, B., and Stabell, U. (2009). Duplicity Theory of Vision. Cambridge University Press.CrossRefGoogle Scholar
Striedter, G. F. (2005). Principles of Brain Evolution. Sutherland, MA: Sinauer.Google Scholar
Surridge, A. K., and Mundy, N. I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in callitrichine primates. Molecular Ecology, 11, 2157–69.CrossRefGoogle ScholarPubMed
Tan, Y., and Li, W.-H. (1999). Trichromatic vision in prosimians. Nature, 402, 36.CrossRefGoogle ScholarPubMed
Veilleux, C. C., and Bolnick, D. A. (2009). Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. American Journal of Primatology, 71, 8690.CrossRefGoogle Scholar
Veilleux, C. C., Jacobs, R. L., Cummings, M. E., Louis, E. E., and Bolnick, D. A. (2014). Opsin genes and visual ecology in a nocturnal folivorous lemur. International Journal of Primatology, 35, 88107.CrossRefGoogle Scholar
Vogel, E. R., Neitz, M., and Dominy, N. J. (2007). Effect of color vision phenotype on the foraging of wild white-faced capuchins, Cebus capucinus. Behavioral Ecology, 18, 292–7.CrossRefGoogle Scholar
Wakefield, M. J., Anderson, M., Chang, E., Wei, K. J., Kaul, R., Graves, J. A., and Deeb, S. S. (2008). Cone visual pigments of monotremes: filling the phylogenetic gap. Visual Neuroscience, 25, 257–64.CrossRefGoogle ScholarPubMed
Walls, G. L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, MI: Cranbrook Institute of Science.Google Scholar
Wyszecki, G., and Stiles, W. S. (1982). Color Science, 2nd edn. New York: Wiley.Google Scholar
Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research, 19(4), 385419.CrossRefGoogle ScholarPubMed
Yokoyama, S. (2008). Evolution of dim-light and color vision pigments. Annual Review of Genomics and Human Genetics, 9, 259–82.CrossRefGoogle ScholarPubMed
Yokoyama, S., and Radlwimmer, F. B. (1998). The “five-sites” rule and the evolution of red and green color vision in mammals. Molecular Biology and Evolution, 15, 560–7.CrossRefGoogle Scholar

References

Abramov, I. (1997). Physiological mechanisms of color vision. In Hardin, C. L. and Maffi, L. (eds.), Color Categories in Thought and Language (pp. 89117). Cambridge University Press.CrossRefGoogle Scholar
Bartha, P. (2013). Analogy and analogical reasoning. In Zalta, Edward N. (ed.), Stanford Encyclopedia of Philosophy, Fall Edition. (http://plato.stanford.edu/archives/fall2013/entries/reasoning-analogy/).Google Scholar
Boghossian, P., and Velleman, J. D. (1997/1989). Color as a secondary quality. In Byrne, A. and Hilbert, D. (eds.), Readings on Color, vol. I: The Philosophy of Color (pp. 81104). Cambridge, MA: MIT Press.Google Scholar
Brentano, F. C. (1973). Psychology from an Empirical Standpoint, ed. Kraus, O.; trans.Rancurello, A. C., Terrell, D. B., and McAlister, L. L.. London: Routledge and Kegan Paul.Google Scholar
Byrne, A. (2014). Inverted qualia. In Zalta, Edward N. (ed.), Stanford Encyclopedia of Philosophy, Summer Edition (http://plato.stanford.edu/archives/sum2014/entries/qualia-inverted/).Google Scholar
Byrne, A., and Hilbert, D. (1997). Readings on Color, vol. I: The Philosophy of Color. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Byrne, A., and Hilbert, D. (2003). Color realism and color science. Behavioral and Brain Sciences, 26, 144.Google ScholarPubMed
Byrne, A., and Hilbert, D. (2007). Color primitivism. Erkenntnis, 26, 321.Google Scholar
Campbell, J. (1994). A simple view of colour. In Haldane, J. and Wright, C. (eds.), Reality, Representation and Projection (pp. 257–69). Oxford: Clarendon Press.Google Scholar
Chalmers, D. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2, 200–19.Google Scholar
Chalmers, D. (1996). The Conscious Mind. Oxford University Press.Google Scholar
Cohen, J. (2009). The Red and the Real. Oxford University Press.CrossRefGoogle Scholar
Crick, F., and Koch, C. (1990). Toward a neurobiological theory of consciousness. Seminars in Neuroscience, 2, 263–75.Google Scholar
Dedrick, D. (1995). Objectivism and the evolutionary value of colour vision. Dialogue, 31, 3544.CrossRefGoogle Scholar
Dedrick, D. (2012). The phenomenology of color. In Luo, R. (ed.), Encyclopedia of Color Science and Technology. New York: Springer Verlag.Google Scholar
Hacker, P. M. S. (1987). Appearance and Reality. Oxford: Blackwell.Google Scholar
Hardin, C. L. (1993/1988). Color for Philosophers. Indianapolis, IN: Hackett.Google Scholar
Hardin, C. L. (2003). A reflectance doth not a color make. Journal of Philosophy, 100, 191202.CrossRefGoogle Scholar
Hardin, C. L. (2008). Color qualities and the physical world. In Wright, E. (ed.), The Case for Qualia (pp. 143–54). Cambridge, MA: MIT Press.Google Scholar
Hering, E. (1964/1920). Outlines of a Theory of the Light Sense, trans. Hurvich, L. and Jameson, D.. Cambridge, MA: Harvard University Press.Google Scholar
Hilbert, D. R. (1987). Color and Color Perception. Stanford, CA: CSLI Publications.Google Scholar
Jackson, F. (1982). Epiphenomenal qualia. Philosophical Quarterly, 32, 127–36.CrossRefGoogle Scholar
Jackson, F. (2005). Consciousness. In Jackson, F. and Smith, M. (eds.), The Oxford Handbook of Contemporary Philosophy (pp. 310–33). Oxford University Press.Google Scholar
Jacobs, G. H. (1981). Comparative Color Vision. New York: Academic Press.Google Scholar
Kim, J. (1998). Mind in a Physical World. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Locke, J. (1961/1706). An Essay Concerning Human Understanding, ed. Yolton, John. London: Dent.Google Scholar
Ludlow, P., Nagasawa, Y., and Stoljar, D. (eds.) (2004). There Is Something About Mary: Essays on Phenomenal Consciousness and Frank Jackson’s Knowledge Argument. Cambridge, MA: MIT Press.Google Scholar
Matthen, M. (1988). Biological function and perceptual content. Journal of Philosophy, 95, 527.CrossRefGoogle Scholar
Matthen, M. (2008). Seeing, knowing, doing: a précis. Philosophy and Phenomenological Research, 76(2), 392–9.CrossRefGoogle Scholar
Maund, B. (2012). Color. In Zalta, Edward N. (ed.), Stanford Encyclopedia of Philosophy, Winter Edition (http://plato.stanford.edu/archives/win2012/entries/color/).Google Scholar
Mollon, J., Pokorny, J., and Knoblauch, K. (2003). Normal and Defective Colour Vision. Oxford University Press.CrossRefGoogle Scholar
Moran, D. (2000). Introduction to Phenomenology. London and New York: Routledge.Google Scholar
Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 83, 435–56.CrossRefGoogle Scholar
Nagel, T. (1986). The View from Nowhere. Oxford University Press.Google Scholar
Nassau, K. (1983). The Physics and Chemistry of Color. New York: Wiley.Google Scholar
Newton, I. (1952/1704). Optics. New York: Dover Publications.Google Scholar
Palmer, S. K. (1999). Vision Science. Cambridge, MA: MIT Press.Google Scholar
Sellars, W. (1963). Science, Perception and Reality. London: Routledge and Kegan Paul; and New York: Humanities Press (reissued 1991, Atascadero, CA: Ridgeview).Google Scholar
Shear, J. (1997). Explaining Consciousness: The Hard Problem. Cambridge, MA: MIT Press.Google Scholar
Stotz, K., Griffiths, P., and Knight, R. (2004). How biologists conceptualize genes: an empirical study. Studies in History and Philosophy of Biological and Biomedical Sciences, 35, 647–73.CrossRefGoogle Scholar
Thompson, E. (1995). Colour Vision. London: Routledge.CrossRefGoogle Scholar
Westphal, J. (1991). Colour: A Philosophical Introduction, 2nd edn. Oxford: Blackwell.Google Scholar
Wittgenstein, L. (1977). Remarks on Colour. Anscombe, G. E. M. (ed.), Oxford: Blackwell.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×